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Abstract

The machine learning-based virtual screening of molecular databases is a commonly used

approach to identify hits. However, many aspects associated with training predictive models

can influence the final performance and, consequently, the number of hits found. Thus, we

performed a systematic study of the simultaneous influence of the proportion of negatives to

positives in the testing set, the size of screening databases and the type of molecular repre-

sentations on the effectiveness of classification. The results obtained for eight protein targets,

five machine learning algorithms (SMO, Naïve Bayes, Ibk, J48 and Random Forest), two

types of molecular fingerprints (MACCS and CDK FP) and eight screening databases with

different numbers of molecules confirmed our previous findings that increases in the ratio of

negative to positive training instances greatly influenced most of the investigated parameters

of the ML methods in simulated virtual screening experiments. However, the performance

of screening was shown to also be highly dependent on the molecular library dimension.

Generally, with the increasing size of the screened database, the optimal training ratio also

increased, and this ratio can be rationalized using the proposed cost-effectiveness threshold

approach. To increase the performance of machine learning-based virtual screening, the

training set should be constructed in a way that considers the size of the screening database.

Introduction

Machine learning (ML) methods are widely used in drug discovery to classify molecules as

potentially active or inactive against a particular protein target. The vast majority of those

methods require the preparation of a training set of compounds (supervised learning) that are

used to develop a decision function that can be used for virtual screening (VS) of chemical

libraries among particular activity classes [1]. The role of machine learning in drug design has

been the subject of numerous studies regarding optimal learning parameters and examining

their impact on classification effectiveness [2–5], comparing the performance of different ML

algorithms in virtual screening [4,5] and learning from imbalanced data [6–8].
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In fact, the number of compounds in a screening library that is used in virtual screening is

strictly determined by the source of the compounds. Thus, the size of the screening library can

vary from several hundred, especially in the case of in-house, reaction-based combinatorial

libraries, to millions of compounds, which are available from commercial suppliers. Recently,

several analyses and evaluations of compound libraries from commercial suppliers have been

published [9–13]. Following the results of Petrova et al., vendors can be divided into three

groups according to the size of the libraries that they provide: less than 100,000 compounds

(15 suppliers), from 100,000 to 500,000 compounds (11 suppliers) and more than 500,000

compounds (10 suppliers) [13]. The authors also noted that the highest percentage of exclusive

compounds was found for the first (90%) and the second group (~50%). Based on these out-

comes and taking into account practical aspects of virtual screening, we focused our study on

databases from the first two classes.

It was recently shown that ML classification effectiveness depended on the inactive set

design and the ratio of negative to positive training examples [14,15]. Here, the relationship

between the size of a screening database and the effectiveness of ML-based virtual screening

was systematically studied. First, the influence of the proportion of negative to positive exam-

ples in the training set on screening performance was assessed for different testing set sizes,

and second, an approach to rationalize the choice of the training ratio was proposed.

Materials and methods

Compound data sets

The ChEMBL (version 18) Target Classification Hierarchy directed the selection of the eight

targets used in the tests, which ensured the diversity of both the proteins and structures of the

active compounds: 5-HT1AR agonists, HIV-1 protease inhibitors (HIV Pr), SERT inhibitors,

estrogen receptor alpha agonists (ER-α), acetylcholinesterase inhibitors (AChE), phosphodies-

terase 5A inhibitors (PDE5), cyclin-dependent kinase 2 inhibitors (CDK2) and corticotropin-

releasing factor receptor 1 (CRFR1). As ChEMBL contains numerical values of particular

parameters that determine the activity of the compounds, only molecules whose activities were

quantified by Ki, pKi or IC50 and were tested in human protein assays were taken into account.

The pKi and IC50 values were recalculated to Ki using the following expressions: Ki = 10–pKi

and Ki = IC50/2 (the conversion factor of 2 was suggested by Kalliokoski et al. [16]). The com-

pounds were considered to be active when the Ki value was lower than 100 nM.

ML models were built and tested using active compounds and assumed inactive com-

pounds that were randomly selected from ZINC v. 11 (details presented in Table 1) [17].

