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Abstract

Immediate early gene (IEG) transcription is rapidly activated by diverse stimuli. This tran-

scriptional regulation is assumed to involve constitutively expressed nuclear factors that are

targets of signaling cascades initiated at the cell membrane. NF45 (encoded by ILF2) and

its heterodimeric partner NF90/NF110 (encoded by ILF3) are chromatin-interacting proteins

that are constitutively expressed and localized predominantly in the nucleus. Previously,

NF90/NF110 chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) in

K562 erythroleukemia cells revealed its enriched association with chromatin at active pro-

moters and strong enhancers. NF90/NF110 specifically occupied the promoters of IEGs.

Here, ChIP in serum-starved HEK293 cells demonstrated that NF45 and NF90/NF110 pre-

exist and specifically occupy the promoters of IEG transcription factors EGR1, FOS and

JUN. Cellular stimulation with phorbol myristyl acetate increased NF90/NF110 chromatin

association, while decreasing NF45 chromatin association at promoters of EGR1, FOS and

JUN. In HEK293 cells stably transfected with doxycycline-inducible shRNA vectors targeting

NF90/NF110 or NF45, doxycycline-mediated knockdown of NF90/NF110 or NF45 attenu-

ated the inducible expression of EGR1, FOS, and JUN at the levels of transcription, RNA

and protein. Dynamic chromatin association of NF45 and NF90/NF110 at IEG promoters

are observed upon stimulation, and NF45 and NF90/NF110 contribute to inducible transcrip-

tion of IEGs. NF45 and NF90/NF110 operate as chromatin regulators of the immediate early

response.

Introduction

The rapid cellular response that occurs upon recognition of biological or environmental sig-

nals is crucial for adaptation and survival of the organism [1–3]. The subset of genes that are

rapidly expressed upon induction are termed immediate early genes (IEG) [4]. Inducible
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expression of IEGs in response to diverse regulatory signals underlies acute inflammation [5–

8], neuronal activity [9], cell proliferation, and differentiation [1, 10, 11]. Aberrant expression

of IEGs is involved in malignant cellular transformation [12] and is a feature of diverse cancers

[13, 14].

Upon stimulation, initial expression of IEGs occurs on the timescale of minutes to hours [4,

15]. The earliest protein products of these IEGs critically include ‘forward-driving’ transcrip-

tion factors such as EGR1, FOS, and JUN, followed by expression of delayed primary response

genes (D-PRG), followed by protein synthesis-dependent expression of secondary response

genes (SRG) [15]. The AP-1 components FOS and JUN regulate transcription of many cyto-

kine genes and acute inflammation. The intensity and duration of signaling is attenuated

through IEG induction of the family of dual-specificity phosphatases/ MAPK phosphatases

[16].

Regulation of this hierarchical program upon cellular stimulation does not require de novo
protein synthesis. Transcriptional regulation of IEGs is thus assumed to involve pre-existing

nuclear factors that are constitutively expressed, which are targets of signaling cascades initi-

ated at the cell membrane. Features of IEG promoters include over-representation of tran-

scription factor binding sites and high affinity TATA boxes [4]. Chromatin structure of IEGs

shows enrichment of active chromatin marks and “poised” accumulation of RNA polymerase

II [15]. Stimulation-induced chromatin remodeling at promoters of IEGs exposes specific

DNA binding sequences for transcription factors such as serum-response factor (SRF), nuclear

factor kappa B (NF-kB), and cyclic AMP response element-binding protein (CREB) [4]. Tran-

scription of DNA by RNA Polymerase II complex into RNA [17] is followed by post-transcrip-

tional regulation at the levels of RNA splicing, nuclear export, stabilization, and translational

regulation of the nascent transcripts [4].

Nuclear Factor 90 (NF90 and splice variant NF110, both encoded by the ILF3 gene) and

Nuclear Factor 45 (NF45, encoded by the ILF2 gene) are multifunctional DNA- and RNA-

binding proteins originally purified and cloned based on their inducible and specific DNA-

binding to the nuclear factor of activated T-cells / antigen receptor response element-2

(NF-AT/ ARRE-2) sequence in the IL2 promoter from activated Jurkat T-cells [18, 19]. NF90/

NF110 and NF45 frequently interact as a heterodimer through their shared dimerization zinc-

finger (DZF) domains [20]. NF90/NF110 and splice variant NF110 contain two dsRNA bind-

ing domains, and both NF90/NF110 and NF45 contain a single arginine/glycine/glycine

(RGG) domain that is capable of binding to both DNA and RNA [21, 22]. The interactions of

NF90/NF110 and NF45 with chromatin have been demonstrated at several regulatory regions

in addition to IL2 [23–25], including promoters of FOS [26], PLAU [27] and enhancer of

HLA-DR alpha [28] and IL13 [29]. Nakadai et al. used a combination of in vitro transcription

and in vivo reporter gene assays established that NF45, NF90/NF110 operate as transcriptional

coactivators of FOS [26].

NF90/NF110 and NF45 have been shown to regulate embryonic pluripotency [30], and

development. NF90/NF110 is required for normal development. Mice with targeted disruption

of NF90/NF110 were born small and weak and succumbed to perinatal death from neuromus-

cular respiratory failure [23]. NF45 knockout in mice resulted in early embryonic lethality

(Zhao and Kao, unpublished results). NF45 physically interacts with Oct4 and Nanog in

embryonic stem cells (ESC) to promote pluripotency [31]. Targeted disruption of NF90/NF110

and NF45 impaired ESC proliferation and promoted differentiation to an epiblast-like state

[30]. NF90/NF110 and NF45 regulate cell cycle progression [21, 23, 32], cell growth and prolif-

eration [32–38], and are amplified, overexpressed and mutated in diverse cancers [39, 40].

