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Abstract: This numerical study aims to interpret the impact of non-linear thermal radiation on
magnetohydrodynamic (MHD) Darcy-Forchheimer Casson-Water/Glycerine nanofluid flow due
to a rotating disk. Both the single walled, as well as multi walled, Carbon nanotubes (CNT) are
invoked. The nanomaterial, thus formulated, is assumed to be more conductive as compared to
the simple fluid. The properties of effective carbon nanotubes are specified to tackle the onward
governing equations. The boundary layer formulations are considered. The base fluid is assumed to
be non-Newtonian. The numerical analysis is carried out by invoking the numerical Runge Kutta
45 (RK45) method based on the shooting technique. The outcomes have been plotted graphically
for the three major profiles, namely, the radial velocity profile, the tangential velocity profile, and
temperature profile. For skin friction and Nusselt number, the numerical data are plotted graphically.
Major outcomes indicate that the enhanced Forchheimer number results in a decline in radial velocity.
Higher the porosity parameter, the stronger the resistance offered by the medium to the fluid flow and
consequent result is seen as a decline in velocity. The Forchheimer number, permeability parameter,
and porosity parameter decrease the tangential velocity field. The convective boundary results in
enhancement of temperature facing the disk surface as compared to the ambient part. Skin-friction
for larger values of Forchheimer number is found to be increasing. Sufficient literature is provided
in the introduction part of the manuscript to justify the novelty of the present work. The research
greatly impacts in industrial applications of the nanofluids, especially in geophysical and geothermal
systems, storage devices, aerospace engineering, and many others.

Keywords: Darcy-Forchheimer theory; carbon nanotubes; nanofluid; magnetohydrodynamics; ther-
mal radiation

1. Introduction

The contribution of nanomaterials (Nanofluids) in industry and engineering is very
diversified. A lot of advantages have been noted by induction of nanomaterials in fluid
flow analysis. Pioneered by Choi [1], the term nanofluid is also named as the nanomaterials
subject to the type of nanoparticles that are used in the formulation procedure. The chore
and basic property of nanomaterials is very important, i.e., enhanced thermal conductivity.
The base fluids such as water, ethylene, toluene, and kerosene oil are the most commonly

Micromachines 2021, 12, 605. https://doi.org/10.3390/mi12060605 https://www.mdpi.com/journal/micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0001-7186-7216
https://orcid.org/0000-0002-5880-9553
https://orcid.org/0000-0003-2477-8442
https://orcid.org/0000-0002-2056-9371
https://orcid.org/0000-0002-7538-8439
https://www.mdpi.com/article/10.3390/mi12060605?type=check_update&version=1
https://doi.org/10.3390/mi12060605
https://doi.org/10.3390/mi12060605
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12060605
https://www.mdpi.com/journal/micromachines