Because different numbers of active ligands were obtained, the chosen number of inactives

was rescaled to ensure the same active to inactive ratios varying from 0.5 to 100. The positive

training set was fixed and composed of approximately 18% of all of the compounds that had

confirmed activity toward a particular target. The test sets (screening databases) with different

sizes (i.e., 5 k, 10 k, 25 k, 50 k, 75 k, 100 k, 200 k and 400 k) were formed by merging the

remaining actives together with the appropriate number of compounds randomly selected

from ZINC. For each ratio of inactive to active compounds and screening database size, 10 tri-

als were performed.

The changes in recall, precision and MCC values between particular iterations were statisti-

cally insignificant, and therefore, repeating the study with another randomly selected ZINC set

led to very similar results, and the dependencies connected with the number of inactives in the

training set were preserved.

The influence of database size on ligand-based virtual screening
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Machine learning algorithms

Five of the most commonly used cheminformatics ML algorithms were selected: Sequential

Minimal Optimization (SMO) [18], Naïve Bayes classifier (NB) [19], Instance-Based Learning

(Ibk) [20,21], J48 [22] and Random Forest (RF) [23,24]. All machine learning calculations

were carried out using the WEKA package (version 3.6)[25]. The default settings of all of the

tested classifiers were applied (see Table 2).

Molecular descriptors

The subsets of compounds fetched from ChEMBL were standardized using the ChemAxon

Standardizer [26] with the following options: Remove Fragment, Neutralize, RemoveExpli-

citH, Clean2D, Mesomerize and Tautomerize. The standardized sets were next cleaned for

compounds that were too small or too large (200 Da< MW < 700 Da) and checked for dupli-

cate ligand structures. The obtained compound structures were represented by using MACCS

structural keys [27] and CDK standard hashed fingerprints with a default path length of 6 (FP)

[28]; they were generated by PaDEL-Descriptor software [29].

Calculations and performance measures

The evaluation of the ML-based virtual screening performance was executed with the follow-

ing parameters (averaged over 10 trials): recall–R Eq (1), precision–P Eq (2) and Mathews

Table 1. Composition of the training and test sets used.

Target ChEMBL class ChEMBL target ID Number of actives

Training set Test set

5-HT1AR membrane receptor CHEMBL214 198 903

HIV Pr enzyme/protease ChEMBL243 203 932

SERT transporter CHEMBL228 390 1822

ER-α nuclear receptor CHEMBL206 133 614

AChE enzyme/hydrolase CHEMBL220 162 743

PDE5 enzyme/phosphodiesterase CHEMBL1827 152 695

CDK2 enzyme/kinase CHEMBL301 236 1084

CRF1 membrane receptor CHEMBL1800 200 914

https://doi.org/10.1371/journal.pone.0175410.t001

Table 2. Machine learning algorithms used and a short description of their training parameters.

Classifier Classification

scheme

Settings

Sequential Minimal

Optimization (SMO)a
functions The complexity parameter was set at 1, the epsilon for a round-off error was 1.0 E-12, and the

option of normalizing training data was chosen. The normalized polynomial kernel was used.

Naïve Bayes (NB) bayes –

Instance-Based Learning

(Ibk)b
lazy The nearest neighbor search algorithm using the Euclidean distance function and 1 neighbor.

J48c trees C.4.5 pruning

Random Forest (RF) trees Trees with unlimited depth, seed number: 1. Number of generated trees: 10.

athe SVM algorithm implemented in WEKA,
bthe k-NN algorithm implemented in WEKA,
cthe decision tree algorithm implemented in WEKA.

https://doi.org/10.1371/journal.pone.0175410.t002
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Correlation Coefficient–MCC Eq (3):

R ¼
TP

TPþ FN
ð1Þ

P ¼
TP

TP þ FP
ð2Þ

MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ � ðTP þ FNÞ � ðTN þ FPÞ � ðTN þ FNÞ

p ð3Þ

Recall measures the number of correctly identified positive instances, precision describes

the correctness of positive predictions and MCC is a balanced measure of binary classification

effectiveness, ranging from –1 to 1, with 1 referring to perfect prediction.

These parameters were selected to enable the assessment of the classification effectiveness

from various perspectives. All experiments were performed on an Intel Core i7 CPU 3.00 GHz

computer system with 24 GB RAM running a 64-bit Linux operating system using in-house

scripts.