We recently characterized NF90/ILF3 as a transcription factor involved in promoting pro-

liferation and renewal over differentiation in K562 erythroleukemia cells using chromatin
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immunoprecipitation followed by deep sequencing (ChIP-seq) [41]. Rigorous statistical testing

between biological replicates with Irreproducible Discovery Rate (IDR) analysis revealed chro-

matin occupancy of NF90/NF110 at 9,081 specific genomic sites, with over a third occurring at

promoters of protein-coding genes.

Further analysis of NF90/NF110 chromatin occupancy in a context of histone modifica-

tions revealed enrichment of NF90/NF110 occupancy frequencies at active promoters and

strong enhancers. To investigate the functional role of NF90/NF110 in transcriptional regula-

tion in K562 cells, we compared the 2,927 genes with NF90/NF110 chromatin occupancy in its

proximal promoter to a dataset of 446 genes that were differentially expressed upon NF90/

NF110 knockdown by shRNA. In K562 cells grown in 10% serum at basal growth conditions,

this integrated analysis of genes under transcription regulation by NF90/NF110 revealed an

overrepresentation of IEGs.

Tullai et al. previously demonstrated that the cellular response to growth factor stimulation

involves initial induction of IEGs, followed by delayed expression of primary response genes

that also do not require initial protein synthesis, and finally, secondary response genes [15].

Here, we examined NF90/NF110 ChIP-seq data in K562 cells at normal growth conditions.

Compared to delayed primary response genes or secondary response genes, we found enriched

NF90/NF110 occupancy at promoters of IEGs, including ‘forward-driving’ transcription fac-

tors EGR1, FOS, and JUN.

The chromatin occupancy of NF90/NF110 at promoters of IEGs in normally growing K562

cells suggested to us that NF90/NF110, together with its frequent heterodimeric partner, NF45,

might contribute to regulation of IEG expression. In this study, we test the hypothesis that

NF90/NF110 and NF45 contribute to transcriptional regulation of IEG transcription factors

EGR1, FOS, and JUN.

Materials and methods

Cell culture and stimulation

Human embryonic kidney (HEK) 293 cells (ATCC, Manassas, VA) were maintained in Dul-

becco’s modified Eagle’s medium supplemented with 10% fetal calf serum with Penicillin and

Streptomycin. Cells were serum starved for 12 h before stimulation with 20 ng/ml phorbol

12-myristate 13-acetate (PMA) for indicated durations, harvested by Trypsin-EDTA, centrifu-

gation, and frozen at -80˚C.

Reagents

The following antibodies were used for chromatin immunoprecipitation and/or Western

immunoblotting: NF90/NF110 (mouse mAb DRBP76; BD 612154), NF45 (mouse mAb NF45

H-4; Santa Cruz 365283), the large subunit of RNA polymerease II (mouse mAb 8WG16; Cov-

ance). Antibodies used for Western immunoblotting include: anti-EGR1 (rabbit mAb EGR1

15F7; Cell signaling 4153), anti-FOS (rabbit mAb FOS 9F6; Cell signaling 2250), anti-JUN

(rabbit mAb JUN 60A8; Cell signaling 9165), and anti-GAPDH (rabbit pAb GAPDH; Abcam

ab9485).

Chromatin immunoprecipitation

Cells were harvested and crosslinked in 1% formaldehyde for 10 minutes at room temperature.

Pellets were re-suspended in hypotonic buffer (20 mM HEPES, 10 mM KCl, 1mM EDTA, 10%

glycerol) supplemented with Pierce Protease Inhibitor Tablets (Thermo Fisher), placed on ice

for 10 minutes and centrifuged to remove cytoplasmic supernatant. Chromatin was released
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from nuclear pellet with mild chemical lysis with Radio-immunoprecipitation assay buffer

(RIPA) containing 0.1% SDS and 1% Triton-X-100. Protein-bound chromatin was sheared

with mechanical sonication (Branson 250 Sonifier) at 35% output with 20 second pulses for 30

cycles to obtain chromatin fragments of resolution at 200–500 bps. Successful chromatin frag-

mentation was assayed by reverse cross-linking and electrophoresis through 0.8% agarose gel

to confirm enrichment of small chromatin fragments at the target range. 15% of chromatin

fragments were designated as input, and the rest were pre-cleared with untreated protein A/G

agarose beads (Santa Cruz), then incubated in protein A/G agarose beads that were pre-conju-

gated overnight at 4˚C with monoclonal antibodies to NF90/NF110 (BD mAB DRBP76), NF45

(Santa Cruz sc-365283), or the large subunit of RNA polymerease II (8WG16; Covance). Input

chromatin, as we as chromatin fragments enriched for NF90/NF110 or NF45-binding, were

eluted in 1% SDS at 65˚C for 15 minutes. Chromatin was reverse cross-linked from protein at

65˚C overnight. RNase A (100 ug, Sigma Aldrich) was added to sample to incubate at 37˚C for

30 minutes, and Proteinase K (100 ug, Invitrogen) was then added to sample to incubate at

45˚C for 30 minutes. Input and ChIP DNA was purified using PCR purification column (Qia-

gen) per manufacturer protocol and eluted in 35 ul EB buffer (10 mM Tris-Cl, pH 8.5).

