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Abstract
Gamma-aminobutyric acid (GABA) is best known as an essential neurotransmitter in the evolved central nervous system 
(CNS) of vertebrates. However, GABA antedates the development of the CNS as a bioactive molecule in metabolism and 
stress-coupled responses of prokaryotes, invertebrates and plants. Here, we focus on the emerging findings of GABA sign-
aling in the mammalian immune system. Recent reports show that mononuclear phagocytes and lymphocytes, for instance 
dendritic cells, microglia, T cells and NK cells, express a GABAergic signaling machinery. Mounting evidence shows that 
GABA receptor signaling impacts central immune functions, such as cell migration, cytokine secretion, immune cell activa-
tion and cytotoxic responses. Furthermore, the GABAergic signaling machinery of leukocytes is implicated in responses to 
microbial infection and is co-opted by protozoan parasites for colonization of the host. Peripheral GABA signaling is also 
implicated in inflammatory conditions and diseases, such as type 1 diabetes, rheumatoid arthritis and cancer cell metastasis. 
Adding to its role in neurotransmission, growing evidence shows that the non-proteinogenic amino acid GABA acts as an 
intercellular signaling molecule in the immune system and, as an interspecies signaling molecule in host–microbe interac-
tions. Altogether, the data raise the assumption of conserved GABA signaling in a broad range of mammalian cells and 
diversification of function in the immune system.

Keywords Neurotransmission · Inflammation · Macrophage · Toxoplasma · Apicomplexa · Host–pathogen · Voltage-
dependent calcium channel · Cation-chloride cotransporter

Introduction

Gamma-aminobutyric acid (GABA) was first identified in 
1949 as a plant metabolite [1] and, shortly after (1950), it 
was reported in the vertebrate brain [2]. Today, GABA has 
an undisputed role as the principal inhibitory neurotransmit-
ter in the central nervous system (CNS) of vertebrates [3]. 
Yet, GABA has also metabolic and signaling functions in 
prokaryotic and eukaryotic microorganisms, and in inverte-
brates [4]. It is also well established that GABA has func-
tions in the peripheral nervous system [5, 6]. More recently, 
GABA has been found in pancreatic islets [7] and periph-
eral GABAergic signaling has been implicated in cancer and 
other inflammatory conditions in humans [8–11].

Neurons and other GABAergic cells synthesize GABA 
via glutamate decarboxylases (GAD65/67) and transamina-
tion (GABA-T) catabolizes GABA [12]. GABA is released 
from cells by exocytosis or shuttled in and out of cells via 
GABA transporters (GATs) [13]. Upon extracellular release, 
GABA can activate GABA-A receptors (GABA-A Rs) [14] 
and GABA-B Rs [15] located in the cell membrane. GABA-
B receptors are metabotropic G-protein-coupled receptors, 
while GABA-A Rs are pentameric ionotropic chloride chan-
nels, normally comprised of three types of subunits: 2 α’s, 
2 β’s, and a third type of subunit. By combining the 19 dif-
ferent mammalian GABA-A R subunits (α1–6, β1–3, γ1–3, 
δ, ε, π, θ and ρ1–3), numerous variants of heteropentameric 
receptors can form in neuronal cells. Additionally, the ρ 
subunits can form homopentameric channels [16].

The strength and polarity of GABA signaling by GABA-
A Rs is modulated by cation-chloride cotransporters (CCCs), 
that regulate intracellular chloride  (Cl−) concentrations 
among other functions [17]. CCCs maintain the  Cl− gradient 
to favor outward  Cl− flux (Na–K–Cl cotransporters, NKCCs) 
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or inward  Cl− flux (K–Cl cotransporters, KCCs). GABA-A R 
activation by GABA can elicit opening of voltage-dependent 
calcium  (Ca2+) channels (VDCCs) with subsequent calcium 
 Ca2+ influx into the neuronal cell [18]. GABA-A Rs have a 
broad range of sensitivity. Synaptic receptors are activated 
by millimolar concentrations of GABA, whereas extra-syn-
aptic or non-synaptic receptors can be activated by GABA 
concentrations in the picomolar range [19–21]. In peripheral 
tissues and blood, sub-micromolar GABA concentrations 
have been measured [22–24].