Micromachines 2021, 12, 605 2 of 26

used base fluids in this regard and there are several related works that have been reported
in the recent past to practically implement the idea of nanofluids and nanomaterials. For
instance, some important studies are mentioned in the following lines. Lin et al. [2]
reported discussion on the results obtained for MHD Transient Pseudo-Plastic nanofluid
flow giving a highlight of the heat transfer properties and the impact of drag force in
this transport. Bai et al. [3] analyzed the Brownian diffusion and the thermophoresis in
radiative MHD Maxwell type nanofluid flow. They highlighted both the heat and mass
transport phenomena in fluid flow procedures and provided sufficient numerical data to
adhere the physical quantities. Madhu et al. [4] analyzed the non-Newtonian fluid behavior
using the Maxwell model. The important aspect of this study is the consequence of MHD,
as well as thermal radiation, on the flow attributes, especially the drag force component.
Sheikholeslami et al. [5] reported the impact of MHD and radiation on Darcy-type flow
of nanomaterials using controlled volume based finite element method (CVFEM) scheme.
This scheme is more accurate as compared to the conventional analytic methods. Thus,
the results were more precise and accurate for implementation in respective industrial
applications. Williamson nanofluid flow using bi-directional stretching surface using
the Brownian diffusion and thermophoresis are the main features of study reported by
Hayat et al. [6] where they discussed three dimensional fluid flow analysis. The three
dimensional nanofluid convection in natural flow has been reported by Zadi et al. [7].
The second important aspect of this study is related with studies carried out using disks
and, here, this disk is assumed to be permeable under the definition of Darcian medium.
Such formulations are highly important in geophysical and geothermal systems, storage
devices, aerospace engineering, crystal growing procedures, medical instruments, and
many food processing techniques that are based on porous mediums. The purpose behind
such formulations is heat and mass transfer analysis by rotating frame. Several studies
are available in literature on such formulations. Turkyilmazoglu and Senel [8] reported
significant study on viscous nanofluid flow bounded by a porous disk using the usual
Van Karman type of transformations. Bödewadt et al. [9] reported boundary layer fluid
flow analysis using the rotating frame/disk. This study was used as a base study for
investigation of fluid flow analysis using stationary disk by Mustafa et al. [10]. The use
of partial slip conditions in nanofluid flow bounded by rotating disk under the impact of
MHD is an important study reported by Mustafa [11]. Dogonchi et al. [12] interrogated
the impact of heat convection using the magnetic field effect and shape and size factor
of the used nanoparticles, using a cavity as the core surface. The importance of Casson
material can not be neglected in this research, which is assumed to be a major factor for
fluid flow analysis under the present formulation. It has several important applications in
industry, such as metallurgy, food processing, bio-engineering and drilling operations, etc.
The mixing of Casson material with Water-Glycerine, etc., is the base of Casson nanofluid.
This so formulated nanomaterial has shear thinning properties, having infinite values
of viscosity even at a zero shearing rate and deformation, below to which there is no
flow. Besides, the importance of a porous (Darcy) medium is yet another very important
phenomena in fluid flow analysis. It has received utmost attention in the last few decades.
The efficiency of the typical energy systems is, therefore, enhanced using such formulations.
Law of Darcy is valid for very small Reynolds number and, therefore, the high speed
flows cannot be dealt under such theories. Therefore, the improvement was genuinely
required which was dealt by Forchheimer [13] for high flow rates. Therefore, the combined
Darcy-Forchheimer relation is way more effective to deal with fluid flow analysis in porous
medium for moderate flow rates. Several studies have been reported on the significance
of Darcy-Forchheimer medium, such as the impact of Cattaneo-Christov model in fluid
flow analysis in Darcy-Medium has been reported by Shehzad et al. [14]. Bakar et al. [15]
reported boundary layer approximation in stagnation point flow under Darcy-Forchheimer
model of heat and mass flux. Hayat et al. [16] reported the significance of Cattaneo-Christov
model in Darcy-Forchheimer model using variable thermal conductivity. In their study,
Chamkha et al. [17] categorically reported the impact of radiation on the nanofluid flow
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via wedge using a Darcy type medium. In another article, Chamkha et al. [18] discussed
the significance of thermal radiation in the mixed convective nanofluid flow having porous
medium. The concept on CNTs was first revealed in early 1991 leading to extensive
investigations for its not known properties. The micro-level structure of CNT is usually
seen in cylindrical shape rolled from the single sheet called graphite. CNTs are usually
divided into two categories as single wall nanotubes and multi walled nanotubes. For sure,
the multi wall structure is more complicated as compared to single wall nanotubes. In
theoretical fluid mechanics, the nanotubes are analyzed by their properties pre-defined for
a particular problem. Several studies related to the structure and the applications of these
tubes are available in literature. One can read [19–35] and cross reference therein.

Up till now, the literature survey indicates that there is a gap of study in the context of
heat and mass transfer investigation on the Casson-Water/Glycerine nanofluids convection
due to radially stretching disk. Therefore, the objective of present investigation is clear
and novel, i.e., to explore the variation imparted by Carbon nanotubes, non-linear thermal
radiation and Darcy-Forchheimer relation on Casson-Water/Glycerine nanofluid flow due
to radially stretching disk. These formulations are highly important in geophysical and
geothermal systems, storage devices, aerospace engineering, crystal growing procedures,
medical instruments, and many food processing techniques that are based on a porous
medium to help understand the fluid flow, heat transfer, especially the drag force intensity
at the surface, which is in contact with the fluid. Numerical scheme is implemented for
finding the solutions of so-formulated problems. The analysis is carried out via graphical
display of the results for various parameters and their impact on the three profile of
nanofluids in boundary layer approximations. Furthermore, the variation in skin-friction
and Nusselt number is noted via graphical display. The article concludes with physical
justifications and major findings of the study.