Input and ChIP DNA was used as template for polymerase chain reactions using primers

amplifying specific genomic regions to interrogate chromatin occupancy by NF90/NF110,

NF45, or RNA Polymerase II. PCR primers were synthesized by the Protein and Nucleic Acid

Facility at Stanford University, and designed to amplify the EGR1 proximal promoter: F 5’–
TTCCCCAGCCTAGTTCACGCCTAGGAGCC– 3’, R 5’–ATATGGCATTTCCGGGTCGCAG
CTGG– 3’; EGR1 gene body: F 5’–GCAGTGGAGGGGGATTCTCCGTA– 3’, R 5’–CCGGC
TACCATTGACTCCCGAG– 3’; FOS proximal promoter: F 5’–CCGCGAGCAGTTCCCGTCA
ATCCCTC– 3’, R 5’–GCAGTTCCTGTCTCAGAGGTCTCGTGGGC– 3’; FOS gene body: F
5’–CTCACGTCGGCTTTCCCCTTCT– 3’, R 5’–GGGACTCCGAAAGGGTGAGGG– 3’;

JUN proximal promoter: F 5’–CCTCCCGGGTCCCTGCATCCCC– 3’, R 5’–ACGCCTCTC
GGCCCTCTCTTCCC– 3’; JUN gene body: F 5’–ATGCCCTCAACGCCTCGTTCC– 3’, R
5’–CGAGGTGAGGAGGTCCGAGTTC– 3’; HBB locus control region: F 5’–CCTCGGCCTC
CCAAAGTGCCAGGATTACAG– 3’, R 5’–ACAAGCATGCGTCACCATGCCTGGC– 3’; HBB
gene body: F 5’–AGTCCAAGCTAGGCCCTTTTGCTAA– 3’, R 5’–GGCATTAGCCACAC
CAGCCAC– 3’. Quantitative PCR was performed using Applied Biosystems StepOne instru-

ment and SybrGreen detection.

Molecular cloning and transfection

The pINDUCER lentiviral toolkit for inducible RNA interference [42] was utilized for induc-

ible shRNA knockdown of NF90/NF110 or NF45. pInducer10-mir-RUP-PheS was a gift from

Stephen Elledge (Addgene plasmid # 44011), containing a constitutively expressed transcript

encoding the puromycin resistance gene, and a doxycycline-inducible cassette that expresses

target shRNA sequence as well as turboRFP fluorescent protein. Validated shRNA sequences

D2 directed against NF90/NF110/NF110 (5’–GUGCUGGUUCCAACAAAA– 3’) and D5

directed against NF45 (5’–AGUCGUGGAAAGCCUAAGA– 3’) were designed as described by

Guan et al. [19] and sub-cloned into the doxycycline-inducible cassette driven by the tetracy-

cline-responsive TRE2 promoter in pINDUCER10 to create plasmids pINDUCER10-shNF90/

NF110 (D2) and pINDUCER10-shNF45 (D5).

HEK293 cells at 70% confluency were transfected with either pINDUCER10-shNF90/

NF110 (D2) or pINDUCER10-shNF45 (D5) using JetPrime transfection reagent (Polyplus).

Beginning at 48 h after transfection, drug selection for stable transfection was imposed using

puromycin (1 μg/ml).
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HEK293 cells stably expressing D2 or D5 were treated without or with doxycycline (1 ug/

ul) in DMEM medium supplemented with 10% FBS for 96 h to achieve maximal attenuation

of NF90/NF110 or NF45 expression. Cells were then serum-starved for 12 h with continuing

presence of doxycycline, before stimulation with PMA for the indicated durations.

Reverse transcription polymerase chain reaction

RNA levels were assayed using reverse transcription PCR. Total RNA was isolated from cells

using the RNeasy mini kit (Qiagen). First-strand cDNA was synthesized from 2 ug of total

RNA using Superscript IV VILO reverse transcriptase (Invitrogen) with a mix of oligo(dT)

and random hexamer primers per manufacturer protocol, which was used as template for

polymerase chain reactions. Primers were designed to amplify: EGR1 mRNA: F 5’–GCACCT
GACCGCAGAGTCTTTTCCT– 3’, R 5’–GGTGTTGCCACTGTTGGGTGCAG– 3’; EGR1
pre-mRNA: F 5’–CTCTGCCACTGGTGCGGGTC– 3’, R 5’–GGTGTTGCCACTGTTGGGTG
CAG– 3’; FOS mRNA: F 5’–CTGTCAACGCGCAGGACTTCTGC– 3’, R 5’–GCTCGGCCT
CCTGTCATGGTCT– 3’; FOS pre-mRNA: F 5’–CATGCGGCACTGGGAACTCGC– 3’, R
5’–GCTCGGCCTCCTGTCATGGTCT– 3’; JUN mRNA: F 5’–CGATGCCCTCAACGCCTCG
TTC– 3’, R 5’–GTGATGTGCCCGTTGCTGGACTG– 3’; ACTB mRNA: F 5’–CCAATCA
GCGTGCGCCGTTCC– 3’, R 5’–ATCATCCATGGTGAGCTGGCGG– 3’; ACTB pre-mRNA:

F 5’–GGCAAGGGCGCTTTCTCTGCAC– 3’, R 5’–ACATAGGAATCCTTCTGACCCATG
CCC– 3’. Quantitative PCR was performed using Applied Biosystems StepOne instrument

and SybrGreen detection. Transcript abundance was normalized to ACTB.

Western immunoblotting

Cells were harvested and whole cell extracts were prepared by incubation on ice for 30 minutes

in 8M urea lysis buffer (8M urea, 300 mM NaCl, 0.5% NP-40, 50 mM Na2HPO4, 50 mM Tris-

HCl, 1 mM PMSF) supplemented with Pierce Protease Inhibitor Tablets (Thermo Fisher).

Twenty micrograms of protein were separated by SDS-PAGE and transferred to polyvinyli-

dene difluoride (PVDF) membranes. Primary antibodies were used at 1:1000 dilution, fol-

lowed by secondary antibodies (anti-mouse or anti-rabbit horseradish peroxidase-coupled,

Santa Cruz) at 1:10,000 dilution, and signals were detected with enhanced chemiluminescence

(Amersham).