In vertebrates, immune cells derive from common pro-
genitor stem cells in the bone marrow, which generate 
myeloid lineages [monocytes, dendritic cells (DCs), mac-
rophages, granulocytes], or lymphoid lineages [B, T, natu-
ral killer (NK) cells] [25]. These cells mediate the complex 
responses that entail combating infections, cancer and tissue 
injury. The first line of defense is the innate response which 
is immediate. The second line of defense is the adaptive 
immune response which is generally highly specific and 
long-lasting. Naturally, the orchestration of innate and adap-
tive immune responses requires a tight regulation within the 
immune system and entail ever-broadening signaling cas-
cades [26]. Mounting evidences show that immune cells can 
respond to neurotransmitters, for example acetylcholine [27], 
and signaling molecules present in the CNS are emerging as 
modulators of immune function [28]. Here, we outline recent 
findings on the role of GABA signaling in immune cells and 
discuss its impact on the effector functions of immune cells 
and disease.

GABAergic signaling in mononuclear 
phagocytes

The mononuclear phagocyte system comprises DCs, mono-
cytes, macrophages and brain microglia, among others [29]. 
Mononuclear phagocytes have diverse immunological func-
tions and are crucial to counteract microbial infection. As 
sensors and effector cells in peripheral tissues, phagocytes 
participate in phagocytosis, cytokine responses and antigenic 
presentation for initiation of adaptive immune responses. 
The trafficking of phagocytes in response to external cues, 
for example invasive pathogens, is complex and the molec-
ular signaling that regulates migration has not been fully 
elucidated [30]. Chemokine signaling cues guide afferent 
responses to inflammation sites and efferent responses, for 
example migration of DCs to lymph nodes where adaptive 
immune responses are initiated [31]. To avoid clearance by 
the immune response, pathogens have evolved diverse strate-
gies to subvert this fundamental function of DCs and other 
mononuclear phagocytes [32, 33]. Paradoxically, these fun-
damental host-protective immune responses also constitute 
a gate for immune evasion and dissemination by pathogens.

GABAergic signaling components expressed 
by mononuclear phagocytes

A comprehensive characterization of myeloid mononu-
clear phagocytes of human and mouse origin recently dem-
onstrated a conserved expression of GABAergic molecu-
lar components [34]. Phagocytes consistently expressed 
the five principal components of GABAergic signaling 
(Fig. 1), namely (i) GABA metabolism, (ii) GABA trans-
portation and secretion, (iii) GABA-A R activation, (iv) 
GABA signaling regulation by CCCs, and (v) effector  Ca2+ 
channel signaling by VDCCs (Table 1). Furthermore, in 
both human and murine DCs, GABA evoked GABA-A 
R-mediated currents [35], with characteristics of neuronal 
synaptic and extra-synaptic GABA-activated currents [21].

In phagocytes, GAD67 was identified as the principal 
GABA synthesizing enzyme, while the relative expres-
sion of GAD65 was low in murine cells and undetectable 
in human cells [34]. Upon infection challenge with coc-
cidian parasites, the extracellular GABA concentrations 
raised dramatically. Together with GAD67 expression, this 
is indicative of cytosolic GABA synthesis and vesicle-
independent secretion by transportation through GATs, in 
line with secretory pathways described in neurons [57, 58]. 
Nonetheless, the precise secretory pathways of GABA in 
phagocytes remain uncharacterized.

The expression of GABA-A R subunit types was 
diverse in phagocytes, in line with the expression diver-
sity in neurons [59, 60]. Yet, the repertoires of GABA-A 
R subunits expressed by different phagocyte types were, 
in theory, sufficient to constitute functional channels: at 
least one α, one β, and one-third type of subunit, or homo-
pentamer-forming ρ subunits. While the precise subunit 
constituents of pentameric GABA-A Rs in phagocytes 
remain unknown, a functional hierarchy among GABA-
A R subunits was identified and is discussed below [34]. 
Importantly, phagocytes expressed CCCs, which regulate 
GABA-A R function. Specifically, expression of NKCC1 
was linked to GABA-A R function in DCs.

