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Local activity metrics of resting-state functional MRI (RS-fMRI), such as the amplitude of
low-frequency fluctuation (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo),
and degree centrality (DC), are widely used to detect brain abnormalities based on signal
fluctuations. Although signal changes with echo time (TE) have been widely studied, the
effect of TE on local activity metrics has not been investigated. RS-fMRI datasets from
12 healthy subjects with eyes open (EO) and eyes closed (EC) were obtained with a
four-echo gradient-echo-planar imaging pulse sequence with the following parameters:
repetition time/TE1/TE2/TE3/TE4 = 2,000/13/30.93/48.86/66.79 ms. Six representative
regions were selected for simulating the spatial feature of TE dependency of local
activity metrics. Moreover, whole-brain local activity metrics were calculated from each
echo dataset and compared between EO and EC conditions. Dice overlap coefficient
(DOC) was then employed to calculate the overlap between the T maps. We found
that all the local activity metrics displayed different TE dependency characteristics,
while their overall change patterns were similar: an initial large change followed by a
slow variation. The T maps for local activity metrics also varied greatly with TE. For
ALFF, fALFF, ReHo, and DC, the DOCs for voxels in four TE datasets were 6.87, 0.73,
5.08, and 0.93%, respectively. Collectively, these findings demonstrate that local metrics
are greatly dependent on TE. Therefore, TE should be carefully considered for the
optimization of data acquisition and multi-center data analysis in RS-fMRI.

Keywords: echo time, amplitude of low-frequency fluctuation, fractional amplitude of low-frequency fluctuation,
regional homogeneity, degree centrality, resting-state fMRI

INTRODUCTION

Resting-state functional MRI (RS-fMRI) is a method used to record the blood oxygenation level-
dependent (BOLD) signal changes caused by spontaneous neural activity (Biswal et al., 1995). Its
widespread application in neuropsychiatry and cognitive neuroscience researches has made it the
most predominant tool for investigating the features of brain baseline state (Damoiseaux et al.,
2006). For instance, a segment of neuropsychiatric and neurocognitive studies often used local
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activity metrics of RS-fMRI to localize signal abnormalities (Zang
et al., 2007; Zou et al., 2008; Anderson et al., 2014; Xu et al.,
2015; Wang et al., 2017; Zhou et al., 2019). Commonly, local
activity metrics are computed from the signal fluctuations. For
example, the amplitude of low-frequency fluctuation (ALFF) and
fractional ALFF (fALFF) characterize the low-frequency signal
fluctuation (Yang et al., 2007; Zang et al., 2007; Zou et al., 2008),
regional homogeneity (ReHo) describes the synchronization of
signal fluctuations of several neighbored voxels (Zang et al.,
2004), and degree centrality (DC) captures the synchronization
of signal fluctuations from a certain voxel and the whole brain
(Zuo et al., 2012).

Besides the brain’s spontaneous activity, RS-fMRI signal
fluctuation is also dependent on physical measurement
parameters, such as the echo time (TE). The TE dependence
of signal intensity acquired with gradient-echo-planar imaging
(GE-EPI) is usually approximated by a simple exponential
decay. Usually, conventional EPI sequences measure the signal
at a single TE, typically chosen to match the average apparent
transverse tissue relaxation time (T∗2 ) to maximize the BOLD
contrast-to-noise ratio (CNR) (Bandettini et al., 1994; Krüger
et al., 2001). Nonetheless, it is important to highlight that T∗2
values vary to a great extent across the whole brain (Boulby and
Rugg-Gunn, 2003; Yan et al., 2009), between subjects (Krüger
and Glover, 2001), and also among field strengths (Bartzokis
et al., 1993; Krüger et al., 2001; Boulby and Rugg-Gunn,
2003). As a result, the signal fluctuations observed in the brain
inevitably reveal different BOLD contrasts. Consequently, the
local activity metrics based on RS-fMRI signal fluctuations will
also change with TE.

To date, only a few studies specifically investigated the TE
dependence of the RS-fMRI metrics. One study, for example,
found that the mean amplitude of normalized low-frequency
fluctuations of intrinsic cerebral networks (e.g., motor and visual
network) showed second-order polynomial dependence on TE
(Wu et al., 2012). Moreover, the functional connectivity (FC)
found broad and local correlations at short TE (TE≤ 14 ms) and
long-range connections at longer TE (TE ≥ 22 ms) (Wu et al.,
2012). What is more, Peltier and Noll (2002) found that the FC of
low-frequency fluctuations in RS-fMRI had a linear dependence
on TE, whereas more recently, the BOLD response transients
were demonstrated to be nonlinearly dependent on TE (Havlicek
et al., 2017). However, TE’s influence on the local activity metrics
(e.g., ALFF, fALFF, ReHo, and DC) has not been studied yet, even
though it is essential for the optimization of data acquisition and
multi-center data analysis in RS-fMRI, as a poor selection of TE
can lead to false positive or false negative results and reduced
reliability among studies.