Immunofluorescence staining

Cells were passaged and seeded on chamber slides. Upon serum starvation and stimulation,

cells were fixed and permeabilized in 100% methanol at room temperature for 15 minutes, and

bleaching of native fluorescence was confirmed with microscopy. After rinsing three times

with PBS, cells were blocked in 5% FBS/ 0.3% Triton X-100 in PBS for 1 h at room tempera-

ture. The chamber slides were then incubated with anti-NF90/NF110/NF110 (mouse mAb

BD, 1:200) or anti-NF45 (mouse mAb Santa Cruz, 1:200); and anti-EGR1 (rabbit mAb Cell

Signaling, 1:100), anti-FOS (rabbit mAb Cell Signaling, 1:100), or anti-JUN (rabbit mAb Cell

Signaling, 1:100) diluted in 0.5% FBS/ 0.03% Triton X-100 in PBS overnight at 4˚C. After over-

night incubation, unbound primary antibody was removed by washing the slides three times

in PBS. Fluorescent conjugated secondary antibodies anti-mouse (Goat anti-Mouse IgG Alexa

Fluor 488 Invitrogen, 1:500) and anti-rabbit (Goat anti-Rabbit IgG Alexa Fluor 594 Invitrogen,

1:500) were applied to slides for 1 h at room temperature protected from light. Slides were

washed three times with PBS, counterstained with DAPI nuclear stain (Pierce, 1 mg/ml),

and mounted using VECTASHIELD antifade solution (Vector Laboratories). Imaging was
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performed on a Zeiss confocal laser scanning microscope (LSM 880, Zeiss) with a 20X objec-

tive lens.

Results

Enriched NF90/NF110 chromatin occupancy at promoters of immediate

early genes

In collaboration with the ENCODE consortium we performed ChIP-seq for NF90/NF110 in

K562 erythroleukemia cells (ENCODE ENCSR632TJQ) and discovered chromatin occupancy

at over 9000 specific sites [41]. Increased NF90/NF110 chromatin occupancy occurred at

active promoters and strong enhancers, and NF90/NF110 clustered with transcription factors

exhibiting preference for promoters over enhancers (POLR2A, MYC, YY1). Integrating differ-

ential gene expression analysis following shRNA knockdown of NF90/NF110 with ChIP-seq

data in K562 cells lead us to conclude that NF90/NF110 operates as a hierarchical transcription

factor to promote cell proliferation over differentiation.

Here, to characterize how NF90/NF110 might positively regulate proliferation of K652

cells, we determined the average chromatin occupancy profile of NF90/NF110 at the proximal

promoters of IEGs, D-PRGs, and SRGs (Fig 1a). The specific genes in each group and the

genomic coordinates of the proximal promoters are tabulated (S1 Table). NF90/NF110

chromatin occupancy frequency was highest at the proximal promoter of IEGs, followed by

D-PRGs, then SRGs. There was approximately a two-fold enrichment in NF90/NF110/NF110

occupancy frequency at the proximal promoter of IEGs compared to SRGs.

Here, we focus on NF90/NF110 chromatin occupancy at IEGs that are ‘forward-driving’

transcription factors: EGR1, FOS, and JUN. We sought to determine whether NF90/NF110,

and its heterodimeric partner NF45, may hierarchically regulate transcription factors that

control the immediate early responses of cells to diverse stimuli. NF90/NF110 chromatin

occupancy frequency (fold-change over input) is graphed as a continuous variable, and Irre-

producible Discovery Rate (IDR) analysis marks the discrete genomic intervals where rigorous

statistical testing between biological replicates indicates strong confidence in NF90/NF110

chromatin occupancy (Fig 1b–1d). At the EGR1, FOS and JUN loci, continuous NF90/NF110

chromatin occupancy is found at the transcription start site (TSS), throughout the gene body,

and at the transcription end site (TES), consistent with previous findings [41]. Most signifi-

cantly, we demonstrate NF90/NF110 chromatin occupancy at proximal promoters of immedi-

ate early transcription factors EGR1, FOS, and JUN (Fig 1b–1d).

Dynamic chromatin association of NF90/NF110 and NF45 at promoters of

immediate early genes during cell stimulation

To generalize our finding that NF90/NF110 occupied the promoters of immediate early tran-

scription factors in normal growing K562 cells, we extended our study of IEG regulation to

the human embryonic kidney (HEK) 293 cell line, which demonstrates no tissue-specific gene

expression signature and a transformed immortal phenotype [43], and is amenable to stable

cell transfections for cell biology studies.

Based on the bioinformatics results that demonstrated enrichment of NF90/NF110 occu-

pancy at promoters at immediate early transcription factors, and the frequent dimerization

interaction between NF90/NF110 and NF45 mediated by their shared domain associated with

zinc fingers (DZF), we hypothesized that, upon cellular stimulation, NF90/NF110 and NF45

might coordinately regulate expression of immediate early transcription factors EGR1, FOS,

and JUN. The stimulation of choice for these experiments was phorbol 12-myristate 13-acetate
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(PMA), an activator of protein kinase C (PKC), previously demonstrated to stimulate induc-

ible binding of NF90/NF110 to the IL2 promoter [23, 24], and known to rapidly induce expres-

sion of IEGs, including EGR1, FOS, and JUN [7]. For maximal contrast of IEG induction,

HEK293 cells were serum starved overnight. Quiescent cells were then stimulated with 20 ng/

ml PMA to achieve rapid induction of IEGs.

We performed ChIP-PCR using monoclonal antibodies to NF90/NF110 or NF45, and

interrogated amplicons within 500 bp upstream of the transcription start sites of EGR1, FOS,

and JUN selected based upon the continuous NF90/NF110 chromatin occupancy frequency in

K562 cells (Fig 1b–1d). As a negative control amplicon we selected a region of the human beta

Fig 1. NF90/NF110 occupancy at promoters of immediate early genes in K562 cells. (a) Average occupancy profile of NF90/NF110/NF110 at

proximal promoters within 1000 bp upstream of transcription start site (TSS) of 49 immediate early genes (IEG), 58 delayed primary response

genes (D-PRG), and 26 secondary response gene (SRG) defined by Tullai et al. x-axis: Relative position near TSS. y-axis: Fold-change over input

of NF90/NF110/NF110 ChIP-Seq signal. (b-d) Signal tracks of NF90/NF110 chromatin occupancy determined by ChIP-seq at promoters of

IEGs EGR1, FOS, and JUN; retrieved from UCSC genome browser [41]. NF90/NF110 ChIP-seq signal (fold change over input) is presented,

aligned to peaks called by Irreproducible Discovery Rate (IDR) analysis that measures consistency between replicates. Relative position of the

amplicons in the proximal promoter and gene body of each gene used for subsequent ChIP-PCR experiments are indicated.

https://doi.org/10.1371/journal.pone.0216042.g001
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globin locus (HBB) that exhibited low NF90/NF110 chromatin occupancy frequency in K562

cells.