Finally, phagocytes expressed a highly conserved rep-
ertoire of VDCC sub-types. Stimulation of DCs with 
GABA elicited  Ca2+ influx transients in the cytosol, 
which was inhibited by GABA-R antagonism. A prominent 
role for the VDCC subtype  CaV1.3 was demonstrated in 
human and murine cells [34, 36]. Thus, both human and 
murine phagocytes express a fully functional GABAergic 
machinery.
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Motogenic effects of GABAergic signaling 
in phagocytes

Activation of the GABAergic system of phagocytes by 
challenge with coccidian parasites mediates activation of 
motility in vitro and migratory responses in vivo in mice. 
This migratory activation is termed hypermigratory phe-
notype [61, 62]. Selective pharmacological antagonism of 
GABA-A R subunits indicates implication of α, β and ρ 
subunits in migratory responses. Additionally, in human 
or murine DCs, the finding that gene silencing of spe-
cific subunits (α4, β3 and ρ) inhibit GABA-A R-mediated 
hypermotility, but not gene silencing of α3 and ρ2, indi-
cates a hierarchy among GABA-A R subunits mediating 

migratory activation or redundancy of function between 
subunits [34]. Similarly, pharmacological antagonism and 
gene silencing of NKCC1 or the VDCC subtype  CaV1.3 
impacted the migration of DCs in vitro and in vivo in mice 
[34, 36]. This underlines the importance of the sequential 
GABAergic signaling cascade for the migratory activation 
of phagocytes.

It is tempting to draw parallels between the migratory 
effects of GABA on phagocytes and the motogenic role of 
GABA in embryonic interneuron migration in the devel-
oping fetus [18]. Furthermore, GABA-A R signaling has 
newly been associated with cancer cell metastasis, for exam-
ple pancreatic cancer and breast cancer [63, 64]. Future 
research needs to determine if the motogenic molecular 

Fig. 1  Molecular GABA signaling components, and immune cell 
functions linked to GABAergic signaling. The cartoon depicts the 
intracellular and extracellular compartments of a leukocyte, sepa-
rated by the lipid bilayer of the cytoplasmatic membrane. 1 Extracel-
lular/exogenous stimuli and intracellular/endogenous stimuli impact 
GABA signaling in leukocytes and exert paracrine and endocrine 
effects, respectively. 2 In GABAergic immune cells, GABA is enzy-
matically synthesized by glutamate decarboxylase (GAD65/67). 3 
GABA transporters (GAT) transport GABA out from leukocytes. 
It remains undetermined if GAT transport also mediates influx of 
GABA in leukocytes, as in neurons. 4 Cation-chloride  (Cl−) trans-
porters (CCC) include expression of members from the KCCC and 
NKCC families. By maintaining  Cl− homeostasis and ionic gradient, 
they can function as regulators of GABA signaling. NKCCs mediate 
coupled movement of  Cl−, sodium  (Na2+) and potassium  (K+) into 
the cytosol across the plasma membrane (illustrated), while KCCs 

mediate outward movement of  Cl− and  K+ (not illustrated). 5 GABA-
A receptors (GABA-A R) are activated by GABA and efflux or influx 
of  Cl− takes place, depending on the intracellular  Cl− concentration 
maintained by CCCs. 6 GABA-A R activation can result in depolari-
zation of the membrane, leading to calcium  (Ca2+) entry into the cell 
by opening of voltage-dependent  Ca2+ channels (VDCC). If GABA-
A R activation results in hyperpolarization, VDCCs are inactivated. 
Influx of the second messenger  Ca2+ can impact multiple signaling 
pathways and cellular functions. 7 GABA-B receptors (GABA-B 
R) are metabotropic G-coupled receptors activated by GABA. 8 In 
a number of leukocytes, there is evidence of considerable transcrip-
tional regulation and modulation of GABAergic genes and GABA-
related genes, which will determine elevated or reduced protein 
expression. 9 Immune cell effector functions affected by GABAergic 
signaling
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components identified in phagocytes [34, 36] are also impli-
cated in immunomodulation and in cancer cell metastasis. 
Thus, receptor sub-types or other GABAergic components 
may be targeted to modulate cellular processes of clinical 
relevance [65].