To investigate the above-mentioned issue, the present study
employed the multi-echo fMRI (ME-fMRI), a technique that
simultaneously acquires multiple datasets with different TEs
in a repetition time (TR). The time interval between the
multi-TE datasets is usually less than 20 ms (Wu et al.,
2012; Havlicek et al., 2017; Kundu et al., 2017), during which
the physiological state and head motion can be assumed to
be almost the same. Therefore, the ME-fMRI qualifies as
the most appropriate method to study TE dependency of

local activity metrics in RS-fMRI. Eyes open (EO) and eyes
closed (EC) are two commonly used conditions in RS-fMRI,
and the difference between EO and EC constitutes a within-
group design, which is a widely used experiment design for
exploring the variance within subjects in group-level analysis
(Liu et al., 2013; Zou et al., 2015). Thus, in the current
study, we employed ME-fMRI with four TEs and systematically
investigated the TE influence on ALFF, fALFF, ReHo, and DC
from two aspects: (1) simulating the TE dependency of local
activity metrics with a small TE interval and a large TE range,
then validating the simulation results with in vivo dataset,
and (2) studying the TE influence on group-level statistical
results of the local activity metrics with EO and EC ME-
fMRI datasets.

MATERIALS AND METHODS

Subjects and Data Acquisition
The experiment was approved by the Ethics Committee of the
Center for Brain Imaging Science and Technology, Zhejiang
University. Signed informed consent was obtained from all
subjects before the data acquisition. Twelve healthy subjects
(24.4 ± 1.8 years old, seven females) participated in the
experiment. All subjects were pre-screened for any history of
neurological illness or psychiatric disorders.

RS-fMRI datasets with EO and EC were obtained on
a Siemens MAGNETOM Prisma 3T scanner (Siemens
Healthcare, Erlangen, Germany). Before the scanning, all
subjects were instructed to rest with their eyes open or
closed, not to think of anything in particular, and not
to fall asleep during scanning. The BOLD images were
acquired with a four-echo gradient-echo-planar imaging
(EPI) pulse sequence with the following parameters:
TR/TE1/TE2/TE3/TE4 = 2,000/13/30.93/48.86/66.79 ms,
flip angle = 78◦, 20 slices with interleaved acquisition, slice
thickness/gap = 4/1 mm, field of view = 220 × 220 mm2 with
an in-plane resolution of 3.44 × 3.44 mm2, and 180 frames. The
datasets with four different TEs were named as E1, E2, E3, and
E4, respectively. The T1-weighted images were acquired using
a 3D magnetization-prepared rapid-acquisition gradient echo
sequence with a resolution of 1× 1× 1 mm3.

Data Preprocessing
ME-fMRI data were preprocessed with SPM12 V74871 and
DPABI V2.12. Preprocessing procedures included removal of
the first 10 frames, slice-time correction, realignment for
motion correction, and spatial normalization into the standard
Montreal Neurological Institute (MNI) space with a voxel size
of 3 × 3 × 3 mm3. The T1-weighted images were coregistered
to the averaged functional image of E2 and segmented to obtain
the forward deformation field. Then, head motion parameters
and the forward deformation field from E2 were used for the
other three datasets. The maximum translation and rotation were

1http://www.fil.ion.ucl.ac.uk/spm
2http://restfmri.net/forum/DPARSF
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FIGURE 1 | The derivation of quantitative R∗2 (t) and S0 (t) from ME-fMRI datasets. By fitting the signal intensities from four TEs (A) to a monoexponential model (B),
quantitative R∗2 (t) (D) and S0 (t) (C) were obtained. ME-fMRI, multi-echo fMRI; TEs, echo times.

less than 1.5 mm and 1.5◦ for all the subjects. Lastly, data from
two subjects were excluded from the analysis because their whole
brain were not entirely scanned.

