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Abstract: Background: It is difficult to characterize extracranial venous malformations (VMs) of the
head and neck region from magnetic resonance imaging (MRI) manually and one at a time. We
attempted to perform the automatic segmentation of lesions from MRI of extracranial VMs using a
convolutional neural network as a deep learning tool. Methods: T2-weighted MRI from 53 patients
with extracranial VMs in the head and neck region was used for annotations. Preprocessing manage-
ment was performed before training. Three-dimensional U-Net was used as a segmentation model.
Dice similarity coefficients were evaluated along with other indicators. Results: Dice similarity
coefficients in 3D U-Net were found to be 99.75% in the training set and 60.62% in the test set. The
models showed overfitting, which can be resolved with a larger number of objects, i.e., MRI VM
images. Conclusions: Our pilot study showed sufficient potential for the automatic segmentation
of extracranial VMs through deep learning using MR images from VM patients. The overfitting
phenomenon observed will be resolved with a larger number of MRI VM images.

Keywords: vascular malformations; deep learning; surgery; plastic

1. Introduction

Venous malformations (VMs) are caused by abnormalities in vascular morphogenesis.
Vascular anomalies are classified into vascular tumors and vascular malformations based
on Mulliken’s findings and according to the International Society for the Study of Vascular
Anomalies [1,2]. Vascular malformations are differentiated into simple, combined malfor-
mations, vascular malformations of major named vessels, and those associated with other
anomalies. Among simple vascular malformations, VMs are the most common ones [2,3].
VMs are known to occur most often in the head and neck region (47%) [4].

In the diagnosis of VMs from images, B-mode sonography, in combination with
color-coded duplex sonography (CCDS) and magnetic resonance imaging (MRI), is often
used [3,5]. CCDS is the first imaging modality in the diagnosis of vascular malformations.
It gains morphologic information in addition to information about blood flow. CCDS is also
suitable for the depiction of flow characteristics. MR images depict the extents of lesions
and their relationships with surrounding structures. MRI findings of VMs are seen as
hyperintense lesions in T2-weighted fat-saturated sequence images as well as hypointense
or isointense lesions in T1-weighted images without a contrast medium relative to muscle
(Figure 1) [6]. However, although single-mass VMs appear as single-mass-like lesions in
MRI, VMs in many patients are seen as multifocal lesions over several areas in the head and
neck region. Significant time and effort are needed for clinicians to determine the bound-
aries of lesions in multifocal areas one at a time and to calculate their volumes. Recently,
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the development and use of automatic segmentation using convolutional neural networks
(CNNs) as a deep learning tool has been reported in many fields, but the segmentation of
blood vessels continues to be challenging [7–11].
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Figure 1. VM in the left submandibular area. (a) Bulging blueish vascular mass was observed;
(b) MRI findings of VM. These T2-weighted with fat suppression MRI findings showed an infiltrative
vascular channel with a size of 8.2 × 4.1 cm from the subcutaneous fat layer to the submandibular
gland and part of the posterior belly of the digastric muscle in the left submandibular area. It showed
inhomogeneous patchy high signal intensity inside. VM, venous malformation; MRI, magnetic
resonance imaging.

We attempted to utilize an artificial intelligence (AI) strategy to automatically deter-
mine the boundaries of lesions and perform segmentation to distinguish lesions from other
tissues through deep learning using MRI of VMs.