Motogenic GABAergic signaling and chemotaxis: 
synergistic effects?

Upon GABAergic activation, DCs maintain their chemot-
actic responses mediated by chemokine receptor 7 (CCR7) 
and in response to the chemokines CCL19/21 [35, 66]. 
Interestingly, upon GABAergic inhibition, DCs responded 
with directionality in the chemokine gradient but at sig-
nificantly reduced velocities of DCs, thereby reducing the 
overall chemotactic response. This indicates that GABAe-
rgic activation DCs primarily acts on the mechanisms of 
cell motility rather than on regulation of directionality 
[67, 68]. Thus, GABA/GABA-A R-mediated hypermotil-
ity and CCR7-mediated chemotaxis acted simultaneously 
and enhanced the migratory properties of DCs [35, 62]. 
Similarly, chemokinetic GABAergic signaling cooperated 
with other chemotactic cues for embryonic neuronal migra-
tion [69]. In other cellular systems, GABAergic inhibition 
reduced the chemotaxis of monocytes and neutrophils [40, 
56]. Moreover, GABA-B R signaling has been implicated 
in cancer cell metastasis [70] and in the motility of human 
sperm cells [71]. It remains unknown if GABA can also act 
as a chemoattractant for homing of phagocytes.

Role of GABAergic signaling in immune activation 
of phagocytes

Immunomodulatory and down-modulatory effects by GABA 
were described early in peripheral blood mononuclear cells 
[48] and in experimental autoimmune encephalomyelitis, 
a model for multiple sclerosis [9]. Furthermore, GABA 
modulated cytokine release by peripheral blood mononu-
clear cells [50]. Specifically, GABA treatment has been 
reported to reduce IL-6/IL-12 production in macrophages 
[39] and impaired phagocytosis of macrophages and mono-
cytic cells [40, 72]. However, the GABA transporter GAT2 
was recently linked to pro-inflammatory IL-1β secretion in 
peritoneal macrophages [38]. A recent study showed that 
activation or blockade of GABA-A Rs influenced the phe-
notypic characteristics of alveolar macrophages towards 
classical (M1) or alternative (M2) activation, respectively 
[73]. Moreover, GABA signaling has been associated with 
antimicrobial responses, activation of autophagy, and phago-
somal activation in macrophages challenged with intracel-
lular bacteria [37]. Thus, upcoming evidences indicate that 

parasites, bacteria, and viruses modulate GABAergic signal-
ing in immune cells for survival [35, 37, 74].

Jointly, GABA has been attributed both inhibitory 
effects on phagocyte activation and pro-inflammatory 
functions. This is likely a reflection of the versatility of 
GABAergic signaling and that its effects may be contex-
tual and related to specific types/sub-types of phagocytes 
or their activation state. Yet, the understanding of how 
GABA impacts different immune functions is partly ham-
pered by limited knowledge on the expression of GABA 
receptor subsets in different phagocytes and how these 
are implicated in cell type-specific effector functions. It 
remains also unknown if activation occurs in response to 
ambient GABA gradients in physiological compartments 
or if secreted GABA by an autocrine or paracrine loop 
is required for receptor activation. In these settings, the 
identification of novel extra-synaptic GABA-A/B R modu-
lators may prove useful to test the impact of GABA signal-
ing on immune cell functions and inflammation [75–77]. 
One interesting perspective is also the acidifying action of 
GABA-A Rs on intracellular pH [78]. Because intracellu-
lar pH gradients can influence the migration of cells [79], 
the activation of the inflammasome, and cytokine secretion 
[80], this merits further investigation.

Microglia

Microglia are, in fact, part of the mononuclear phagocyte 
system [29] and are discussed separately here based on 
their specialized functions in the CNS. Microglial cells 
originate from primitive hematopoietic precursors outside 
the CNS and become the resident phagocytes of the brain 
[81]. Microglia participate in immune surveillance by rap-
idly responding to tissue injury and inflammation, similar 
to macrophages in peripheral tissues [82]. In neuroinflam-
matory processes, microglia also mediate regulative inter-
actions with the endothelium of the neurovascular unit 
[83]. Additionally, microglia are important for neuroplas-
ticity processes, for example in structural modifications 
after ischemic and traumatic insults [84, 85].