2. Problem Formulation

In this numerical investigation, we include the influence of non-linear thermal radia-
tion and Carbon nanotubes on viscous incompressible Darcy-Forchheimer nanofluid flow
bounded by rotating disk. Thermal convection is analyzed and convective boundary is in-
voked. The porosity factor appears highly under the implementation of Darcy-Forchheimer
model. The formulation is based on two type of materials, i.e., water and glycerine, respec-
tively. The single- and multi-walled carbon nanotubes are considered whose properties
are given in the Table 1. The velocity components are taken as (u, v, w), in the direction of
(r, φ, z), respectively. The rotation of disk is assumed at z = 0. One can see the physical
scenario in Figure 1.

Table 1. Thermophysical properties of fluid and nanoparticles (for reference see Sheikholeslami et al. [5]).

Base Fluid Nanoparticles

Properties Water Kerosene Glycerin Ethylene Glycol Engine Oil SWCNT MWCNT

Cp (J/kg K) 4179 2090 2427 2430 1910 427 796
ρ (KG/m3) 997 783 1259.9 1115 884 2600 1600
k (W/mK) 0.613 0.145 0.286 0.253 0.144 6600 3000
β× 10−5 21 48 65 70 27 44
Pr 6.2 21 6.78 203.63 6450 − −
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Figure 1. Physical model and coordinate system.
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The effective Carbon nanotubes are (see for reference Shaw et al. [36]),
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g→ 0, f ′ → 0, θ → 0, as η → ∞. (14)

where,
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are Forchheimer number, Prandtl number, nonlinear radiation factor, Suction parameter,
Eckert number, stretching strength parameter, and Biot number, respectively. The physical
quantities are,
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3. Solution Methodology

The numerical RK45 scheme, together with the shooting technique, is implemented
for final solutions of the problems. In order to gain a clear physical insight, firstly, the above
Equations (11) and (12), along with the boundary conditions (13) and (14), are converted
to an initial value problem and then solved numerically by means of the fourth-order
Runge–Kutta method coupled with the shooting technique, with a systematic estimate of
f ′′(0) and θ(0) according to the corresponding boundary conditions at f ′(∞) and θ(∞)
with the Newton–Raphson shooting technique. In this method, it is necessary to choose
a suitable finite value for η → ∞, say η∞. If the boundary conditions at infinity are not
satisfied, then the numerical routine uses the Newton–Raphson method to calculate the
corrections to the estimated values of f ′′(0) and θ(0). This process is repeated iteratively
until convergence is achieved to a specified accuracy, with order 10–5. Assuming the
governing parameters are as follows,
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Thus, the above mentioned three equations are used to write down the system of
non linear governing ODEs in the form of a matrix subject to the converted boundary
conditions according to the new parameters, and solved by using the numerical scheme.
The skin friction coefficient and the Nusselt number are also converted accordingly.

4. Results and Discussion

Here in, Casson-water/glycerine MHD Darcy-Forchheimer nanofluid flow analysis
subject to a rotating frame is considered. The rate of heat transfer and skin-friction are
analyzed. The graphical display of results gives the impact of various parameters involved
in the flow model on the main profiles of momentum and energy. The numerical RK45
scheme is invoked to obtain the requisite solutions of the governing non-linear ordinary
differential equations. The graphs are sketched from the final solutions to analyze the
impact of various parameters on fluid flow profiles. It is pertinent to note that solid lines
represent the carbon nanotubes—water dilution, while the dashed lines are used for carbon
nanotubes—Glycerine dilute, respectively.