NF90/NF110 chromatin occupancy at proximal promoters of EGR1, FOS, and JUN in non-

stimulated HEK293 cells was present at low basal levels (Fig 2a, 0 min, open bars). Stimulation

with PMA triggered increases in NF90/NF110 chromatin occupancy at the EGR1, FOS, and

JUN promoters at 30 min, and a further significant increase at 60 min (Fig 2a black bars,

P< 0.05).

Fig 2. Dynamic associations of NF90/NF110 and NF45 with promoters of IEGs upon stimulation. HEK293 cells

were serum starved for 24 h, then stimulated by PMA (20 ng/ml) for indicated durations. Chromatin

immunoprecipitation was performed with antibodies against NF90/NF110 (a) or NF45 (b). Abundance of IEG

promoter fragments were assessed by quantitative polymerase chain reaction for input sheared chromatin, or specific

immunoprecipitates. N = 3 biological replicates; One-way analysis of variance (ANOVA) test followed by post-hoc

Student’s t-test corrected by Bonferroni; data reported as mean ±s.e.m of fold-change over input, � P<0.05, ��

P< 0.01.

https://doi.org/10.1371/journal.pone.0216042.g002
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NF45 chromatin occupancy at proximal promoters of EGR1, FOS, and JUN in nonstimu-

lated HEK293 cells was present at substantial levels (Fig 2b, 0 min, open bars), in contrast to

NF90/NF110. Unexpectedly, stimulation with PMA triggered decreases in NF45 chromatin

occupancy at the EGR1, FOS, and JUN promoters at 30 min, and further significant decrease at

60 min (Fig 2b, black bars, P< 0.05).

NF45 and NF90/NF110 copurify, and frequently interact as heterodimers through their

shared DZF domains [18–20]. Our discovery of dynamic and reciprocal chromatin associa-

tions by NF90/NF110 and NF45 during cell stimulation suggest that each protein contributes

distinctly and non-redundantly to transcriptional activation.

Establishment and characterization of stable HEK293 cells with

doxycycline-regulated RNAi targeting NF90/NF110 and NF45

The chromatin occupancy of NF90/NF110 and NF45 at the proximal promoters of EGR1,

FOS, and JUN supports our hypothesis that NF90/NF110 and NF45 hierarchically regulate

transcriptional activation of ‘forward-driving’ IE transcription factors. To study the functional

roles of NF90/NF110 and NF45 in regulating EGR1, FOS, and JUN, we employed RNA inter-

ference using validated [21] shRNA sequences against NF90/NF110 (D2) or NF45 (D5) to

knockdown NF90/NF110 or NF45 proteins, and examined the consequences upon inducible

expression of EGR1, FOS, and JUN.

Because NF90/NF110 and NF45 are genes essential for normal development, as well as for

cellular growth and proliferation, we anticipated that constitutive knockdown in HEK293 cells

might adversely affect cell viability, as previously reported [21]. Therefore, we established a sys-

tem for doxycycline-regulated RNAi knockdown of NF90/NF110 and NF45. The pINDUCER

vectors are multicistronic plasmids in which a strong ubiquitin promoter drives constitutive

expression of reverse tetracycline transactivator protein and resistance to puromycin, and a

tetracycline-regulated promoter drives expression of turboRed fluorescent protein and shRNA

[42]. pINDUCER 10 plasmids were created with shRNA sequences against NF90/NF110 (D2)

or NF45 (D5). We transfected HEK293 cells with either pINDUCER-shNF90/NF110 (D2) or

pINDUCER-shNF45 (D5), and applied puromycin selection to generate stably-transfected

HEK293 cells with doxycycline-regulated shRNAs directed to NF90/NF110 (D2) or NF45

(D5).

The efficacy of doxycycline-regulated knockdown of NF90/NF110 or NF45 in stably-

transfected HEK293 D2 and D5 cells was characterized by Western immunoblotting (Fig 3).

HEK293 cells were untreated (Dox-), or treated with 1 μg/ml doxycycline (Dox+), and

whole cell lysates prepared with urea to achieve maximal extraction of these proteins from

chromatin. Compared to Dox-, Dox+ HEK293 D2 cells (shRNA targeting NF90/NF110)

demonstrated substantial reduction in NF90/NF110 protein expression (Fig 3, NF90/NF110:

lanes 3, 4 vs. 1, 2). Additionally, compared to Dox-, Dox+ HEK293 D2 cells showed modest

reduction in NF45 protein expression (Fig 3, NF45: lanes 3,4 vs. 1,2). Compared to Dox-,

Dox+ treated HEK293 D5 cells (shRNA targeting NF45) demonstrated substantial

reduction in NF45 protein expression (Fig 3, NF45: lanes 7,8 vs. 5,6). Additionally, com-

pared to Dox-, Dox+ HEK293 D5 cells showed modest reduction in NF90/NF110 protein

expression (Fig 3, NF90/NF110: lanes 7,8 vs. 5,6). Our results confirm that doxycycline effec-

tively induced shRNA-mediated knockdown of NF90 or NF45 proteins in our D2 or D5 sta-

ble cell lines, respectively. Furthermore, the observed modest attenuation of the levels of