Microglia express a GABAergic machinery

Earlier studies showed that microglia can respond to 
GABA and GABA-A R modulators with electrophysi-
ological currents [86]. Moreover, expression of GABA-B 
Rs was reported in activated rat microglia [44] and expres-
sion of GABA-T and 3 GABA-A R subunits (α1, α3, and 
β1) in human microglia [42]. A recent comprehensive 
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characterization in murine primary microglia revealed the 
expression of a complete GABAergic machinery (Table 1).

Functions linked to GABAergic signaling in microglia

Importantly, microglia secreted GABA and exhibited migra-
tory activation upon infection challenge [43]. Thus, infec-
tious challenge with Toxoplasma gondii activated migra-
tion of microglia though GABAergic signaling, similar to 
DCs. This reinforces the idea of a conserved motogenic 
GABAergic signaling machinery in phagocytes [34]. It also 
highlights a hypothetical interplay between microglia and 
leukocytes, which infiltrate the brain parenchyma during 
infection and inflammation [87]. Furthermore, these find-
ings raise questions related to the alteration of GABAergic 
synapse signaling in the rodent brain upon T. gondii infec-
tion [88]. Moreover, GABA can suppress IFN-γ production 
of microglia through inhibition of inflammatory pathways 
mediated by NF-kB and p38 mitogen-activated protein 
(MAP) kinases [42]. Because GABA-A R signaling impacts 
MAP kinase signaling via VDCCs in DCs [68] and migra-
tory responses in microglia were linked to the MAPK regu-
lator 14–3–3 [89], it is plausible that MAPK signaling is key 
to the modulatory effects of GABA on microglia. Finally, 
GABA signaling negatively regulated the dendritic morphol-
ogy of mouse retinal microglia, indicating an impact on the 
cytoskeleton [90] and in line with the ascribed motogenic 
effects of GABA [34].

T cells

T lymphocytes mediate important adaptive immune 
responses and provide long-lasting immunity (memory T 
cells). As effectors of adaptive immunity, different subsets of 
T cells have crucial functions in cytotoxic responses  (CD8+ 
T cells), regulatory responses  (CD4+ helper T cells), and 
cytokine responses against infection and cancer [91].

GABAergic signaling components expressed by T 
cells

T cells harbor GAD67, GAT1, GAT2, GABA-T, and GABA-
A receptor subunits suggesting the presence of a GABAer-
gic signaling system similar to the neuronal system. Similar 
to human mononuclear phagocytes and NK cells, human 
T cells have conserved the expression of GAD67, but not 
GAD65 (Fig. 1). The GABA-catabolizing enzyme, GABA-T, 
and GABA transporters, GAT1 and GAT2, are expressed by 
both murine and human T cells (Table 1). Whether GABA 
is synthesized cytosolically and secreted by transporters or 
packaged into vesicles for secretion remains undetermined. 
The reported expression of GABA-A R subunits and GABA 

synthesis enzymes varies between species and depends on 
cell activation status or experimental mode, and what drives 
this variation remains undefined [92]. For instance, as dif-
ferent T-cell subsets express different GABA-A R subunits, 
they may display different sub-types of GABA-A Rs with 
diverse pharmacological properties and effects [93, 94]. 
The strength and polarity of GABA-A R-activated chloride 
currents depend on the intracellular chloride concentra-
tion set by CCCs [17]. In murine T cells, only NKCC1 has 
been detected to date, but in human PBMCs (T cells consti-
tute ~ 45–70% of PBMCs), NKCC1, KCC1, KCC3, KCC4 
were detected [52, 95, 96]. One single subunit of GABA-B 
Rs (B1) was detected in human PBMCs and it remains enig-
matic if functional GABA-B R homodimers can be formed 
in T cells [95].