Results and discussion

The main objective of this study was to determine how the optimal ratio of inactive to active

(IN/A) training instances depends on the screening database size in machine learning-based

screening of molecular databases. To address this issue, calculations were performed for eight

protein targets (Table 1) belonging to different classes (enzymes, membrane proteins, tran-

scription factors, transporters) and for compounds stored in the ChEMBL database [30]. Two

types of molecular fingerprints (MACCS and CDK FP) were applied to build the training data-

sets of a fixed number of positive instances and the number of negative examples was varied

(to obtain 17 IN/A training ratios, ranging from 0.5 to 100). Five machine learning algorithms

(Sequential Minimal Optimization–SMO, Naïve Bayes–NB, Ibk, J48 and Random Forest–RF)

were used in the screening of eight screening libraries whose magnitudes were established to

reflect the commercial collections of available compounds and combinatorial libraries that are

often used in virtual screening [13].

The performance of ML-based screening was assessed with the use of recall, precision, Mat-

thews Correlation Coefficient (MCC) and Precision-Recall (PR) plots, which are usually used

to provide comprehensive assessments of imbalanced learning problems [8,31]. Additionally,

the two-way ANOVA was conducted (for details see S2 File) to evaluate the different effects

(target, ML algorithm, fingerprint type and screening library size) on the global performance

of virtual screening (MCC).

Influence of the negative training set size on the performance of ML

methods

The results obtained for 5-HT1AR are presented in Fig 1 (panel A for CDK FP and B for

MACCS FP), showing recall, precision, MCC and PR plots for five ML methods and eight

screening libraries of different sizes (5000–400,000 compounds); data for the remaining pro-

tein targets are available in the Supporting Information (S1 Fig). A single plot illustrates the

relation between the average (after 10 iterations) value of a given performance measure, which

was calculated for a combination of the IN/A training ratio and the set of screening databases

used.

The influence of database size on ligand-based virtual screening
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Fig 1. The dependence of the negative training set size on machine learning-based virtual screening

performance for 2 types of fingerprints (panel A–CDK FP, and MACCS FP in B) averaged over 10

independent trials. The colored lines denote the type of evaluated parameter used (blue–recall, red–

precision, magenta–MCC and green–PR plot).

https://doi.org/10.1371/journal.pone.0175410.g001
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Global analysis confirmed our previous findings [15] that increasing the ratio of IN/A train-

ing examples significantly improved the effectiveness of ML-based virtual screening as well as

the different behavior of the Naïve Bayes algorithm, which in all cases showed only slight sensi-

tivity to the enlargement of the negative training set size (Fig 1). According to NB methodolog-

ical assumptions, instances from the test set are labeled according to the class distribution

from the training data. Therefore, one would expect that increasing the number of inactive

compounds in the training set would lead to improvement of the Naïve Bayes performance in

a virtual screening-like experiment. However, attempts to reproduce the class distribution

from the training set led to errors in class assignments for sets with a higher number of inac-

tives, which in turn resulted in lower values of the evaluating parameters instead of the

expected increase in values. The remaining ML methods (SMO, Ibk, J48 and RF) aimed at

maximizing the overall accuracy of the objective function (the ratio of the number of true pre-

dictions–the sum of TP and TN, out of all predictions made). Hence, when the IN/A training

ratio increases, the majority classifier is produced, which leads to an over-prediction of the

presence of the majority (negative) class.

Recall decreases when the IN/A training ratio increases, except for NB for which after small

decrease a constant level was observed. Moreover, increasing the dimension of the screening

database did not influence recall. For a particular IN/A training ratio, recall showed almost the

same value in all of the screened libraries. These observations can be explained by means of the

expression for recall (eq 1). The positive instances in training and testing sets (true positives,

TP), as well as negative sets included in the screening library (true negatives, TN), were fixed,

and only the negative training examples were changed. Because recall calculates only the classi-

fication of positive instances (active compounds can be classified as TP or FN) and does not

count assumed inactive classifications (FP or TN), its value will not change, even when the

screening databases increase in size. In larger databases, only more false positives (FP) and

true negatives (TN) can be found, which are not used in recall calculations. Furthermore, add-

ing more negative training examples leads to classifiers that over-predict the negative class

from the screening database, which can consequently produce an incorrect classification of

true positives (as FN) and thereby a decrease in recall.