4.1. Radial Velocity

In particular, Figure 2 gives the impact of the Forchheimer number on the momentum
boundary layer in the context of radial velocity field. The enhanced Forcheimer number
physically relates with more frictional force offered to the fluid in the opposite direction of
the movement. Clearly, a decline in both cases, i.e., SWCNTs and MWCNTs can be seen
in the figure. Figure 3 represents the behavior of velocity profile subject to variation in
Casson parameter. Both, the solid and dashed lines present a declining trend. Physically,
the elevated Casson parameter means a reduction in yield stress which in turns correspond
to a Newtonian fluid, consequently, the fluid velocity undergoes a restriction. Figure 4
gives the variation in velocity field subject to augmented values of porosity factor. The
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larger the porosity parameter, the larger the resistance offered by the medium to the fluid
flow and consequent result is decline in velocity. Both the cases behave in similar trends.
The impact of stretching strength parameter on radial velocity is given in Figure 5. The
stronger stretching rate corresponds to declination in the radial component of velocity.
Away from disk, the result is significant decline in velocity profile. Figure 6 corresponds
to the significance of permeability parameter (K) in the radial velocity field. The velocity
profile shows drastic declination in both cases when the values of K are increased. Larger
values of K correspond to the dense porous matrix, which in turn offers intensive resistance
to the fluid flow, and consequently a stronger retardation is faced by the fluid movement.
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Figure 2. Impact of Fr on radial velocity.
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Figure 3. Impact of β1 on radial velocity.
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Pr = 6.2

Pr = 6.78

 SWCNT-Water 

MWCNT-Water

 SWCNT-Glycerine 

 MWCNT-Glycerine 

Λ =  0.0, 0.3 

2 4 6 8
Η

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f 'HΗL

Figure 4. Impact of λ on radial velocity.

  Α = 0.3, Fr = 2.0, k = 0.3, M1 =  0.5, Β1 = 0.5, S1 = 0.5, Λ = 0.3,

  R1 = 0.5, Θ f  = 1.5, Bi =  0.5, Ec = 0.5,     

∆1 =  0.5, 0.7 

Pr = 6.2
 SWCNT-Water 

MWCNT-Water

Pr = 6.78
 SWCNT-Glycerine 

 MWCNT-Glycerine 

2 4 6 8
Η

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f 'HΗL

Figure 5. Impact of δ1 on radial velocity.
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  Α = 0.2, Fr = 2.0, ∆1 = 0.7, M1 =  0.5, Β1 = 0.5, S1 = 0.6, Λ = 0.3,

  R1 = 0.5, Θ f  = 1.5, Bi =  0.5, Ec = 0.5,     

 k =  0.0, 0.3 

Pr = 6.2
 SWCNT-Water 
MWCNT-Water

Pr = 6.78
 SWCNT-Glycerine 

 MWCNT-Glycerine 

2 4 6 8
Η

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f 'HΗL

Figure 6. Impact of k on radial velocity.

4.2. Tangential Velocity

Impact of various parameters on Tangential velocity profiles is given in Figures 7–11. In
particular, the impact of Casson factor on tangential velocity is given in Figure 7. A larger
Casson factor results in decay of the transport rate. Subsequently, a shrinkage appeared
in the corresponding boundary layer. Physically, the tensile stress appeared because of
the elasticity yields a reduction in fluid movement. The stretching strength parameter
results in the decline of the tangential velocity profile, as given in Figure 8. The impact of
Forchheimer number, permeability parameter, and porosity parameter on the tangential
velocity field is given in Figures 9–11. In both cases, the larger values of corresponding
parameters are found to be declining factors for the fluid velocity and the associated
boundary layer shrinks up to a significant level. More resistance is offered to the fluid
flow that causes disturbance in the smooth movement and, thereby, the velocity profile
and associated boundary layer ends up with a reducing trend. The convective condition
involved in the governing equations results in scattered diagrams of thermal profile at the
boundary.
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  Α = 0.2, Fr = 1.5, k = 0.1, M1 =  0.3, Λ = 0.2, S1 = 0.5, ∆1 = 0.5,

  R1 = 0.5, Θ f  = 1.5, Bi =  0.5, Ec = 0.5,     Pr = 6.2
 SWCNT-Water 

MWCNT-Water

Pr = 6.78
 SWCNT-Glycerine 

 MWCNT-Glycerine 

Β1 =  0.1, 0.2 

2 4 6 8
Η

0.2

0.4

0.6

0.8

1.0

gHΗL

Figure 7. Impact of β1 on tangential velocity.