Roles of GABAergic signaling in T cells

GABA has been shown to suppress the proliferation of T 
cells and to inhibit immune responses through functional 
GABA receptors [50, 97, 98]. GABA-induced single channel 
and whole cell currents recorded with patch-clamp electro-
physiology were abolished by GABA-A R antagonists indi-
cating presence of functional GABA-A Rs in  CD4+ T cells 
[50, 99]. GABA inhibited  Ca2+ influx and transcriptional 
activity of NF-κB in anti-CD3-stimulated human PBMCs 
and mouse splenic T cells in a GABA-A R-dependent man-
ner [48, 98]. GABA and diazepam, a positive allosteric 
modulator of GABA-A Rs, inhibited IFN-γ production in 
anti-CD3 stimulated human and murine  CD4+ and  CD8+ 
T cells [100, 101]. When the gene coding for NKCC1, a 
GABAergic signaling regulator, was silenced, ablated, or 
pharmacologically antagonized, the migration and chemot-
axis of murine T cells was inhibited [52].

Furthermore, GABA inhibited the proliferation T cells, 
and directly or indirectly impacted the secretion of up to 
47 different cytokines from PBMCs derived from type 1 
diabetes patients [50]. In mice, the onset of type 1 diabetes 
was delayed presumably by a reduction of T-cell responses, 
which improved the survival of pancreatic β cells [98, 
101–103]. In a murine autoimmune encephalomyelitis 
(EAE) model, the GABA levels in serum and expression of 
GABA signaling components GAD, GAT1, GABA-T, and 
GABA-A receptor subunits in splenic T cells were down-
modulated [51, 104]. Additionally, GAT1 knock-out mice 
exhibited aggravated EAE, enhanced splenocyte prolif-
eration, and inflammatory cytokine production, suggesting 
dysregulation of GABAergic signaling in multiple sclerosis 
[51]. GABA also impacted T-cell responses in rheumatoid 
arthritis [105] and psoriasis [106].
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VDCC components and functions in T cells

Only L-type VDCCs have been detected in human T cells 
to date, whereas in murine T cells, both L-type and T type 
VDCCs were described (Table 1). However, human PBMCs 
expressed transcripts for all sub-types of VDCCs [107]. 
The VDCC subtype  CaV1.4 contributed in T-cell receptor 
(TCR) activation, in the development and survival of naïve 
T cells and knocking out  CaV1.4 or blocking L-type chan-
nels inhibited TCR-induced  Ca2+ influx, IL-2 production 
and proliferation of T cells [108–110].  CaV1.1 channels were 
also shown to contribute in TCR-induced  Ca2+ influx [111, 
112]. Among the T helper cell sub-types, specifically murine 
Th2 cells, but not Th1 cells, expressed  CaV1.2 and  CaV1.3 
channels. In a murine model of asthma, gene silencing of 
L-type VDCCs led to inhibition of TCR-induced signaling 
and cytokine secretion by Th2 cells, resulting in reduced 
inflammation and hyperactivity in lungs [41, 113]. In murine 
 CD4+ T cells,  CaV3.1 channels were functionally active at 
resting membrane potential and drove Th17 cell cytokine 
responses but did not contribute in TCR-induced or store-
operated  Ca2+ entry (SOCE) [114].

Taken together, the data indicate that T cells harbor yet 
unidentified components of GABAergic and  Ca2+ signaling 
machineries which regulate cellular functions such as pro-
liferation, cytokine production, anti-inflammatory responses 
and  Ca2+ homeostasis of T cells. In this context, the puta-
tive roles of store-operated  Ca2+ (SOC) channels and other 
ion channels, for example potassium channels, need to be 
addressed due to their implication in various T-cell func-
tions, including T-cell activation [115]. Because GABA-A R 
activation in T cells and other immune cells leads to changes 
in cell membrane potential, this may impact the function 
of SOC and potassium channels. Additionally, cross-reg-
ulation between VDCCs and SOCE may take place [116, 
117]. Interestingly, GABA inhibits  Ca2+ influx in T cells [98, 
102], while GABA induces  Ca2+ influx in phagocytes/DCs 
[34, 36]. These, seemingly contraposed effects of GABA, 
may hypothetically be explained by depolarization-mediated 
inhibition of SOCE in T cells and depolarization-mediated 
opening of VDCCs in phagocytes, as suggested in neurons 
[118]. In line with this assumption, artificial depolarization 
with KCl led to  Ca2+ influx in DCs but not in T cells [36, 
119, 120]. Alternatively, the relative expression of NKCCs 
and KCCs may differ in these two cell types, thereby regulat-
ing the depolarizing or hyperpolarizing action of GABA-A 
Rs, as shown in interneurons [18]. Jointly, the  Ca2+-related 
immunomodulatory effects of GABA on T cells and other 
immune cells need to be further explored.