Simulating the TE Dependency of Local
Activity Metrics
R∗

2 (t) and S0(t) Calculation
After normalization, the signal intensities of each voxel from four
different echoes at each frame were fitted to a mono-exponential
signal decay with the least square method (Posse et al., 1999;
Peltier and Noll, 2002):

S (TEn) = S0 exp
(
−R∗2 · TEn

)
, (1)

where S0 is the initial signal, n is the number of TE, and S (TEn)
is the signal at TEn. The natural log of the magnitude data with
four echoes were fitted to a first-order polynomial. Then, R∗2(t)
and S0(t) were calculated for all voxels.

Selection of Regions of Interest
To explore the spatial specificity of TE dependency of local
activity metrics, i.e., ALFF, fALFF, ReHo, and DC, we selected
six spherical seeds (6 mm in diameter) as the regions of
interest (ROIs) from the default mode, dorsal attention, motor,

visual, and auditory networks to conduct simulation (Van Dijk
et al., 2010; Patriat et al., 2013). The seed coordinates were
as follows: the posterior cingulate cortex (PCC) (0, −53, 26),
the left hippocampal formation (HF) (−24, −22, −20), the
left intraparietal sulcus (IPS) (−24, −58, 52), the left primary
motor cortex (Mot) (−36, −25, 57), the left auditory cortex
(Aud) (−43, 26, 12), and the left primary visual cortex (Vis)
(−30,−88, 0).

Simulation of the TE Dependency of Local Activity
Metrics
The curves of S0 (t) and R∗2 (t) of ROIs were extracted from a
subject with EC. The T∗2 -weighted signal intensities of ROIs at
different TEs were reconstructed with Eq. (1). TE was set to be
0:2:100 ms. The ALFF (0.01–0.08 Hz) were computed according
to methodologies used in previous studies (Yang et al., 2007;
Zang et al., 2007). The fALFF was acquired by normalizing
ALFF with the averaged amplitude of the whole frequency band
(Zou et al., 2008). The ReHo was computed as the Kendall
coefficient of concordance (KCC) of the certain voxel and its 26
neighboring voxels at different TEs (Zang et al., 2004). The DC
was calculated as the summed Pearson correlation coefficients
(larger than 0.2) of the time series of a given voxel with that
of each voxel in the whole brain (Zuo et al., 2012). Moreover,
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FIGURE 2 | The simulation of the TE dependency of ALFF (A), fALFF (B), ReHo (C), and DC (D) of six representative ROIs, i.e., PCC, HF, IPS, Mot, Aud, and Vis,
from a dataset under eyes closed condition. ALFF, amplitude of low-frequency fluctuation; fALFF, fractional ALFF; ReHo, regional homogeneity; DC, degree
centrality; ROIs, regions of interest; PCC, posterior cingulate cortex; HF, left hippocampal formation; IPS, left intraparietal sulcus; Mot, left primary motor cortex; Aud,
left auditory cortex; Vis, left primary visual cortex.

the local activity metrics from the four T∗2 -weighted images were
calculated and compared with simulated results. Additionally, the
simulation and comparison above were done for all the subjects
under both EO and EC.

TE Dependency of Local Activity Metrics
of in vivo Dataset
ALFF and fALFF Calculation
Before ALFF calculation, the normalized RS-fMRI datasets
were smoothed using a 3D Gaussian isotropic kernel [full
width at half maximum (FWHM) = 6 mm]. Next, the signal
was detrended and regressed out of head motion parameters
(Friston24). For the standardization, both ALFF and fALFF of
each voxel were divided by their global mean value to obtain
mALFF and mfALFF.

ReHo Calculation
Before ReHo calculation, the normalized RS-fMRI datasets
were detrended and regressed out of head motion parameters
(Friston24) and then band-pass filtered (0.01–0.08 Hz). For the
standardization, the ReHo of each voxel was divided by the
global mean value to obtain the mReHo map, which was then
smoothed (3D Gaussian isotropic kernel with FWHM = 6 mm)
(Zang et al., 2004).

DC Calculation
Before DC calculation, the normalized RS-fMRI datasets
were detrended, regressed out of head motion parameters
(Friston24), and then band-pass filtered (0.01–0.08 Hz). For the
standardization, the DC of each voxel was divided by the global
mean value to obtain the mDC map, which was then smoothed
(3D Gaussian isotropic kernel with FWHM = 6 mm) (Buckner
et al., 2009; Zuo et al., 2012).