2. Materials and Methods
2.1. The Dataset and Preprocessing

According to thorough examinations in the multidisciplinary Vascular Anomalies
Center, 53 patients were diagnosed with VMs of the head and neck region and routinely
subjected to MRI. In these MR images, all of the images were taken from the neck to the
vertex of the head. Two plastic surgeons with 20 and 10 years of experience in the field of
vascular anomalies, respectively, performed data annotation using T2-weighted images
with fat suppression of 3D MRI datasets in accordance with the readings of radiological
specialists for vascular anomalies. All MR images were taken using 3.0T SIGNA™ MRI
Scanners (GE HealthCare, Waukesha, WI, USA). In the T2-weighted axial image with fat
suppression, the boundary between hyperintense lesions and non-hyperintense normal
tissues was drawn using the labeling software DEEP:LABEL® (DEEPNOID Inc, Seoul,
Korea). For accurate data labeling, they drew the boundary between the lesion and the
healthy surrounding tissue directly on the screen using a touchscreen computer and a
Bluetooth pen. In the preprocessing of the images, all of the images, of various dimensions,
were resized to a volume of 16, a height of 128, and a width of 128 pixels. After resizing,
the images were inverted and contrast-limited adaptive histogram equalization (CLAHE)
was applied to effectively improve the image contrast in cases of light and dark areas in the
images. In order to make the dynamic range of image processing consistent and increase
the efficiency of calculations, a Z-score was standardized. The formula used for Z-score
standardization was Z = x−µ

σ (x, pixel values of the original image; µ, mean pixel value of
the original image; σ, pixel standard deviation of the original image). As the last step of
preprocessing, minimum–maximum normalization was performed. This unified the pixel
values of all images so that the CNN did not learn unnecessary features. The formula used
for normalization was Xnormalization = X−Xmin

Xmax−Xmin
. Thus, the image pixel value was set to 0–1.

All of the preprocessing procedures were performed using a research platform for machine
learning called DEEP:PHI® (DEEPNOID Inc., Seoul, Korea), which is available to everyone.
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More details on the platform can be found on its official website (https://www.deepphi.ai,
accessed on 23 September 2022).

2.2. CNN Architecture and Performance Analysis

Three-dimensional U-Net was used as the CNN architecture [12]. U-Net is a CNN
frequently used for image segmentation, and its performance has been verified in various
medical image deep learning studies [13,14]. By including the skip connection technique
in the general encoder–decoder structure, the information before the feature map is com-
pressed in the convolution layer, saved, and sent to the decoder, which results in better
performance than that of fully convolutional networks [15]. In the original U-Net, segmen-
tation was performed with 2D-based images, but the dataset used in our study comprised
3D MR images. Therefore, we used 3D U-Net that replaced the 2D convolution layer with a
3D convolution layer in the original U-Net structure [11]. Among the 53 patients with VMs
in the head and neck region, MRI of 48 patients was used as the training set and that of
5 patients was used as the test set. MRI segmentation was conducted using different key
performance measures, including sensitivity, specificity, accuracy, positive predictive value
(PPV), negative predictive value (NPV), and Dice similarity coefficient. The formula for
each measurement was as follows:

Sensitivity =
TP

TP + FN

Speci f icity =
TN

FP + TN

Accuracy =
TP + TN

TP + FN + FP + TN

PPV =
TP

TP + FP

NPV =
TN

TN + FN

Dice similarity coe f f icient =
2 × TP

2 × TP + FP + FN
TP, true positive; TN, true negative; FP, false positive; FN, false negative; PPV, positive

predictive value; and NPV, negative predictive value.

3. Results

We retrospectively reviewed 53 patients who were diagnosed with venous malfor-
mations in the head and neck region. The mean age of the 53 patients (28 of which were
female) was 26 years (4–70 years). Thirty-six of the patients had localized solitary lesions,
while seventeen of the patients had multifocal lesions. Ten lesions were distributed in
the upper face (eyebrow to vertex), thirty-three were in the midface (lip to eyebrow), and
twenty-eight were in the lower face and neck. The reason the total number of lesions ex-
ceeded 53 was because multifocal lesions were counted for every single VM manifestation.
Detailed characteristics of the study population are summarized in Table 1.

The Dice similarity coefficient, the most important index in image segmentation,
showed a training set performance of 99.75% and a test set performance of 60.62%. Other
performance indicators are reported in Table 2, showing very high performance in the
training set and relatively low performance in the test set.

https://www.deepphi.ai
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Table 1. Patient characteristics of the target dataset.