NK cells

NK cells are effector lymphocytes of the innate immune sys-
tem that mediate important responses against tumors and 
microbial infections [121]. NK cells have cytotoxic effects 
on target cells through perforin-dependent mechanisms or 
by inducing death receptor-mediated apoptosis. They also 
secrete cytokines that are pivotal for immunomodulation 
and are implicated in the regulation of T-cell-mediated 
responses. However, GABAergic signaling in NK cells has 
until recently remained unexplored [92].

Expression of GABAergic signaling components 
by NK cells

A recent report established that both human and mouse NK 
cells synthesize and secrete GABA, and express a GABAer-
gic signaling machinery [54]. This includes GABA synthesis 
and degradation enzymes, GABA transporters, GABA-A R 
subunits, and CCCs, which can regulate GABA signaling 
(Table 1). Moreover, both human and mouse NK cells tran-
scriptionally expressed repertoires of GABA-A R sufficient 
for the formation of heteropentameric (2α:s + 2β:s + 1 addi-
tional subunit) and homopentameric (ρ:s) GABA-A Rs. The 
α3, β2, and ρ2 subunits were most commonly expressed 
by tested human donors. NKCC1 was the principal CCC 
expressed and thus putatively implicated in the regulation 
of the direction of  Cl− flux mediated by GABA-A R acti-
vation. For GABA synthesis, murine NK cells expressed 
both GAD65 and GAD67, similar to murine microglia [43]. 
In contrast, human NK cells exclusively expressed GAD67 
indicating a key role for this enzyme in GABA production. 
Related to transportation of GABA, only transcripts of 
GAT2 were detected in both human and murine NK cells. 
This contrasts with the expression of GAT2 and GAT4 by 
murine microglia and DCs [35, 43] and GAT1 was dysregu-
lated in T cells [9, 51]. The expression of GAT2, jointly 
with GAD67 expression, indicates that GABA is synthesized 
cytosolically and secreted in vesicle-independent fashion for 
tonic modulations of GABA-A Rs in NK cells, as described 
in neurons [57, 58, 122]. Moreover, the reciprocal upregula-
tion of GAD67 and downregulation of GABA-catabolizing 
GABA-T upon infection was consistent is human donors, 
indicating a tightly regulated GABA production in NK cells.

Impact of GABAergic activation on NK cell effector 
functions

Importantly, in an infection challenge model, GABAergic 
activation in NK cells impacted their effector functions and 
interactions with DCs [54]. Upon challenge with T. gon-
dii, NK cells responded with GABA secretion. Importantly, 
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GABA secreted by parasitized NK cells (and DCs) ham-
pered cytotoxicity and degranulation of NK cells in vitro. 
Additionally, GABA secreted by NK cells also modulated 
the migratory responses of DCs. GABA modulates cytokine 
release by peripheral blood mononuclear cells and T cells 
[50], and T-cell cytotoxicity [123], but its effects on NK-
cell function have remained unclear [124]. Hypothetically, 
GABA may exert dual effects upon infection and inflam-
mation: down-modulate pro-inflammatory responses and 
enhance DC migration [54]. In the context of infection in 
tissues, this dual effect may dampen inflammation but also 
modulate NK-DC interactions.

The precise mechanisms of downmodulation of NK cell 
responses by GABA remain uncharacterized. However, it 
was recently shown that GABA signaling is linked to MAP 
kinase activation in DCs [68] and MAP kinases regulate 
cytokine responses [125], which are inhibited by GABA 
in T cells [50]. Thus, it is likely that the immunomodula-
tory effects of GABA on NK cells are mediated by MAP 
kinase signaling. Additionally, future investigations need to 
address if GABAergic signaling acts on NK cells via effector 
VDCCs, as shown in DCs [34].