Statistical Analysis
Paired T-tests were performed between EO and EC on ALFF,
fALFF, ReHo, and DC from E1–E4. The T maps were thresholded
with p < 0.05 with cluster size > 50. The number of overlapped
voxels across T maps from E1 to E4 was quantified with Dice
overlap coefficient (DOC) (Dice, 1945). DOC was calculated as
the voxel number of the intersection divided by the total voxel
number in all thresholded T maps (Dice, 1945). Here, four
thresholded T maps from E1 to E4 were overlapped together.
The voxels could then be classified into any of the four following
categories: (1) appeared in all the four T maps, (2) appeared in
any three of the four T maps, (3) appeared in any two of the four
T maps, and (4) appeared in only one of the four T maps. The
total voxel number used for DOC is the summation of all four
categories of voxels. The DOCs for voxels of (1)–(4) categories
were abbreviated as DOC for 4 TEs, 3 TEs, 2 TEs, and 1 TE,
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FIGURE 3 | Comparison between simulation and in vivo value of ALFF (A), fALFF (B), ReHo (C), and DC (D) of six representative ROIs from a dataset with EC, i.e.,
PCC, HF, IPS, Mot, Aud, and Vis. The solid and dotted lines denote the in vivo and simulation results, respectively. ALFF, amplitude of low-frequency fluctuation;
fALFF, fractional ALFF; ReHo, regional homogeneity; DC, degree centrality; ROIs, regions of interest; PCC, posterior cingulate cortex; HF, left hippocampal formation;
IPS, left intraparietal sulcus; Mot, left primary motor cortex; Aud, left auditory cortex; Vis, left primary visual cortex.

respectively, and the summation of DOCs for 4 TEs, 3 TEs, 2 TEs,
and 1 TE equals to 1.

RESULTS

TE Dependency of Local Activity Metrics
Figure 1 depicts the derivation of S0 (t) and quantitative R∗2 (t)
from T∗2 -weighted images of ME-fMRI. The T∗2 -weighted signal
intensity became smaller with larger TE, while the amplitude of
fluctuation in the signal intensity at TE = 40.86 and 66.79 ms was
more obvious than that at TE = 13 and 30.39 ms (Figure 1A). The
T∗2 -weighted signal intensities from E1 to E4 of the first frame
demonstrated an exponential decay (Figure 1B). When a mono-
exponential model in Eq. (1) was applied to fit the signal, the S0
and R∗2 of one frame can be obtained.

Figure 2 demonstrates that ALFF, fALFF, ReHo, and DC
of all the ROIs displayed generally initial dramatic change.
Nonetheless, soon, the four metrics entered a flat stage after
reaching its maxima. Similarly, all the ROIs in the in vivo
data were consistent with those of simulation (Figure 3). For
ALFF, HF, IPS, and Vis initially displayed a descending trend
but eventually rapidly ascending again. Once ALFF of HF, IPS,
and Vis reached their maxima, a small decline was observed.
As for both the Mot and PCC, we observed rising curves as TE

became longer. In contrast, Aud kept decreasing across all the
TEs (Figure 2A). For fALFF, PCC, IPS, Mot, Aud, and Vis, the
four metrics rose dramatically until they reached their maxima.
Finally, a small change was observed. Interestingly, only the
HF experienced an initial decrease, followed by a pronounced
rise and finally reaching a flat trend (Figure 2B). Similarly, the
ReHo of all ROIs raised rapidly and reached their peaks when
TE was 20∼30 ms, thereafter slowly decreasing (Figure 2C).
Additionally, DC also revealed a consistent change pattern with
the other three metrics. However, the variation of HF with TE was
much larger when compared with that of ReHo (Figure 2D).

The TE dependency characteristic of the six ROIs
was also analyzed at group level (Figures 4, 5 under EC
condition; Supplementary Figures 1, 2 under EO condition
in Supplementary Material), which indicated the similar but
smaller variations across different TEs. The mean and standard
deviation of the group-averaged simulated and in vivo ALFF,
fALFF, ReHo, and DC of six ROIs across different TEs under
eyes closed condition are displayed in Table 1.

TE Dependency of T Maps of Local
Activity Metrics
Figure 6 displays the T maps of local activity metrics at different
TEs. For ALFF, the area size and distribution of regions with
a significant difference between EO and EC altered with TE
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FIGURE 4 | The simulation of the TE dependency of the group-averaged ALFF (A), fALFF (B), ReHo (C), and DC (D) of six ROIs, i.e., PCC, HF, IPS, Mot, Aud, and
Vis, across all subjects under eyes closed condition. TE, echo time; ALFF, amplitude of low-frequency fluctuation; fALFF, fractional ALFF; ReHo, regional
homogeneity; DC, degree centrality; ROIs, regions of interest; PCC, posterior cingulate cortex; HF, left hippocampal formation; IPS, left intraparietal sulcus; Mot, left
primary motor cortex; Aud, left auditory cortex; Vis, left primary visual cortex.