Variables Value

Number of patients 53
Mean age 26 (4–70)

Female sex 28 (52.83%)
Multifocal lesions 17 (32.08%)

Distribution of lesions
Upper face 10 (14.08%)

Midface 33 (46.48%)
Lower face to neck 28 (39.44%)

Table 2. Results of automatic segmentation using 3D U-Net.

Performances (%) Training Set Test Set

Sensitivity 99.75 45.10
Specificity 100 99.96
Accuracy 100 99.43

PPV 1 99.74 92.45
NPV 2 100 99.47
Dice 3 99.75 60.62

1 PPV, positive predictive value; 2 NPV, negative predictive value; and 3 Dice, Dice similarity coefficient.

3.1. Cases: Data of the Training Set

T2-weighted MRI of patients with VMs in the head and neck region was used as data
in the training set. In the image preprocessing, the image was (A) resized to a volume of
16, a height of 128, and a width of 128 pixels; (B) the image was inverted; (C) CLAHE was
applied; and (D) Z-score standardization as well as (E) minimum–maximum normalization
were performed. The labeling data drawn by the plastic surgeon (F) and the prediction
data drawn by the AI tool (G) were almost identical (Figures 2 and 3).
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Figure 2. Training set of VMs in the right periorbital area. (A) Resized to a volume of 16, a height of
128, and a width of 128 pixels; (B) inverted image; (C) CLAHE application; (D) Z-score standardiza-
tion; (E) minimum–maximum normalization; (F) labeling data drawn by the clinicians; (G) prediction
data drawn by the artificial intelligence tool; and (H) green indicates the matched area, while red
indicates the mismatched area. VMs, venous malformations; CLAHE, contrast-limited adaptive
histogram equalization.
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Figure 3. Another training set of VMs in the left cheek. (A) Resized to a volume of 16, a height of 128,
and a width of 128 pixels; (B) inverted image; (C) CLAHE application; (D) Z-score standardization;
(E) minimum–maximum normalization; (F) labeling data drawn by the clinicians; (G) prediction
data drawn by the artificial intelligence tool; and (H) green indicates the matched area, while red
indicates the mismatched area. VMs, venous malformations; CLAHE, contrast-limited adaptive
histogram equalization.

3.2. Cases: Data of the Test Set

T2-weighted MRI of patients with VMs in the head and neck region was used as data
in the test set. In the image preprocessing, the image was (A) resized to a volume of 16,
a height of 128, and a width of 128 pixels; (B) the image was inverted; (C) CLAHE was
applied; and (D) Z-score standardization as well as (E) minimum–maximum normalization
were performed. The labeling data drawn by plastic surgeons (F) and the prediction data
drawn by the AI tool (G) were identical in some areas (Figures 4 and 5).
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Figure 4. Test set of VMs in the left mandibular area. (A) Resized to a volume of 16, a height of 128,
and a width of 128 pixels; (B) inverted image; (C) CLAHE application; (D) Z-score standardization;
(E) minimum–maximum normalization; (F) labeling data drawn by the clinicians; (G) prediction
data drawn by the artificial intelligence tool; and (H) green indicates the matched area, while red
indicates the mismatched area. VMs, venous malformations; CLAHE, contrast-limited adaptive
histogram equalization.
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Figure 5. Another test set of VMs in the lower lip. (A) Resized to a volume of 16, a height of 128,
and a width of 128 pixels; (B) inverted image; (C) CLAHE application; (D) Z-score standardization;
(E) minimum–maximum normalization; (F) labeling data drawn by the clinicians; (G) prediction
data drawn by the artificial intelligence tool; and (H) green indicates the matched area, while red
indicates the mismatched area. VMs, venous malformations; CLAHE, contrast-limited adaptive
histogram equalization.