B cells and granulocytes

To date, little is known about the expression of GABAergic 
components by B cells and granulocytes (neutrophils, eosin-
ophils, basophils, and mast cells), which carry out crucial 
adaptive and innate immune functions, respectively.

Experimental evidence of functional GABAergic signal-
ing by B cells is missing. However, in human B-cell lysates, 
western blot signal corresponding to GABA-A R α1 subunit 
was detected and GABA-A R α3, β2 subunit mRNA was 
amplified from human irradiated B cells [48].

In neutrophils, GABA-B Rs have been attributed a role in 
chemotaxis and been associated with neutrophil recruitment 
to inflammatory sites [56, 126, 127] (Table 1). Evidence of 
GABAergic expression and mechanistic studies are missing 
for eosinophils and basophils. However, Gabra4 knock-out 
mice exhibited increased eosinophilic lung infiltration [128] 
and GABA antagonism decreased eosinophils in bronchoal-
veolar lavage in murine asthma models [129], indicating 
direct or indirect implication of GABA.

Thus, compelling evidence or functional data for GABAe-
rgic signaling in B cells and granulocytes are at present 
scarce or absent. However, the data indicate expression of 
GABAergic components or responsiveness to GABA, fur-
ther underscoring the general expression of GABAergic sys-
tem in cells of the immune system.

Perspectives

The amino acid GABA is not incorporated into proteins. 
Instead, GABA serves as a signaling molecule and meta-
bolic molecule in prokaryotes and eukaryotes. In the evolved 
vertebrate CNS, GABA has developed into an essential 
neurotransmitter. It is now clear that novel biological func-
tions can be attributed to this versatile molecule. Given its 
expression and diverse functions in leukocytes, it is likely 
that GABAergic signaling is conserved throughout the 
immune system. The diversity of expressed GABAergic 
components in immune cells is likely also an indicator of 
yet undiscovered functions in the immune system. Recently 
emerged immunomodulatory functions of GABA include 
cytokine secretion, proliferation, cytotoxicity, migration 
and chemotaxis (Fig. 1, Table 1). The impact of GABA on 
phagocyte migration is in fact reminiscent of the motogenic 
role of GABA for embryonic interneuron migration in the 
developing fetus [18]. Furthermore, the putative impact of 
GABA on crucial interactions between immune cells needs 
to be explored, because it could open up for novel immu-
nomodulatory approaches. These include, for example, the 
interactions between antigen presenting cells and T cells, 
between T and B cells in adaptive immune responses, or 
cytotoxic NK- and T-cell responses [130].

However, GABA is not only an intercellular signaling 
molecule between leukocytes but can also be considered an 
interspecies signaling molecule in host–microbe interac-
tions. Recent reports show that bacteria, protozoan parasites 
and viruses modulate GABAergic signaling in immune cells 
for survival and colonization, including hijacking of leuko-
cyte migration [34, 35, 37, 74]. These findings also raise 
the question whether microbial GABA or its metabolites 
are detected by sensing pathways of the immune system that 
detect specific dietary and microbial metabolites [131].

From a clinical perspective, GABA signaling has 
newly been associated with cancer metastasis [63, 64], for 
instance pancreatic cancer, breast cancer and gliomas [8, 
10, 132]. Furthermore, the implication of GABA signaling 
in various autoimmune diseases, such as multiple sclerosis 
[9], type I diabetes [11, 50] and rheumatoid arthritis [105], 
indicates a general role in inflammatory responses. Future 
research needs to address if the motogenic effects in leuko-
cytes are also implicated in inflammatory responses and in 
cancer cell metastasis. Hypothetically, receptor sub-types 
or other GABAergic components may be targeted phar-
macologically to modulate migration and inflammatory 
responses of GABAergic cells [65].

The multiple points of interaction and communication 
exist between the CNS and the immune system have become 
increasingly evident [133]. Understanding neuro-immune 
interactions have not only advanced our understanding of 
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immunity but also identified new therapeutic possibilities in 
inflammatory and autoimmune disease. From this perspec-
tive, the biology associated with GABA and other neuroac-
tive molecules in immune cells represents an emerging field.
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