(Figure 6). The total voxel number of thresholded T map
in the middle and lateral frontal lobe, somatosensory cortex,
supplementary motor area (SMA), and lateral occipital cortex
became larger with longer TE, while the total number of voxels
in the temporal lobe changed little when TE became longer.
For fALFF, the number of voxels with significant difference
in most of the areas changed irregularly with TEs. For ReHo,
the voxel number in the somatosensory cortex and middle and
lateral occipital area varied little across the TEs. For DC, the
significant area size and distribution of T maps altered greatly
across the four TEs.

Generally, all the four local activity metrics (i.e., ALFF, fALFF,
ReHo, and DC) displayed different TE dependency in different
ROIs (Figure 7). EO and EC difference of ALFF and ReHo across
four TEs was consistently observed only in the somatosensory
cortex. The DOCs of ALFF, fALFF, ReHo, and DC for voxels
that appeared in the thresholded T maps of all the four TE
datasets were only 6.87, 0.73, 5.08, and 3.80%, respectively,
while the DOCs for voxels that appeared in thresholded T map
of only one TE dataset were 56.71, 69.44, 62.26, and 62.63%,
respectively (Table 2).

DISCUSSION

In this study, we explored the TE dependency of four local activity
metrics (i.e., ALFF, fALFF, ReHo, and DC) with ME-fMRI. The

simulated and in vivo results showed that all the four local activity
metrics presented initial dramatic change at short TE, while
displayed much flatter variation as TE became longer. Further, for
the within-subject group analysis between EO and EC of the four
local activity metrics, the area with significant difference varied
greatly with TE. Collectively, these findings demonstrated that
local metrics were greatly dependent on TE.

TE Dependency of Local Activity Metrics
The fluctuation of fMRI signals (4S(t)) can be derived by
expanding Eq. (1) with a first-order approximation for a small
change in S0 and R∗2 (Kundu et al., 2014):

4S (t) = − Smean · TE · 4R∗2 (t) + Smean ·
4S0(t)
S0,mean

,

Smean = S0,mean · exp
(
−TE · R∗2,mean

)
, (2)

where S0,mean and R∗2,mean are the mean values of S0(t) and
R∗2(t) of each voxel, respectively, and 4S0(t) and 4R∗2(t) are
fluctuations of S0(t) and R∗2(t), namely, S0(t)− S0,mean and
R∗2(t)− R∗2,mean, respectively. When the alteration of S0 is
neglected, the relationship between BOLD contrast signal 4S(t)
and TE is a bell shape (Kundu et al., 2012). At TE = T∗2 ,
maximum 4S(t) is achieved and the ALFF is also the maximum
correspondingly.
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FIGURE 5 | Comparison between simulation and in vivo value of ALFF (A), fALFF (B), ReHo (C), and DC (D) of six ROIs, i.e., PCC, HF, IPS, Mot, Aud, and Vis,
across all subjects under eyes closed condition. The solid and dotted lines denote the in vivo and simulation results, respectively. ALFF, amplitude of low-frequency
fluctuation; fALFF, fractional ALFF; ReHo, regional homogeneity; DC, degree centrality; ROIs, regions of interest; PCC, posterior cingulate cortex; HF, left
hippocampal formation; IPS, left intraparietal sulcus; Mot, left primary motor cortex; Aud, left auditory cortex; Vis, left primary visual cortex.

An ALFF curve may include a descent, ascent, and then
a descent trend again (Figure 2). According to Eq. (2), this
is because the 4S0(t) effect is the dominant contribution to
ALFF when TE is small, whereas when TE becomes larger, the
4R∗2(t) effect becomes more notable and even dominant. As a
result, the ALFF curve appears to be a bell shape. In contrast,
Wu and colleagues demonstrated that ALFF displayed a convex
shape across all TEs (Wu et al., 2012). This difference was due
to the ALFF was normalized to the signal of 0 Hz, i.e., the
percentage of signal change in Wu et al. (2012) study, rather
than the conventional ALFF (Zang et al., 2007; Wu et al., 2012).
Moreover, the mean ALFF of an intrinsic network used in
Wu’s study combined all the information of all voxels within
a network, and thus, the TE dependency characteristic of each
voxel was lost. Additionally, the scanning parameter with shortest
TE = 10 ms (Wu et al., 2012) limited the demonstration of
variation trend at very short TE, especially the initial decrease
at ultrashort TE.