4. Discussion

VMs in the head and neck region are known for being difficult to treat [3,16]. Their
treatment includes sclerotherapy and excisional surgery, with sclerotherapy being more
preferred due to the concentration of important structures, such as nerves and the orbits, in
this anatomical region. Furthermore, patients favor minimal invasive treatment without
subsequent cosmetic impairment [3,17]. For the accurate diagnosis of VMs in the head and
neck region, MR images are important for (1) confirming the diagnosis, (2) specifying the
extent of the VMs, and (3) making a treatment plan [4]. However, it is not easy to specify and
quantitatively analyze lesions in MRI. Therefore, we performed a study to automatically
measure the volume of localized VMs as well as isolated lesions of multifocal disease on
MR images using CNN architecture as an AI tool. The use of a CNN for medical image
recognition has been widely used. Among them, U-Net is used for automatic segmentation
and has been applied to differentiate between breast and fibroglandular tissue from breast
MRI, wound regions from healthy skin on photographs, and spontaneous intracerebral
hemorrhages from unaffected brains in computed tomography images [18–21]. It has also
been applied to cell detection and segmentation, providing evidence that U-Net yields
results comparable in quality to manual annotation [22].

In the present study, preprocessing, including resizing, inversion, CLAHE, Z-score
standardization, and minimum–maximum normalization, was implemented. Generally,
the inversion of MR images is necessary as there is a tendency for CNNs to focus on the
brightest area in the image. In this study, the algorithm initially often mistakenly segmented
the brain parenchyma for a lesion during machine learning due to the fact that the VM
manifestations as well as brain parenchyma were hyperintense in the original data. After
inversion, the results improved clearly. In spite of efforts to improve this performance,
the Dice similarity coefficient of the training set showed clearly better performance than
the test set did (99.75% vs. 60.62%). Thus, the error in the test set was higher than that of
the training set. This is due to “overfitting” [23]. Overfitting refers to a phenomenon in
which the model is overfitted to the training data and does not operate accurately outside
the training data and does not generalize. There are two main reasons for the occurrence
of overfitting: model complexity and insufficient training data. We used 3D U-Net as a
segmentation model in our study, which has been applied successfully in several deep
learning studies. U-Net is widely used because it has good prediction performance for
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the region of interest and the details of the background. However, as a limitation, the
accuracy decreases when the size of the lesion is small. Recently, neural networks with
advanced U-Net architecture are also used to overcome these limitations [24]. The other
possible cause is the use of insufficient MRI data for model training, which is more likely
to be the case here. The most intuitive way to solve this problem is to train the model
with sufficiently large datasets. This also suggests that the problem of overfitting in our
model will be solved as the amount of data used increases. The performance of the machine
improves as more training datasets are added to the machine learning process. However, it
is difficult to quantitatively know how many additional datasets are necessary. Hu et al.
reported a concept of model complexity of deep learning [25]. In addition, as a recent trend,
active learning is sometimes used in the process of upgrading performance. This is a way to
improve performance by adding datasets similar to specific datasets that neural networks
struggle with. The active learning methodology seems to achieve a larger improvement in
performance with the same or fewer numbers of datasets compared to the performance
generally obtained by adding datasets [26].

VMs represent a challenging condition, especially when located in the head and neck
region. The main approaches for treating VMs are sclerotherapy and surgical resection [3,5].
The evaluation of treatments is also performed using MRI or CCDS, as well as clinical
features. To evaluate lesion size as one of indicators of therapy effectiveness, it is necessary
to calculate the volumes of lesions from MRI. However, VMs may appear in several places,
and there may be cases with no clear lesion boundaries, making it difficult to calculate
lesion volumes one at a time. Therefore, it would be very convenient to develop a system
that automatically quantifies lesions in MRI; to accomplish this, it is necessary to first
segment lesions automatically through deep learning. Next, the segmented area and the
integral calculus are automatically calculated to arrive at the lesion volume. If the machine
learning is carried out by including data with various factors affecting the prognosis and
recurrence rate, such as surgery vs. sclerotherapy, type of sclerosing agent, dose of the
agents, location of the lesion, preoperative and postoperative volumes of lesions, etc., we
think that it will be possible to predict a patient’s prognosis when the regression models
are developed. In particular, it is difficult to determine whether sclerotherapy or surgical
resection is better as a treatment for VMs in the head and neck region. Because treatment
decisions differ in each case, it would be of great help in clinical decision making if AI
could predict the prognosis of sclerotherapy or surgical resection in each case.