  Α = 0.3, Fr = 2.0, k = 0.3, M1 =  0.5, Β1 = 0.5, S1 = 0.5, Λ =

  R1 = 0.5, Θ f  = 1.5, Bi =  0.5, Ec = 0.5,     Pr = 6.2
 SWCNT-Water 

MWCNT-Water

Pr = 6.78
 SWCNT-Glycerine 

 MWCNT-Glycerine 

∆1 =  0.5, 0.7 

1 2 3 4 5
Η

0.2

0.4

0.6

0.8

1.0

gHΗL

Figure 8. Impact of δ1 on tangential velocity.
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  Α = 0.2, Β1 = 0.6, k = 0.3, M1 =  0.5, Λ = 0.2, S1 = 0.5, ∆1 = 0.5,

  R1 = 0.5, Θ f  = 1.5, Bi =  0.5, Ec = 0.5,     
Pr = 6.2

 SWCNT-Water 

MWCNT-Water

Pr = 6.78
 SWCNT-Glycerine 

 MWCNT-Glycerine 

Fr =  0.5, 2.5 

1 2 3 4
Η

0.2

0.4

0.6

0.8

1.0

gHΗL

Figure 9. Impact of Fr on tangential velocity.

  Α = 0.2, Fr = 2.0, ∆1 = 0.5, M1 =  0.5, Β1 = 0.5, S1 = 0.6, Λ =

  R1 = 1.5, Θ f  = 1.5, Bi =  0.5, Ec = 0.5,     

 k =  0.0, 0.3 

Pr = 6.2
 SWCNT-Water 

MWCNT-Water

Pr = 6.78
 SWCNT-Glycerine 

 MWCNT-Glycerine 

1 2 3 4 5 6
Η

0.2

0.4

0.6

0.8

1.0

gHΗL

Figure 10. Impact of k on tangential velocity.
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  Α = 0.3, Fr = 2.0, k = 0.2, M1 =  0.3, Β1 = 0.5, S1 = 0.6, ∆1 =

  R1 = 1.5, Θ f  = 1.5, Bi =  0.5, Ec = 0.5,     

Λ =  0.0, 0.4 

Pr = 6.2
 SWCNT-Water 

MWCNT-Water

Pr = 6.78
 SWCNT-Glycerine 

 MWCNT-Glycerine 

2 4 6 8
Η

0.1

0.2

0.3

0.4

0.5

0.6

0.7

gHΗL

Figure 11. Impact of λ on tangential velocity.

4.3. Temperature Field

The impact of various parameters on thermal profile is given in Figures 12–14. The
impact of θ f on thermal profile is given in Figure 12. In both cases, the profile shows
enhancement for elevated values of the corresponding parameter. A significant rise in
thermal profile is noted for larger values of Biot number. The convective boundary results
in enhancement of temperature facing the disk surface as compared to the ambient fluid.
Physically, the trend of justified by the convective boundary. Similarly to Biot number,
the enhanced radiation parameter results in more convenience in heat transfer rate and,
therefore, the thermal state of the fluid enhances with larger values of radiation factor as
given in Figure 14.

  Α = 0.4, Fr = 2.0, Β1 = 0.5, k = 0.3, M1 =  0.5, Λ = 0.2, S1 = 0.5,

  R1 = 2.0,  Bi =  0.5, Ec = 0.5,     

Θ f  = 1.1, 1.5

Pr = 6.2
 SWCNT-Water 
MWCNT-Water

Pr = 6.78
 SWCNT-Glycerine 

 MWCNT-Glycerine 

2 4 6 8 10
Η

0.5

1.0

1.5

2.0

Θ HΗL

Figure 12. Impact of θ f on temperature field.
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Bi = 0.2, 0.8

  Α = 0.4, Fr = 2.0, Β1 = 0.5, k = 0.3, M1 =  0.5, Λ = 0.2, S

  R1 = 0.5,  Θ f  =  1.5, Ec = 0.5,     Pr = 6.2
 SWCNT-Water 

MWCNT-Water

Pr = 6.78
 SWCNT-Glycerine 

 MWCNT-Glycerine 

1 2 3 4 5 6
Η

0.5

1.0

1.5

Θ HΗL

Figure 13. Impact of Bi on temperature field.