Precision improves (Fig 1, S1 Fig) when the IN/A training ratio increases and simulta-

neously deteriorates with an enlargement of the screening library. However, for some combi-

nations of protein target and the ML method, precision showed interesting features. It reached

a maximum value very quickly (for low IN/A training ratio) that did not change even when

the IN/A training ratio increased, and the reduction in precision from the enlargement of the

screening database seemed to be less significant (e.g., HIV Pr, Er-α). Again, the obtained

trends can be explained with respect to the expression of precision–it only counts the number

of correctly classified actives (TP) and incorrectly classified inactives (FP) from the screening

library. Increasing the number of inactive compounds in the training set causes better recogni-

tion of negative examples by the ML objective function and thus an increase in incorrectly

classified actives (this remark is in line with the results obtained for recall) and improved clas-

sification of inactives (counted as TN).

In addition, analysis of the precision-recall plots showed that initially, all of the models had

a medium classification effectiveness with high recall and low precision (panel A, quarter IV in

PR plot, Fig 1). When the size of the negative set increased (panel A, the PR plot for SMO, Fig

1), performance improvements were observed for all methods except Naïve Bayes (S1 Fig).

The most significant changes were found for the SMO, Ibk and RF methods, which moved to

the region of high recall and precision (quarter I). Considering the dynamics of the changes in

ML performance with a growing number of negative training examples, the SMO and RF algo-

rithms quickly led to models that had very good classification effectiveness (panel A, Fig 1). In

The influence of database size on ligand-based virtual screening
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comparison, the improvement of the J48 method was less significant, and the corresponding

curves on the precision-recall plots responded very slowly to the increase in the number of

negative instances. Interestingly, increasing the size of the screening library caused a slower

shift to the area corresponding to good models (quarter I), and in some cases (MACCS in

combination with SMO or J48 and database size = 100 k and 200 k, respectively), this region

was even omitted and medium models were obtained with low recall and high precision

(panel B, quarter III, Fig 1).

Rational choice of the IN/A training ratio for ML-based virtual screening

In our previous study [15], we concluded that the preferable ratio of inactive to active com-

pounds in the training sets was approximately 9:1–10:1, and only slight improvements in

global ML methods performance were observed by further increasing of the negative training

set size. Moreover, we noted that the indicated preferable IN/A training ratio might change

under different experimental conditions, such as the dimension of the screening database. We

now explored this issue by performing experiments on screening libraries of diverse sizes (5 k,

10 k, 25 k, 50 k, 75 k, 100 k, 200 k and 400 k) and with different IN/A training ratios (ranging

from 0.5 to 100). Additionally, we observed that increasing the number of negative training

examples was not profitable due to increases in computational expenses, which was even more

prominent for larger libraries. Thus, we propose the strategy of searching for the optimal IN/A

training ratio with respect to the type of machine learning algorithm and size of a screening

library used. Fig 2 shows the dependency of the IN/A training ratio on cost-effectiveness,

expressed as the difference between the best MCC found in the screening of a particular data-

base and the MCC calculated for each training ratio. Initially, increasing the negative training

examples led to improved MCC values up to the IN/A training ratio corresponding to the best

MCC, whereas a further increase in negative examples (except J48 and Ibk) caused a decline in

model performance. No significant changes were recorded for NB, which is in line with previ-

ously described observations.

It should be noted that when approaching the optimal IN/A training ratio (i.e., that corre-

sponded to the highest MCC value), there are some ratios with only slightly lower MCC values.

Thus, for several cost-effectiveness thresholds (calculated as the distance to the best MCC

value), the IN/A training ratios were minimized for different sizes of screening databases

Fig 2. The dependency of the IN/A training ratio on the cost-effectiveness thresholds for different screening library sizes.

https://doi.org/10.1371/journal.pone.0175410.g002
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(Fig 3). To show the level of reduction, the training ratio obtained for the best MCC was added

(black line in Fig 3).