5. Conclusions

The present study implemented a model that automatically segmented MRI of VMs
using deep learning. Overfitting resulted in high performance with the training set and
low performance with the test set, and this is expected to be resolved with larger VM MRI
datasets. Performance in the automatic segmentation of VMs from MRI showed sufficient
potential. The automatic segmentation of VMs would also allow the calculation of VM
volumes, and, with further research, potentially catalyze progress toward the ultimate goal
of the prediction of prognoses following VM treatments.

Author Contributions: Conceptualization, J.Y.R. and H.Y.C.; methodology, J.Y.R., B.C.Y. and M.H.C.;
software, J.Y.R., B.C.Y. and M.H.C.; validation, J.Y.R., H.K.H. and H.G.C.; formal analysis, H.K.H.,
H.G.C. and J.S.L.; investigation, H.K.H., B.C.Y. and M.H.C.; resources, J.Y.R. and H.Y.C.; data curation,
J.Y.R., B.C.Y. and M.H.C.; writing—original draft preparation, J.Y.R. and H.K.H.; writing—review and
editing, J.Y.R. and H.Y.C.; visualization, J.Y.R.; supervision, J.S.L. and H.Y.C.; project administration,
J.Y.R. and H.Y.C.; funding acquisition, J.Y.R. and H.Y.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by Biomedical Research Institute grant, Kyungpook National
University Hospital (2020) (No. 2020-AI-02).



J. Clin. Med. 2022, 11, 5593 8 of 9

Institutional Review Board Statement: This study was approved by the Institutional Review Board
of the Kyungpook National University Hospital (IRB No. KNUH 2020-06-022) and performed
in accordance with the principles of the Declaration of Helsinki. All personal information was
anonymized. Written informed consent was obtained from all participants.

Informed Consent Statement: Informed consent was obtained from all of the subjects involved in
the study.

Data Availability Statement: The data presented in this study are available on request from the corre-
sponding author. The data are not publicly available due to personal information protection principles.

Conflicts of Interest: Byeong-Cheol Yoo and Min-Hyeok Choi are employees of DEEPNOID Inc. The
other authors declare no conflicts of interest.

References
1. Mulliken, J.B.; Glowacki, J. Hemangiomas and vascular malformations in infants and children: A classification based on

endothelial characteristics. Plast. Reconstr. Surg. 1982, 69, 412–422. [CrossRef] [PubMed]
2. ISSVA Classification for Vascular Anomalies © 2018 International Society for the Study of Vascular Anomalies. Available online:

https://www.issva.org/classification (accessed on 22 August 2022).
3. Ryu, J.Y.; Eo, P.S.; Lee, J.S.; Lee, J.W.; Lee, S.J.; Lee, J.M.; Lee, S.Y.; Huh, S.; Kim, J.Y.; Chung, H.Y. Surgical approach for venous

malformation in the head and neck. Arch. Craniofacial Surg. 2019, 20, 304–309. [CrossRef] [PubMed]
4. Greene, A.K.; Mulliken, J.B. Vascular anomalies. In Plastic Surgery, 4th ed.; Rodriguez, E., Losee, J., Neligan, P., Eds.; Elsevier:

Amsterdam, The Netherlands, 2017; Volume 3, pp. 866–887.
5. Park, H.; Kim, J.S.; Park, H.; Kim, J.Y.; Huh, S.; Lee, J.M.; Lee, S.Y.; Lee, S.J.; Lee, J.S.; Lee, J.W.; et al. Venous malformations of the

head and neck: A retrospective review of 82 cases. Arch. Plast. Surg. 2019, 46, 23–33. [CrossRef] [PubMed]
6. Seront, E.; Vikkula, M.; Boon, L.M. Venous Malformations of the Head and Neck. Otolaryngol. Clin. N. Am. 2017, 51, 173–184.