NF45 or NF90/NF110 when the heterodimeric partner is targeted by RNAi is consistent

with the previous suggestion that NF90/NF110 and NF45 interact and confer mutual stabili-

zation [21].
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NF90/NF110 and NF45 positively regulate inducible transcription of

immediate early genes upon cell stimulation

To investigate whether knockdown of NF90 or NF45 attenuated transcription of IEGs, we per-

formed RNA Pol II ChIP and used amplicons within the gene bodies of EGR1, FOS, and JUN
(Fig 1b, 1c and 1d) as a measure of real-time transcription, as previously described [44]. In

HEK293 cells stably expressing D2 (doxycycline inducible-shNF90) or D5 (doxycycline induc-

ible-shNF45), we detected substantial increase in real-time transcription of EGR1, FOS, and

JUN at 30 and 60 min upon PMA stimulation, compared to HBB (Fig 4a and 1b). Compared

to Dox-, HEK293 D2 Dox+ cells exhibited significant reductions in transcription of EGR1,

FOS, and JUN at 60 min (Fig 4a, black bars, P< 0.05). Similarly, compared to Dox-, HEK293

D5 Dox+ cells exhibited significant reductions in transcription of EGR1, FOS, and JUN at 60

min (Fig 4b, black bars, P< 0.05).

To understand the effect of NF90 and NF45 knockdown on the level of mature mRNA tran-

scripts of IEGs upon cell stimulation, we performed reverse transcription PCR of EGR1 and

FOS using primer pairs that span at least one exon-exon junction to selectively detect the

spliced mRNA, but not pre-mRNA. We also designed primers to amplify the intronless JUN
transcript. In serum-starved HEK293 cells stably expressing D2 (doxycycline inducible-

shNF90/NF110) mRNA expression of EGR1, FOS, and JUN is rapidly inducible by 15 min, and

further increased at 30 min upon PMA stimulation (Fig 5a, Dox- panels). In doxycycline-

treated D2 cells, the PMA-stimulated induction of EGR1, FOS, and JUNmRNA was attenuated

compared to Dox- D2 cells (Fig 5a, black bars, P< 0.05).

We also characterized serum-starved HEK293 cells stably expressing D5 (doxycycline

inducible-shNF45) for IEG mRNA expression. In Dox- D5 cells, stimulation with PMA

rapidly induced mRNA expression of EGR1, FOS, and JUN in a pattern similar to Dox- D2

Fig 3. Doxycycline-induced shRNAs specifically attenuated expression of NF90/NF110 or NF45 proteins. HEK293

cells stably transfected with pINDUCER10-shNF90/NF110 (D2) or pINDUCER10-shNF45 (D5) were treated without

or with doxycycline for 96 h, then serum starved for 12 h and treated with PMA (20 ng/ml) for 2 h. NF90/NF110 or

NF45 protein expression was detected by immunoblotting.

https://doi.org/10.1371/journal.pone.0216042.g003
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cells (Fig 5b, Dox- panels). In Dox+ D5 cells, PMA-stimulated induction of EGR1, FOS, and

JUN expression was attenuated compared to Dox- D5 cells (Fig 5b, black bars, P< 0.05).

To investigate how reduced NF90/NF110 or NF45 expression may affect the earliest IEG

RNA transcripts. Reverse transcription PCR primer pairs were designed to span intron-exon

junctions of EGR1 and FOS to detect pre-mRNAs that have not yet been spliced. In Dox- D2

cells, PMA-stimulated induction of EGR1 and FOS pre-mRNA reached greatest levels at 15

min, followed by a decrease at 30 min (Fig 5c, Dox- panels). Thus, peak pre-mRNA expression

was detected earlier than mature mRNA expression. Upon treatment of D2 cells with doxycy-

cline, this PMA-stimulation expression of EGR1 and FOS pre-mRNA was attenuated (Fig 5c,

grey bars, P< 0.05). Characterization of Dox- D5 cells revealed similar patterns of EGR1 and

FOS pre-mRNA induction by PMA (Fig 5d, Dox- panels), and this was attenuated in Dox+ D5

cells (Fig 5d, grey bars, P< 0.05).

Taken together, our RNA pol II ChIP and reverse transcription PCR results establish that

NF90/NF110 and NF45 both contribute positively to the inducible transcription of IEGs upon

cell stimulation with PMA.

To assay the inducible expression of IEGs at the protein level, we stimulated HEK293 D2 or

D5 cells with PMA for 2 h and prepared whole cell lysates with urea to quantify by immuno-

blotting stimulated protein levels of EGR1, FOS, and JUN. We used Glyceraldehyde 3-phos-

phate dehydrogenase (GAPDH) as an internal control (Fig 6). HEK293 cells stably expressing

shNF90/NF110 (D2) or shNF45 (D5) were cultured without or with doxycycline then serum-

Fig 4. Reduced NF90/NF110 or NF45 expression attenuated inducible transcription of IEGs. HEK293 D2 or D5 cells were treated without or

with doxycycline, then serum-starved for 12 h and treated with PMA (20 ng/ml) for 0, 30, or 60 min. ChIP was performed with antibody against

RNA Polymerase II, and real time transcription of EGR1, FOS, JUN and HBB gene bodies was measured by qPCR.N = 3 biological replicates;

One-way analysis of variance (ANOVA) test followed by post-hoc Student’s t-test corrected by Bonferroni; data reported as mean ± s.e.m of

fold-change over input, � P< 0.05, �� P< 0.01.

https://doi.org/10.1371/journal.pone.0216042.g004
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starved for 12h, followed by stimulation with PMA for 2 h. We determined that doxycycline-

mediated knockdown of NF90/NF110 or NF45 proteins each attenuated the PMA-inducible

protein expression of immediate early transcription factor proteins EGR1, FOS, and JUN (Fig

6, lane 4 vs. 2 and lane 8 vs. 6).