  Α = 0.3, Fr = 2.0, k = 0.3, M1 =  0.5, Λ = 0.2, S1 = 0.5, 

  Β1 = 0.5, Θ f  = 1.5, Bi =  0.5, Ec = 0.5,     Pr = 6.2
 SWCNT-Water 

MWCNT-Water

Pr = 6.78
 SWCNT-Glycerine 

 MWCNT-Glycerine 

 R1=  0.0, 0.5 

2 4 6 8
Η

0.5

1.0

1.5

2.0

Θ HΗL

Figure 14. Impact of R1 on temperature field.

4.4. Contour and Density Graphs

In Figures 15–22, the contour graphs have been sketched for various values of Casson
parameter and permeability parameters against the single- and multi-walled Carbon
nanotubes—Water/Glycerine dilution. Results are prominent near the surface, as compared
to away from the surface. Figures 23 and 24 are the density graphs for both the SWCNT
and MWCNT based Water/Glycerine nanofluid.
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1.5

2.0

Η

Y

For SWCNT-Water when Α = 0.0, k = 0.1,Β1 = 1.0

Figure 15. Contour graph at β1 = 1.0 for SWCNT.
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For MWCNT-Water when Α = 0.0, k = 0.1, Β1 = 1.0

Figure 16. Contour graph at β1 = 1.0 for MWCNT.
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For SWCNT-Water when Α = 0.6, k = 0.7, Β1 = 1

Figure 17. Contour graph at β1 = 1.0 for SWCNT at larger k.
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For MWCNT-Water when Α = 0.6, k = 0.7, Β1 = 1

Figure 18. Contour graph at β1 = 1.0 for MWCNT at larger k.
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0.0 0.5 1.0 1.5 2.0
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1.5

2.0

Η
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For SWCNT-Glycerine when Α = 0.0, k = 0.1,Β1 = 1.0

Figure 19. Contour graph at β1 = 1.0 for SWCNT-Glycerine.

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

Η

Y

For MWCNT-Glycerine when Α = 0.0, k = 0.1,Β1 = 1.0

Figure 20. Contour graph at β1 = 1.0 for MWCNT-Glycerine.
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Η
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For SWCNT-Glycerine when Α = 0.6, k = 0.7,Β1 = 1.0

Figure 21. Contour graph at β1 = 1.0 for SWCNT-Glycerine at larger k.
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For SWCNT-Glycerine when Α = 0.6, k = 0.7,Β1 = 1.0

Figure 22. Contour graph at β1 = 1.0 for MWCNT-Glycerine at larger k.
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Figure 23. Density graph of single-walled nanotubes—Glycerine dilute.
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Figure 24. Density graph of multi-walled nanotubes—Glycerine dilute.
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4.5. Skin Friction and Nusselt number

The variation of Skin-friction and Nusselt number is given in graphical, as well as
tabular date form in Figures 25–32 and in Tables 2 and 3. One can see an enhancement in
Skin-friction for larger values of Forchheimer number. Similarly, the non-linear radiation
parameter shows an increasing trend in skin-friction. However, the friction faces a decline
for enhancement in Casson parameter. The Forchheimer number results in the decline
of the nusselt number (heat flux) as compared to the skin-friction. Whereas, the non-
linear radiation parameter significantly increases the heat flux rate. Similar to skin-friction,
Casson parameter results in decline of heat flux.

(a) (b) (c)

Figure 25. Impact of β1, k, Fr on Skin-Friction.

(a) (b) (c)

Figure 26. Impact of M1, λ, S1 on Skin-Friction.

(a) (b) (c)

Figure 27. Impact of δ1, R1, Ec on Skin-Friction.
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Figure 28. Impact of Bi on Skin-friction.

(a) (b) (c)

Figure 29. Impact of β1, k, Fr on Nusselt number.

(a) (b) (c)

Figure 30. Impact of M1, λ, S1 on Nusselt number.

(a) (b) (c)

Figure 31. Impact of δ1, R1, Ec on Nusselt number.
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Figure 32. Impact of Bi on Nusselt number.

Table 2. Skin friction for water and Glycerine θ f = 1.5.