[CrossRef] [PubMed]
7. Chen, W.; Chai, Y.; Chai, G.; Hu, Y.; Chen, M.; Xu, H.; Zhang, Y. Automated Lesion Segmentation and Quantitative Analysis of

Nevus in Whole-Face Images. J. Craniofacial Surg. 2020, 31, 360–363. [CrossRef]
8. Yang, C.-H.; Ren, J.-H.; Huang, H.-C.; Chuang, L.-Y.; Chang, P.-Y. Deep Hybrid Convolutional Neural Network for Segmentation

of Melanoma Skin Lesion. Comput. Intell. Neurosci. 2021, 2021, 1–15. [CrossRef]
9. Lu, P.; Fang, F.; Zhang, H.; Ling, L.; Hua, K. AugMS-Net:Augmented multiscale network for small cervical tumor segmentation

from MRI volumes. Comput. Biol. Med. 2022, 141, 104774. [CrossRef]
10. Martí-Aguado, D.; Jiménez-Pastor, A.; Alberich-Bayarri, Á.; Rodríguez-Ortega, A.; Alfaro-Cervello, C.; Mestre-Alagarda, C.;

Bauza, M.; Gallén-Peris, A.; Valero-Pérez, E.; Ballester, M.P.; et al. Automated Whole-Liver MRI Segmentation to Assess Steatosis
and Iron Quantification in Chronic Liver Disease. Radiology 2022, 302, 345–354. [CrossRef]

11. Li, Z.; Chen, K.; Yang, J.; Pan, L.; Wang, Z.; Yang, P.; Wu, S.; Li, J. Deep Learning-Based CT Radiomics for Feature Representation
and Analysis of Aging Characteristics of Asian Bony Orbit. J. Craniofacial Surg. 2021, 33, 312–318. [CrossRef]

12. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. arXiv 2015,
arXiv:1505.04597.

13. Zeineldin, R.A.; Karar, M.E.; Coburger, J.; Wirtz, C.R.; Burgert, O. DeepSeg: Deep neural network framework for automatic brain
tumor segmentation using magnetic resonance FLAIR images. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 909–920. [CrossRef]
[PubMed]

14. Siddique, N.; Paheding, S.; Elkin, C.P.; Devabhaktuni, V. U-Net and Its Variants for Medical Image Segmentation: A Review of
Theory and Applications. IEEE Access 2021, 9, 82031–82057. [CrossRef]

15. Long, E.J.; Shelhamer, T.D. Fully convolutional networks for semantic segmentation. In Proceedings of the 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

16. Kim, Y.H.; Ryu, J.Y.; Lee, J.S.; Lee, S.J.; Lee, J.M.; Lee, S.Y.; Huh, S.; Kim, J.Y.; Chung, H.Y. The effects of surgical treatment
and sclerotherapy for intramuscular venous malformations: A comparative clinical study. Arch. Plast. Surg. 2021, 48, 622–629.
[CrossRef] [PubMed]

17. Yang, X.; Chen, H.; Lin, X.; Jin, Y.; Ma, G.; Hu, L.; Wang, Y.; Yu, W.; Chang, L.; Qiu, Y. Intralesional Lidocaine Anesthesia: A Novel
Facilitated Anesthesia Technique for Ethanol Sclerotherapy of Venous Malformation. J. Craniofacial Surg. 2017, 28, 1405–1407.
[CrossRef] [PubMed]

18. Ryu, J.Y.; Chung, H.Y.; Choi, K.Y. Potential role of artificial intelligence in craniofacial surgery. Arch. Craniofacial Surg. 2021, 22,
223–231. [CrossRef] [PubMed]

19. Zhang, Y.; Chen, J.-H.; Chang, K.-T.; Park, V.Y.; Kim, M.J.; Chan, S.; Chang, P.; Chow, D.; Luk, A.; Kwong, T.; et al. Automatic
Breast and Fibroglandular Tissue Segmentation in Breast MRI Using Deep Learning by a Fully-Convolutional Residual Neural
Network U-Net. Acad. Radiol. 2019, 26, 1526–1535. [CrossRef]