Fig 5. Reduced NF90/NF110 or NF45 expression attenuated inducible expression of IEG RNAs. HEK293 D2 or D5 cells were treated

without or with doxycycline, then serum-starved for 12 h and treated with PMA (20 ng/ml) for 0, 15, or 30 min. Total RNA was prepared and

used for reverse transcription qPCR to detect EGR1, FOS, and JUN mRNAs and pre-mRNAs. ACTB was used for normalization. N = 3

biological replicates; One-way analysis of variance (ANOVA) test followed by post-hoc Student’s t-test corrected by Bonferroni; data reported as

mean ± s.e.m of fold-induction compared to 0 min, � P< 0.05, �� P< 0.01.

https://doi.org/10.1371/journal.pone.0216042.g005
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To complement these population studies on IEG RNA and protein expression we per-

formed immunofluorescence microscopy on HEK293 D2 and D5 cells for single cell character-

izations of NF90/NF110 and NF45 regulation of PMA-inducible expression of EGR1, FOS, and

JUN (Figs 7 and 8). Multiplexed immunofluorescence was achieved using mouse monoclonal

antibodies to detect NF90/NF110 or NF45 proteins, and rabbit monoclonal antibodies to

detect EGR1, FOS, and JUN proteins.

HEK293 cells stably expressing doxycycline-regulated shN90 (D2) were cultured on glass

chamber slides without or with doxycycline before serum starvation overnight followed by

stimulation with PMA for 2 h. Cells were fixed with methanol, membranes were permeabilized

with Triton X-100 for incubation with primary mouse monoclonal antibody to NF90/NF110

together with rabbit monoclonal antibodies to EGR1, FOS, or JUN. All microscope exposure

times for a given detection channel wavelength were identical across cell stimulation condi-

tions (Fig 7). The NF90/NF110 immunoreactivity overlapped with DAPI staining, consistent

with nuclear localization of NF90/NF110; there was punctate staining within the nuclei consis-

tent with prior reports of NF90/NF110 interactions with nucleoli [45–48]. In D2 cells treated

with doxycycline (Dox+), the immunofluorescence intensity of NF90/NF110 was substantially

reduced compared to cells not exposed to doxycycline (Dox-) (Fig 7b, 7d, 7f vs. 7a, 7c and 7e).

Compared to Dox–nonstimulated (NS) D2 cells, Dox–D2 cells stimulated with PMA demon-

strated clear induction of EGR1, FOS, or JUN proteins within nuclei (Fig 7a, 7c, 7e; compare

Fig 6. Reduced NF90/NF110 or NF45 expression attenuated inducible expression of IEG proteins. HEK293 D2 or

D5 cells were treated without or with doxycycline, then serum starved for 12 h and treated with PMA (20 ng/ml) for 0,

2 h. Induction of IEGs EGR1, FOS and JUN were assessed by immunoblotting. GAPDH was used as a loading control.

https://doi.org/10.1371/journal.pone.0216042.g006
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PMA vs. NS). In contrast to Dox–D2 cells (Fig 7a, 7c and 7e), Dox+ D2 cells exhibited marked

attenuation of PMA-induced expression of EGR1, FOS, or JUN proteins (Fig 7b, 7d and 7f;

compare PMA vs. NS).

Similarly, HEK293 cells stably expressing doxycycline-regulated shN45 (D5) were visual-

ized using immunofluorescence microscopy (Fig 8). The NF45 immunoreactivity overlapped

with DAPI staining, consistent with nuclear localization of NF45; there was punctate staining

within the nuclei suggestive of NF45 interactions with nucleoli. Compared to Dox–D5 cells

(Fig 8a, 8c and 8e), cells treated with doxycycline for 96 h (Dox+) demonstrated substantial

attenuation of NF45 expression (Fig 8b, 8d and 8f). Stimulation of serum-starved Dox–D5

cells with PMA for 2 h induced substantial expression of EGR1, FOS, or JUN (Fig 8a, 8c and

8e; compare PMA vs. NS) proteins in nuclei. In contrast, stimulation of Dox+ D5 cells with

PMA for 2 h showed marked attenuation of PMA-induced expression of EGR1, FOS, or JUN
proteins (Fig 8b, 8d and 8f; compare PMA vs. NS).

Fig 7. Reduced NF90/NF110 expression attenuated inducible expression IEGs by immunofluorescence analysis. HEK293 cells stably

transfected with pINDUCER10-shNF90/NF110 (D2) or pINDUCER10-shNF45 (D5) were treated without or with doxycycline for 96 h, then

seeded on chamber slides, and serum starved for 24 h and stimulated by PMA (20 ng/ml) for 2 h for maximal protein expression of IEG. Slides

were incubated with mouse monoclonal antibodies against NF90/NF110, and rabbit monoclonal antibodies against EGR1 (a-b), FOS (c-d), or

JUN (e-f), then incubated with fluorescent conjugated secondary antibodies anti-mouse Alexa Fluor 488 and anti-rabbit Alexa Fluor 594. Slides

were counterstained with DAPI, then visualized by confocal fluorescent microscopy. Panels (b,d,f) show doxycycline-mediated shRNA

knockdown compared to (a,c,e) respectively.

https://doi.org/10.1371/journal.pone.0216042.g007
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These results from immunofluorescence microscopy demonstrate in single cells that knock-

downs of NF90/NF110 or NF45 proteins are associated with attenuation of PMA-induction of

immediate early transcription factors, EGR1, FOS, and JUN.

Taken together, we demonstrate dynamic chromatin occupancy by NF90/NF110 and NF45

at the proximal promoters of EGR1, FOS, and JUN. RNAi mediated knockdown of NF90/

NF110 or NF45 specifically attenuates PMA-inducible transcription, RNA and protein expres-

sion of immediate early transcription factors EGR1, FOS, or JUN. We propose that NF90/

NF110 and NF45 are chromatin regulators of IEG transcription.

Discussion

We demonstrate that NF45 and NF90/NF110 exhibit dynamic chromatin association at the

proximal promoters of the ‘forward-driving’ IEG transcription factors, EGR1, FOS and JUN in

HEK293 cells. Genetic attenuation of NF45 or NF90/NF110 reduced PMA-stimulated tran-

scription of EGR1, FOS and JUN. Our findings confirm and extend those of Nakadai et al.