Re1/2
r C f r

β1 k Fr M1 λ S1 δ1 R1 Ec Bi Water Glycerine

SWCNT MWCNT SWCNT MWCNT

0.1 0.2 2.5 0.5 0.2 0.6 0.7 2.0 0.3 0.5 19.7657 17.8553 17.6526 16.1825
1.0 13.0225 10.4887 10.4983 8.66245
4.5 0.14328 10.1416 10.4776 8.39699
0.5 0.0 2.5 0.5 0.2 0.6 0.7 2.0 0.3 0.5 10.6214 8.32063 8.21341 6.53598

0.3 14.7054 12.4243 12.4494 10.7341
0.6 18.9673 16.6524 16.7279 14.9684

0.5 0.2 2.0 0.5 0.2 0.6 0.7 2.0 0.3 0.5 12.6357 10.5266 10.4493 8.87910
2.5 13.3034 11.0272 11.0261 9.32473
3.0 13.9716 11.5281 11.6032 9.77056

0.5 0.2 2.5 0.0 0.2 0.6 0.7 2.0 0.3 0.5 12.9807 10.7047 10.6962 8.99791
0.5 13.3034 11.0272 11.0261 9.32473
1.0 14.2790 12.0000 12.0179 10.3069

0.5 0.2 2.5 0.5 0.0 0.6 0.7 2.0 0.3 0.5 11.0137 8.88799 9.84887 8.19953
0.2 13.3034 11.0272 11.0261 9.32473
0.4 16.7807 13.6939 12.2522 10.4769

0.5 0.2 2.5 0.5 0.2 0.0S1 0.7 2.0 0.3 0.5 11.7618 10.2215 9.56906 8.39600
0.3 12.4679 10.5686 10.2605 8.83408
0.6 13.3034 11.0272 11.0261 9.32473

0.5 0.2 2.5 0.5 0.2 0.6 0.6 2.0 0.3 0.5 11.9408 9.8956 9.99115 8.45475
0.7 13.3034 11.0272 11.0261 9.32473
0.8 14.858 12.3131 12.2073 10.3156

0.5 0.2 2.5 0.5 0.2 0.6 0.7 1.0 0.3 0.5 13.2737 11.007 11.0182 9.31907
1.5 13.2921 11.0195 11.0235 9.32291
2.0 13.3034 11.0272 11.0261 9.32473

0.5 0.2 2.5 0.5 0.2 0.6 0.7 2.0 0.3 0.5 13.3034 11.0272 11.0261 9.32473
0.6 14.1180 11.7456 11.3985 9.67443
0.9 15.1645 12.5899 11.7679 10.0173

0.5 0.2 2.5 0.5 0.2 0.6 0.7 2.0 0.3 0.1 13.3856 11.1041 11.0596 9.35773
0.3 13.3034 11.0272 11.0261 9.32473
0.6 13.2351 10.9636 10.9973 9.29656
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Table 3. Nusselt number for water and Glycerine θ f = 1.5.

−Re−1/2
r Nur

β1 k Fr M1 λ S1 δ1 R1 Ec Bi Water Glycerine

SWCNT MWCNT SWCNT MWCNT

0.1 0.2 2.5 0.5 0.2 0.6 0.7 2.0 0.3 0.5 2.72417 2.92365 2.68766 2.89888
1.0 0.91080 1.00791 0.95407 1.08853
4.5 0.44625 0.84863 0.64852 0.75176
0.5 0.0 2.5 0.5 0.2 0.6 0.7 2.0 0.3 0.5 1.34392 1.54669 1.52461 1.79443

0.3 1.15684 1.26787 1.18983 1.31951
0.6 1.09396 1.17903 1.07275 1.16492

0.5 0.5 2.0 0.5 0.2 0.6 0.7 2.0 0.3 0.5 1.20741 1.33764 1.27875 1.43563
2.5 1.19711 1.32598 1.26199 1.41770
3.0 1.18774 1.31515 1.24651 1.40093

0.5 0.2 2.5 0.0 0.2 0.6 0.7 2.0 0.3 0.5 1.20872 1.34297 1.28280 1.44644
0.5 1.19711 1.32598 1.26199 1.41770
0.6 1.16758 1.28325 1.20911 1.34551