20. Ohura, N.; Mitsuno, R.; Sakisaka, M.; Terabe, Y.; Morishige, Y.; Uchiyama, A.; Okoshi, T.; Shinji, I.; Takushima, A. Convolutional
neural networks for wound detection: The role of artificial intelligence in wound care. J. Wound Care 2019, 28, S13–S24. [CrossRef]

http://doi.org/10.1097/00006534-198203000-00002
http://www.ncbi.nlm.nih.gov/pubmed/7063565
https://www.issva.org/classification
http://doi.org/10.7181/acfs.2019.00416
http://www.ncbi.nlm.nih.gov/pubmed/31658794
http://doi.org/10.5999/aps.2018.00458
http://www.ncbi.nlm.nih.gov/pubmed/30685938
http://doi.org/10.1016/j.otc.2017.09.003
http://www.ncbi.nlm.nih.gov/pubmed/29217061
http://doi.org/10.1097/SCS.0000000000006017
http://doi.org/10.1155/2021/9409508
http://doi.org/10.1016/j.compbiomed.2021.104774
http://doi.org/10.1148/radiol.2021211027
http://doi.org/10.1097/SCS.0000000000008198
http://doi.org/10.1007/s11548-020-02186-z
http://www.ncbi.nlm.nih.gov/pubmed/32372386
http://doi.org/10.1109/ACCESS.2021.3086020
http://doi.org/10.5999/aps.2021.00913
http://www.ncbi.nlm.nih.gov/pubmed/34818708
http://doi.org/10.1097/SCS.0000000000003756
http://www.ncbi.nlm.nih.gov/pubmed/28692519
http://doi.org/10.7181/acfs.2021.00507
http://www.ncbi.nlm.nih.gov/pubmed/34732033
http://doi.org/10.1016/j.acra.2019.01.012
http://doi.org/10.12968/jowc.2019.28.Sup10.S13


J. Clin. Med. 2022, 11, 5593 9 of 9

21. Ironside, N.; Chen, C.-J.; Mutasa, S.; Sim, J.L.; Ding, D.; Marfatiah, S.; Roh, D.; Mukherjee, S.; Johnston, K.C.; Southerland,
A.M.; et al. Fully Automated Segmentation Algorithm for Perihematomal Edema Volumetry After Spontaneous Intracerebral
Hemorrhage. Stroke 2020, 51, 815–823. [CrossRef]

22. Falk, T.; Mai, D.; Bensch, R.; Çiçek, Ö.; Abdulkadir, A.; Marrakchi, Y.; Böhm, A.; Deubner, J.; Jäckel, Z.; Seiwald, K.; et al. U-Net:
Deep learning for cell counting, detection, and morphometry. Nat. Methods 2018, 16, 67–70. [CrossRef]

23. Zhang, A.; Lipton, Z.C.; Li, M.; Smola, A.J. Dive into Deep Learning. arXiv 2016, arXiv:2106.11342.
24. Huang, H.; Lin, L.; Tong, R.; Hu, H.; Zhang, Q.; Iwamoto, Y.; Han, X.; Chen, Y.-W.; Wu, J. UNet 3+: A Full-Scale Connected UNet

for Medical Image Segmentation. arXiv 2020, arXiv:2004.08790.
25. Hu, X.; Chu, L.; Pei, J.; Liu, W.; Bian, J. Model complexity of deep learning: A survey. Knowl. Inf. Syst. 2021, 63, 2585–2619.

[CrossRef]
26. Yoo, D.; Kweon, I.S. Learning Loss for Active Learning. arXiv 2019, arXiv:1905.03677.

http://doi.org/10.1161/STROKEAHA.119.026764
http://doi.org/10.1038/s41592-018-0261-2
http://doi.org/10.1007/s10115-021-01605-0

	Introduction 
	Materials and Methods 
	The Dataset and Preprocessing 
	CNN Architecture and Performance Analysis 

	Results 
	Cases: Data of the Training Set 
	Cases: Data of the Test Set 

	Discussion 
	Conclusions 
	References