Fig 8. Reduced NF45 expression attenuated inducible expression IEGs by immunofluorescence analysis. HEK293 cells stably transfected

with pINDUCER10-shNF90/NF110 (D2) or pINDUCER10-shNF45 (D5) were treated without or with doxycycline for 96 h, then seeded on

chamber slides, and serum starved for 24 h and stimulated by PMA (20 ng/ml) for 2 h for maximal protein expression of IEG. Slides were

incubated with mouse monoclonal antibodies against NF45, and rabbit monoclonal antibodies against EGR1 (a-b), FOS (c-d), or JUN (e-f), then

incubated with fluorescent conjugated secondary antibodies anti-mouse Alexa Fluor 488 and anti-rabbit Alexa Fluor 594. Slides were

counterstained with DAPI, then visualized by confocal fluorescent microscopy. Panels (b,d,f) show doxycycline-mediated shRNA knockdown

compared to (a,c,e) respectively.

https://doi.org/10.1371/journal.pone.0216042.g008
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characterizing NF45 and NF90/NF110 as transcriptional coactivators of FOS. Operating as

hierarchical transcriptional regulators of ‘forward-driving’ IE transcription factors, EGR1, FOS
and JUN, NF45 and NF90/NF110 represent novel targets for regulation of acute inflammation,

neuronal activity, cell proliferation, and differentiation. Increased expression of IEGs in malig-

nant cellular transformation may be a consequence of overexpression of NF45 and/or NF90/

NF110.

NF45 chromatin association was prominently detected at the proximal promoters of EGR1,

FOS and JUN in serum-starved HEK293 cells prior to stimulation. Upon PMA stimulation,

NF45 chromatin occupancy decreased at 30 and 60 min. In contrast, NF90/NF110 exhibited

modest chromatin occupancy at the proximal promoters of EGR1, FOS and JUN in non-

stimulated cells HEK 293 cells. Upon PMA stimulation, NF90/NF110 chromatin association

increased at 30 and 60 min. These dynamic changes in NF45 and NF90/NF110 chromatin

association are consistent with regulatory roles of NF45 and NF90/NF110 in IEG transcrip-

tional activation stimulated by PMA.

NF45 and NF90/NF110 both contribute positively to expression of EGR1, FOS and JUN.

Doxycycline-regulated RNAi knockdown of NF45 or NF90/NF110 significantly attenuated

PMA-inducible expression of EGR1, FOS and JUN at the levels of transcription, RNA and pro-

tein. These results are consistent with literature describing a positive correlation of NF45 and

NF90/NF110 expression levels with cell growth and proliferation in ESCs [30, 31] and diverse

cancers [32–37].

The dynamic and reciprocal chromatin association by NF90/NF110 and NF45 upon cell

stimulation represent the first experimental evidence that these proteins are capable of inde-

pendent chromatin interactions, in contrast to frequent biochemical characterizations of

NF90/NF110 and NF45 as a heterodimer in solution [21]. The heterodimerization between

NF90/NF110 and NF45 is mediated through their shared DZF domains [20], and this interac-

tion may be regulated by cell signaling to recruit NF90/NF110 to the NF45 molecules pre-asso-

ciated at the proximal promoters of IEGs.

The presence of NF45 pre-existing at the proximal promoters of inducible IEGs in nonsti-

mulated cells identify it as a potential pioneer transcription factor [49]. These NF45 molecules

may represent targets of signaling initiated at the plasma membrane, such as phorbol ester

activation of protein kinase C (PKC) and downstream phosphorylation cascades. Previous

proteomics studies have identified NF45 to be diversely modified, including mono- and di-

methylation of the N-terminal arginine/glycine/glycine (RGG) domain, as well as phosphory-

lation, acetylation, and ubiquitination. The RGG domain in Xenopus ILF3 (Xilf3) has previ-

ously been shown to bind nucleic acids and methylation within this RGG domain reduced

DNA-binding without affecting RNA-binding [22]. NF110, a splice variant of NF90/NF110

that also heterodimerizes with NF45 to form a NF110-NF45 complex, has been shown to be a

substrate and regulator of Protein-arginine methyltransferase I (PRMT1) in mammalian cells

[50]. Reduction in chromatin association of NF45 with IEG proximal promoters upon cell

stimulation may be a consequence of reduced affinity for DNA following post-translational

modification.

NF45 and NF90/NF110 have been shown to contribute to RNA splicing [45, 51], stabiliza-

tion, and nuclear export [52, 53] and translational regulation [54, 55]. Our results here,

together with previous ChIP-seq studies of NF90/NF110 [41], suggest that NF45 and NF90/

110 are recruited to chromatin and contribute to transcriptional activation. The lack of con-

sensus DNA-binding domains within these proteins indicate they are targeted to chromatin

through alternative mechanisms that may involve the versatile and regulable nucleic-acid

binding RGG domain, or through the dsRNA-binding domains on NF90/NF110. YY1 is a

transcription factor capable of binding both DNA and RNA that has been recently shown to
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be retained near active promoters through its interaction with nascently transcribed RNAs

[56]. Genome-wide mapping of RNA:DNA hybrids have suggested their potential function in

transcriptional regulation, and NF45/ILF2 and NF90/NF110/ILF3 are enriched at chromatin

with RNA:DNA hybrids [57].

In this study, we demonstrate that RNAi-mediated knockdown of either NF45 or NF90/

NF110 attenuated inducible transcription of immediate early transcription factors, EGR1, FOS
and JUN. NF45 and NF90/NF110 regulate gene expression through specific chromatin associa-

tions, transcriptional activation, RNA splicing, export, stabilization and translation. NF45 and

NF90/NF110 therefore represent novel therapeutic targets to modulate cell responses ranging

from acute inflammation to malignant proliferation.
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