The fALFF reached its maxima and entered the equilibrium
stage earlier than ALFF, which may be due to the intrinsic
computation feature of fALFF. When TE is very short, S0(t)
dominates the fMRI signal fluctuation (Wu and Li, 2005). By
dividing the mean of whole power spectrum, fALFF suppresses
the noise at short TE and normalizes the low-frequency power at
long TE (Zou et al., 2008), thus avoiding very high initial value,
accelerating the platform stage, and leading to more stable value
at longer TEs (Wu and Li, 2005).

Both ReHo and DC reflect functional connectivity (Zang et al.,
2004; Zuo et al., 2012). Specially, the ReHo is the homogeneity
of a given voxel and its neighbors and represents a kind of
local FC, while the DC essentially reflects the whole-brain FC
of a given voxel. Our simulation and in vivo results were
consistent with previous studies (Peltier and Noll, 2002; Wu
et al., 2012). For instance, Peltier and Noll (2002) demonstrated
that seed-based FC became significant in later echo times.
Moreover, Wu and colleagues demonstrated that the overall FC
in an intrinsic network presented a convex relationship with TE
(Wu et al., 2012).

As for the group level, the TE dependency characteristic of
the six ROIs (Figures 4, 5 under EC condition; Supplementary
Figures 1, 2 under EO condition in Supplementary Material)
indicated a similar but smaller variations across different
TEs, which might be due to that the group-averaged results
obscured the observation of more detailed and specific TE
dependency information.

TE Dependency of T Maps of Local
Activity Metrics
The patterns with significant difference between EO and EC
from E2 with TE = 30.93 ms were consistent with those in
previous RS-fMRI studies, where single-echo EPI was used
with TE approximate to 30 ms (Liu et al., 2013; Liang et al.,
2014; Xu et al., 2014; Zou et al., 2015; Wei et al., 2018). For
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TABLE 1 | The mean and standard deviation of the group averaged simulated and in vivo ALFF, fALFF, ReHo, and DC of six ROIs across different TEs under eyes closed condition.

Metrics ROIs 14 ms 30 ms 48 ms 66 ms Metrics ROIs 13 ms 30.9 ms 48.86 ms 66.79 ms

ALFF_simulation PCC 1.65 ± 0.90 1.90 ± 0.81 2.03 ± 0.80 1.98 ± 0.76 ALFF_in vivo PCC 1.50 ± 0.85 2.15 ± 1.0 2.08 ± 0.80 1.96 ± 0.79

HF 1.46 ± 1.35 0.89 ± 0.62 0.89 ± 0.64 0.74 ± 0.61 HF 0.91 ± 0.65 0.98 ± 0.66 0.92 ± 0.67 0.79 ± 0.65

IPS 1.59 ± 0.83 1.82 ± 1.06 1.93 ± 1.10 1.85 ± 1.02 IPS 1.39 ± 0.63 1.99 ± 1.20 2.01 ± 1.16 1.81 ± 0.96

Mot 1.45 ± 0.88 1.66 ± 1.09 1.79 ± 1.20 1.75 ± 1.20 Mot 1.37 ± 0.76 1.78 ± 1.23 1.81 ± 1.23 1.75 ± 1.16

Aud 0.92 ± 0.35 0.87 ± 0.44 0.89 ± 0.46 0.85 ± 0.43 Aud 0.85 ± 0.33 0.98 ± 0.45 0.96 ± 0.46 0.86 ± 0.41

Vis 1.65 ± 0.79 1.69 ± 0.94 1.66 ± 0.94 1.49 ± 0.87 Vis 1.40 ± 0.61 1.91 ± 1.08 1.73 ± 0.99 1.46 ± 0.81

fALFF_simulation PCC 3.35 ± 0.44 3.81 ± 0.42 3.86 ± 0.41 3.81 ± 0.41 fALFF_in vivo PCC 3.24 ± 0.42 3.66 ± 0.43 3.73 ± 0.39 3.74 ± 0.42

HF 2.14 ± 0.45 2.37 ± 0.57 2.33 ± 0.56 2.29 ± 0.56 HF 2.24 ± 0.50 2.28 ± 0.47 2.33 ± 0.53 2.24 ± 0.54

IPS 2.88 ± 0.54 3.18 ± 0.62 3.23 ± 0.61 3.21 ± 0.59 IPS 2.82 ± 0.54 3.13 ± 0.61 3.18 ± 0.59 3.15 ± 0.59

Mot 2.92 ± 0.57 3.22 ± 0.57 3.26 ± 0.57 3.22 ± 0.58 Mot 2.88 ± 0.54 3.12 ± 0.60 3.16 ± 0.58 3.17 ± 0.57