0.5 0.2 2.5 0.5 0.0 0.6 0.7 2.0 0.3 0.5 1.33927 1.53368 1.37677 1.56811
0.2 1.19711 1.32598 1.26199 1.41770
0.4 1.15735 1.32016 1.18569 1.31217

0.5 0.2 2.5 0.5 0.2 0.0 0.7 2.0 0.3 0.5 2.41234 2.64023 2.47135 2.73877
0.3 1.70987 1.87156 1.78679 1.98671
0.6 1.19711 1.32598 1.26199 1.41770

0.5 0.2 2.5 0.5 0.2 0.6 δ10.6 2.0 0.3 0.5 0.76412 0.84210 0.80450 0.90057
0.7 1.19711 1.32598 1.26199 1.41770
0.8 1.73098 1.92357 1.82502 2.05697

0.5 0.2 2.5 0.5 0.2 0.6 0.7 1.0 0.3 0.5 0.97540 1.07386 1.02538 1.14234
1.5 1.09687 1.21185 1.15426 1.29241
2.0 1.19711 1.32598 1.26199 1.41770

0.5 0.2 2.5 0.5 0.2 0.6 0.7 2.0 0.3 0.5 1.19711 1.32598 1.26199 1.41770
0.6 2.26631 2.46395 2.34889 2.61519
0.9 3.76661 3.98323 3.68677 4.07933

0.5 0.2 2.5 0.5 0.2 0.6 0.7 2.0 0.3 0.1 0.78688 0.87391 0.81871 0.92290
0.3 1.19711 1.32598 1.26199 1.41770
0.6 1.54587 1.70867 1.64654 1.84455

5. Conclusions

The present investigation aims to reveal the significance of non-linear thermal radia-
tion on Casson-water/glycerine MHD Darcy-Forchheimer fluid flow analysis subject to
a rotating frame. The rate of heat transfer and skin-friction are analyzed. The graphical
display of results gives the impact of various parameters involved in the flow model on the
main profiles of momentum and energy. The numerical RK45 scheme is invoked to obtain
the requisite solutions of the governing non-linear ordinary differential equations. Salient
features are listed below:

• The enhanced Forcheimer number results in a decline in radial velocity;
• Casson parameter restricts the fluid velocity at larger values;
• The larger the porosity parameter, the larger the resistance offered by the medium to

the fluid flow and the consequent result is the decline in velocity;
• The larger permeability parameter (K) results a drastic declination in both cases

(SWCNT and MWCNT) when the values of K are increased;
• A larger Casson factor results in the shrinkage in the corresponding boundary layer

of thermal field;
• Forchheimer number, permeability parameter and porosity parameter on tangential

decrease the velocity field;
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• The convective boundary results in enhancement of temperature facing the disk
surface as compared to the ambient fluid;

• The contour graphs have been sketched for various values of Casson parameter and
permeability parameter against the single- and multi-walled Carbon nanotubes—
Water/Glycerine nanofluid.

• Skin-friction for larger values of Forchheimer number.
• The non-linear radiation parameter significantly increases the heat flux rate.
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Nomenclature
MHD Magnetohydrodynamic
ODEs Ordinary Differential Equations
PDEs Partial Differential Equation
CNTs Carbon Nanotubes
ρn f density of given nanofluid
ρCNTs density of carbon nanotubes
u, v, w Velocity components/m·s−1

P Pressure /Pa
µ f dynamic viscosity of considered base fluid /kgm−1 s−1

µn f dynamic viscosity of the given nanofluid /kgm−1 s−1

T Local temperature/K
T∞ Ambient temperature/K
f , g Nondimensional velocity components
g1 Gravitational force
Gr Grashof number
K Permeability parameter
Fr Forchheimer number (inertia)
β1 Casson parameter
φ Volume fraction (solid)
Ω Angular Velocity (angular)
C f Skin-friction (wall drag force)
Nux Local Nusselt number
Rex Local Reynolds number
M1 magnetic number
Pr Prandtl number
Ec Eckert parameter
λ Ratio of Grashof and Reynolds square
S = W√

2Ωv f
Suction parameter
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