The results clearly show that the proposed approach can be effectively used to reduce the

negative to positive training set size. This reduction is strictly related to the cost-effectiveness

threshold used. In general, when the cost-effectiveness threshold increased, the reduction of

the IN/A training ratio increased as well. However, when the screening database increased, the

observed reduction was more significant, with larger distances between black and correspond-

ing dashed lines (Fig 3). Here, it should be noted, that Naïve Bayes was found to be the most

sensitive to the reduction approach that was used and showed the largest training ratio

decrease with an increasing threshold.

The minimized training ratios for all eight protein targets were obtained for the smallest (5

k), medium (50 k) and the largest (400 k) screening databases and for all combinations of

molecular fingerprints and ML methods using a cost-effectiveness threshold equal of 0.03, as

summarized in Table 3 (the full results are available in S1 Table).

The results are consistent for all of the studied proteins and show that increasing the size of

the screening database causes an increase in the optimal (with the assumption that a difference

of the best MCC of 0.03 is acceptable) negative to positive training ratio. However, for the ML

algorithms used, the level of training set increase was diverse. The lowest increase was detected

for SMO and RF (approximately 2–40 for CDK FP), whereas the highest increase was found

for Ibk and J48 (approximately 2–100 for MACCS FP). Completely different performances

were observed for a combination of CDK FP and NB, for which no significant changes in

the optimal training ratio from increasing the screening database size were observed (in the

majority of cases, the optimal IN/A training ratio was 0.5:1), and no clear trend was found for

MACCS FP (disordered). Interestingly, the combination of Naïve Bayes and CDK FP showed,

globally, (S1 Table, S3 Fig) the lowest optimal IN/A training ratios, but simultaneously, the

worst overall performance (MCC).

Target dependency

In general, these conclusions were consistent for all of the protein targets, but a slight influence

of the target type on the performance of virtual screening was observed. Additional calcula-

tions showed that the ligand chemotype diversity of a given target and the density of the

Fig 3. The dependency of the optimal IN/A training ratio from the size of the screening library obtained for several arbitrarily selected cost-

effectiveness thresholds. For comparison, the training ratio obtained for the best MCC was added (black line).

https://doi.org/10.1371/journal.pone.0175410.g003
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screening compounds that had a high similarity to the active compounds may be essential

in explaining target dependency (for details, see S1 File). Moreover, the results of the two-

way ANOVA indicated (see S2 File: Case 1, 2 and 5) a significant main effect for FP type

(p< 0.0001), ML method (p< 0.0001) and screening database size (p< 0.0001) on the perfor-

mance of virtual screening (given by MCC). Additionally, the results showed a significant

interaction between protein targets and mentioned effects (p< 0.0001).

Fingerprint dependency

In almost all cases, the total improvement in the predictive models was clearly better for CDK

FP than MACCS FP (Fig 1 and S1 Fig). Additionally, this was confirmed by precision-recall

plots, where the performance of a particular ML algorithm changed more dynamically when

molecules were encoded by CDK FPs than MACCS fingerprints in almost all cases studied.

The results of the two-way ANOVA confirmed (see S2 File: Case 3 and 4) that there was a

significant difference among the virtual screening performance for CDK FP and MACCS

(p< 0.0001). Interestingly, the interaction plots showed that the difference between mean val-

ues of MCC for CDK FP and MACCS had no effect for 5-HT1AR and SERT targets (S2 File,

Case 2) and J48 ML method (S2 File, Case 3).

By searching for the optimal IN/A training ratio using different cost-effectiveness thresh-

olds, in almost all cases studied, a lower training ratio was found for CDK FP (S1 Table).

Table 3. The optimal IN/A training ratios obtained for a cost-effectiveness threshold equal 0.03.