Aud 2.48 ± 0.44 2.71 ± 0.57 2.74 ± 0.55 2.71 ± 0.51 Aud 2.44 ± 0.47 2.63 ± 0.52 2.67 ± 0.53 2.62 ± 0.48

Vis 2.74 ± 0.58 3.08 ± 0.62 3.13 ± 0.63 3.11 ± 0.62 Vis 2.69 ± 0.52 3.03 ± 0.59 3.06 ± 0.61 3.03 ± 0.60

ReHo_simulation PCC 0.63 ± 0.10 0.72 ± 0.10 0.72 ± 0.10 0.70 ± 0.10 ReHo_in vivo PCC 0.61 ± 0.10 0.67 ± 0.11 0.67 ± 0.11 0.68 ± 0.10

HF 0.16 ± 0.09 0.20 ± 0.12 0.18 ± 0.11 0.17 ± 0.1 HF 0.20 ± 0.12 0.18 ± 0.11 0.18 ± 0.11 0.16 ± 0.09

IPS 0.61 ± 0.16 0.60 ± 0.13 0.53 ± 0.12 0.49 ± 0.11 IPS 0.64 ± 0.14 0.57 ± 0.13 0.52 ± 0.12 0.47 ± 0.11

Mot 0.49 ± 0.15 0.56 ± 0.16 0.54 ± 0.15 0.51 ± 0.15 Mot 0.51 ± 0.15 0.52 ± 0.16 0.51 ± 0.16 0.49 ± 0.15

Aud 0.35 ± 0.12 0.37 ± 0.13 0.33 ± 0.12 0.31 ± 0.12 Aud 0.36 ± 0.14 0.33 ± 0.12 0.31 ± 0.11 0.29 ± 0.11

Vis 0.46 ± 0.18 0.55 ± 0.17 0.51 ± 0.17 0.48 ± 0.17 Vis 0.50 ± 0.17 0.50 ± 0.18 0.49 ± 0.17 0.46 ± 0.17

DC_simulation PCC 28, 714 ± 7, 889 28, 376 ± 9, 592 24, 369 ± 9, 637 22, 066 ± 9, 060 DC_in vivo PCC 30, 824 ± 8, 201 25, 966 ± 9, 921 22, 533 ± 9, 509 20, 793 ± 8, 796

HF 13, 864 ± 10, 302 18, 607 ± 12, 118 16, 639 ± 10, 807 15, 704 ± 9, 977 HF 15, 365 ± 10, 905 17, 779 ± 11, 663 16, 499 ± 10, 710 14, 481 ± 9, 219

IPS 30, 659 ± 7, 502 31, 504 ± 6, 836 27, 559 ± 6, 724 25, 102 ± 6, 717 IPS 32, 911 ± 6, 610 29, 366 ± 7, 476 26, 395 ± 6, 762 23, 787 ± 6, 676

Mot 29, 781 ± 8, 378 31, 782 ± 7, 094 27, 889 ± 7, 223 25, 496 ± 7, 002 Mot 31, 842 ± 8, 451 29, 597 ± 7, 619 26, 143 ± 7, 608 24, 255 ± 6, 879

Aud 25, 231 ± 8, 940 23, 870 ± 9, 659 21, 166 ± 8, 734 19, 689 ± 8, 017 Aud 26, 642 ± 9, 849 22, 062 ± 9, 336 19, 505 ± 8, 627 18, 328 ± 8, 042

Vis 24, 566 ± 9, 751 27, 251 ± 9, 045 25, 131 ± 8, 101 23, 414 ± 7, 516 Vis 26, 603 ± 9, 876 25, 557 ± 8, 900 23, 865 ± 8, 187 22, 162 ± 7, 654

TE, echo time; ALFF, amplitude of low-frequency fluctuation; fALFF, fractional ALFF; ReHo, regional homogeneity; DC, degree centrality; ROIs, regions of interest; PCC, posterior cingulate cortex; HF, left hippocampal
formation; IPS, left intraparietal sulcus; Mot, left primary motor cortex; Aud, left auditory cortex; Vis, left primary visual cortex.
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FIGURE 6 | The paired T maps between EO and EC of ALFF, fALFF, ReHo, and DC from four different TE datasets. EO, eyes open; EC, eyes closed; ALFF,
amplitude of low-frequency fluctuation; fALFF, fractional ALFF; ReHo, regional homogeneity; DC, degree centrality.