Target Screening library size Best IN/A ratio

SMO NB Ibk J48 RF

CDK FP MACCS CDK FP MACCS CDK FP MACCS CDK FP MACCS CDK FP MACCS

5-HT1AR 5000 2 2 2 60 10 10 10 2 4 4

50000 7 7 0.5 40 60 80 60 15 10 15

400000 40 40 0.5 10 100 100 80 80 40 60

HIV Pr 5000 2 2 0.5 4 4 4 7 4 4 4

50000 4 10 4 10 10 15 40 40 7 15

400000 10 40 2 2 40 40 80 80 20 60

SERT 5000 1 1 0.5 0.5 4 1 2 1 1 1

50000 2 4 0.5 10 20 10 10 4 2 7

400000 7 20 0.5 7 30 30 30 20 7 20

ER-α 5000 4 4 1 15 7 7 7 7 4 4

50000 7 15 7 25 30 60 60 90 15 25

400000 7 90 7 7 60 90 60 90 15 90

AChE 5000 2 2 2 50 10 4 10 10 4 5

50000 7 10 2 50 50 15 70 70 10 25

400000 10 50 4 2 70 100 100 70 15 100

PDE5 5000 2 2 0.5 4 4 10 15 10 4 4

50000 7 10 0.5 50 20 50 100 50 10 20

400000 10 50 2 10 50 100 80 100 15 100

CDK2 5000 2 15 2 7 4 4 7 4 4 4

50000 4 15 2 4 30 30 80 50 7 15

400000 7 30 0.5 0.5 50 50 50 50 10 30

CRF1 5000 2 2 2 10 4 4 4 4 4 4

50000 7 10 2 40 40 60 60 40 10 20

400000 40 80 0.5 7 60 80 80 80 40 80

https://doi.org/10.1371/journal.pone.0175410.t003
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Conclusions

In this study, we investigated the performance of a collection of machine learning algo-

rithms in ligand-based virtual screening in cases in which the inactive to active training

ratio and screening library size were iteratively changed. We found that increasing the size

of the negative training set (with a constant number of positives) led to a decrease in recall

and an improvement in precision and MCC. The results were consistent for all protein tar-

gets and fingerprints and were in line with results from previous reports [15,32]. However,

it should be noted that the optimal IN/A training ratio, speed of achieving the maximal per-

formance (precision, MCC), and decrease in performance (precision, MCC) with an

increasing screening database size are target-dependent. We suggested that similarity (pair-

wise similarity) between active and screening compounds may be essential in explaining tar-

get dependency.

According to the use of different sizes of compound databases in ML-based virtual screen-

ing, we found that the searching performance was very diverse. Generally, increasing the

number of compounds in the screening library deteriorated the precision and MCC and did

not change the recall. The second outcome revealed that, except for Naïve Bayes, the IN/A

training ratio for which the best MCC was observed increased with the increasing the size of

the screening library. All these outcomes were validated by the two-way ANOVA which

showed a significant interaction between screening library size with protein target (S2 File,

Case 5) and fingerprint type (S2 File, Case 4).

Enlargement of the training ratio leads to an increase of the time needed for training pre-

diction models and, consequently, for searching molecular libraries. Thus, we proposed a

rationalization strategy of selecting the optimal training set size. Using self-defined cost-

effectiveness thresholds (difference between the best MCC and remaining MCCs obtained

for screening of a particular database), we showed that a many-fold lower IN/A training

ratio can be used to build a predictive model with only a marginal drop in MCC value com-

pared to the best value obtained when no training ratio constraint was used. The lowest

training ratio (cost-effectiveness threshold equal 0.03) was obtained for a combination of

Naïve Bayes and CDK FP (0.5:1–4:1), but simultaneously, the overall performance was the

worst (MCC changed between 0.1 and 0.7). Regarding global performance, the combination

of SMO with CDK FP showed the lowest IN/A training ratio (2:1–40:1) and the highest

MCC.
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S1 Fig. The panels show the dependency of machine learning-based virtual screening on
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cision, magenta–MCC and green–PR plot).
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S2 Fig. The dependency of the IN/A training ratio on the cost-effectiveness thresholds for
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S3 Fig. The dependency of the optimal IN/A training ratio from the size of the screening

library, obtained for several arbitrarily selected cost-effectiveness thresholds for all of the

targets studied.
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S1 File. Additional study performed to explain the dependency of the protein target on the

performance of ML-based VS. The file contains the results and a discussion on the influence

of the target type and screening library size on the performance of ML-based virtual screening.

(PDF)

S2 File. The results of the two-way ANOVA. The file contains the interaction plots and analyses

of variance (Tests of between-subjects effects table) for testing the significance of the main effect

and interactions between them. The null hypothesis was no interaction between different effects

on the global performance of virtual screening given by MCC, an alpha level was set at 0.0001.

(PDF)

S3 File. A zip file containing datasets used and results obtained in this study.
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