ALFF and ReHo, the areas with significant difference were
consistent with previous results using TE = 27 or 30 ms (Liu
et al., 2013; Zou et al., 2015), where the sensorimotor cortex,
SMA, the paracentral lobe, and premotor and auditory cortex
were demonstrated to be significant different areas in line
with other studies with TE = 30 ms (Liang et al., 2014; Wei
et al., 2018). Further, for DC, the sensorimotor cortex and
occipital cortex showed a significant difference when TE was
30 ms, which agreed with previous studies (Xu et al., 2014;
Wei et al., 2018).

As for the special TE dependency of the significant areas,
the results could be closely related to the changes of voxel
intrinsic parameters [i.e., T∗2 (t) and S0(t)] between EO and
EC. For example, as the T∗2 in the whole brain covers
a large range (Peltier and Noll, 2002), the TE effect on
each voxel is different, which cannot be removed by the
division of global mean value of each subject. For the
group statistical analysis, the area difference could either
increase or decrease and there was no pattern along with
TE. These somewhat varying results could be due to the

different domination of 4S0(t) and 4R∗2(t) between EO and
EC. For instance, for ALFF, if the size of a significant area
was larger at shorter TE than longer TE, the difference
of 4S0(t) may have dominated the ALFF difference; if the
relationship between the size of a significant area and TE
was bell shaped, then the difference of 4R∗2(t) may have
dominated the ALFF difference; if the size of a significant
area did not affect TE, then the difference could have
been attributed to both the ALFF difference of 4R∗2(t)
and4S0(t).

Local activity metrics demonstrated different sensitivity
to TE. The differences in brain regions, such as SMA,
somatosensory cortex, and middle frontal cortex, became
larger with longer TE for ALFF and almost did not
change for ReHo (Figures 6, 7). Also, the difference in
regions of fALFF and DC varied greatly with different
TEs, which further led to the smaller overlap of T maps
in the four different TE datasets (Table 2). These results
implied that fALFF and DC were more sensitive to TE
than ALFF and ReHo.
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FIGURE 7 | The overlap of paired T maps of between EO and EC from four different TE datasets for ALFF (A), fALFF (B), ReHo (C), and DC (D). “1 TE” means any
one of the four echoes, “2 TEs” means any two of the four echoes, “3 TEs” means any three of the four echoes, and “4 TEs” means all the four echoes. EO, eyes
open; EC, eyes closed; ALFF, amplitude of low-frequency fluctuation; fALFF, fractional ALFF; ReHo, regional homogeneity; DC, degree centrality.

TABLE 2 | The DOCs of ALFF, fALFF, ReHo, and DC for voxels that appeared in
the T maps between EO and EC of only one TE dataset, any two TE datasets, any
three TE datasets, and all the four TE datasets, respectively.

ALFF (%) fALFF (%) ReHo (%) DC (%)

1 TE 56.71 69.44 62.26 74.19

2 TEs 20.26 20.48 20.46 18.91

3 TEs 16.16 9.36 12.20 5.96

4 TEs 6.87 0.73 5.08 0.93

DOC, Dice overlap coefficient; ALFF, amplitude of low-frequency fluctuation; fALFF,
fractional ALFF; ReHo, regional homogeneity; DC, degree centrality; EO, eyes
open; EC, eyes closed; TE, echo time.

LIMITATIONS

In the present study, only six ROIs were selected for the
simulation. Although the current results give a clear impression
on the issue of how TE influences the local activity metrics,

further studies will benefit from the investigation of a higher
number of ROIs. Moreover, the area difference between EO and
EC for fALFF and DC was relatively small, and the reliability of
the TE dependency of fALFF and DC needs to be further explored
in other experimental designs. Further, the current study is based
on a single EO/EC dataset with a relatively small subject number,
and the investigation of more and larger datasets will benefit
for generalizing the findings to extensive studies. In addition,
as the BOLD signal fluctuation is affected by many factors, the
intersection of TE and other covariates on the local activity
metrics is a question worth investigating in the future.

CONCLUSION

The current study demonstrats that local activity metrics are
greatly dependent on TE. Based on these new findings, we
conclude that it is fundamental to carefully consider TE
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parameters for the optimization of data acquisition and multi-
center data analysis in RS-fMRI, as a poor selection of TE
can lead to false positive or false negative results and reduced
reliability among studies.
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