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Abstract: Treatment of FMS-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD)-positive
acute myeloid leukemia (AML) remains a challenge despite the development of novel FLT3-directed
tyrosine kinase inhibitors (TKI); the relapse rate is still high even after allogeneic stem cell
transplantation. In the era of next-generation FLT3-inhibitors, such as midostaurin and gilteritinib, we
still observe primary and secondary resistance to TKI both in monotherapy and in combination with
chemotherapy. Moreover, remissions are frequently short-lived even in the presence of continuous
treatment with next-generation FLT3 inhibitors. In this comprehensive review, we focus on molecular
mechanisms underlying the development of resistance to relevant FLT3 inhibitors and elucidate how
this knowledge might help to develop new concepts for improving the response to FLT3-inhibitors and
reducing the development of resistance in AML. Tailored treatment approaches that address additional
molecular targets beyond FLT3 could overcome resistance and facilitate molecular responses in AML.

Keywords: acute myeloid leukemia; AML; FMS-like tyrosine kinase 3; FLT3; FLT3-ITD; FLT3-TKD;
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1. Introduction

Activating FMS-like tyrosine kinase 3 (FLT3) mutations are detected in about one-third of
patients with acute myeloid leukemia (AML) at diagnosis. The majority of these mutations are
FLT3-internal tandem duplications (ITD) [1,2]. Approximately 25% of patients with AML are diagnosed
as FLT3-ITD-mutated. The prognostic impact of FLT3-ITD depends on the allelic ratio (ITD/wildtype
allele) and co-occurrence of a nucleophosmin-1 (NPM1) mutation. However, the European Leukemia
Net (ELN) and National Comprehensive Cancer Network (NCCN) guidelines use different approaches
for prognostic stratification of newly diagnosed patients with AML and FLT3-ITD mutations [3,4].
In general, the presence of co-occurring mutations has substantial effects on prognosis in AML [5].

Besides activating FLT3-ITD mutations, FLT3 tyrosine kinase domain (TKD) mutations are detected
in 7–11% of patients with AML [6,7]. TKD mutations predominantly occur at codons D835 or I836 and
can be associated with primary resistance to FLT3 inhibitors [8,9]. In contrast to the impact of FLT3-ITD,
data concerning the prognostic significance of FLT3-TKD mutations controversially discussed and
depend on the co-occurrence of other mutations, e.g., FLT3-TKD and NPM1 mutations [10,11]. FLT3-ITD
mutations can be associated with adverse prognosis, particularly, in patients with a high allelic ratio
of ≥0.5. Furthermore, FLT3-ITD mutations increase the relapse risk following intensive induction

Cells 2020, 9, 2493; doi:10.3390/cells9112493 www.mdpi.com/journal/cells

http://www.mdpi.com/journal/cells
http://www.mdpi.com
https://orcid.org/0000-0003-2438-1955
http://www.mdpi.com/2073-4409/9/11/2493?type=check_update&version=1
http://dx.doi.org/10.3390/cells9112493
http://www.mdpi.com/journal/cells


Cells 2020, 9, 2493 2 of 18

chemotherapy, although most clinical trials failed to demonstrate impact of FLT3-ITD mutations on
complete remission rates following induction therapy.

Patients with FLT3-ITD-positive AML have shown a higher probability of relapse following
conventional chemotherapy and allogeneic stem cell transplantation (ASCT) [12]. Although the
prognostic benefit of ASCT for FLT3-ITD-positive AML is widely accepted, deeper insight regarding
the underlying molecular mechanisms are clearly warranted. Aspects concerning depth of remission
before ASCT are currently being evaluated in ongoing clinical trials with 2nd generation FLT3 inhibitors
such as quizartinib or gilteritinib [13,14].

2. FLT3-ITD Signaling Pathways and Diversity of ITD Mutations

FLT3-ITD and FLT3-TKD mutations lead to constitutive activation of multiple downstream
signaling pathways and this results in increased proliferation, reduced susceptibility to apoptosis,
and inhibition of myeloid differentiation [15,16]. Importantly, activation patterns of downstream
signaling are dependent on the presence of either FLT3-ITD or FLT3-TKD mutations and result in
distinct AML phenotypes [17,18]. ITD-mediated FLT3-activation is caused by destabilization of its
autoinhibitory juxtamembrane (JM) domain and results in constitutive activation of STAT, MAPK-ERK,
and PI3K signaling [19,20]. Phosphorylation of STAT family members is an essential step that depends
on activation of SRC kinase. Of note, this signaling pathway is not observed downstream of FLT3-TKD
mutations or ligand-activated FLT3-wildtype receptors. STAT5 activation has pleiotropic effects on
cellular transformation. This includes the activation of the serine/threonine kinase PIM-1, which is
responsible for stabilization of the 130 kDa FLT3-ITD variant and accelerates STAT5 activation [21].
Furthermore, PIM-1 can increase survival or mediate resistance to FLT3 inhibitors by activating the
anti-apoptotic protein MCL-1 [22,23]. Interestingly, activation of MCL-1 is also a downstream effect of
STAT5 signaling that contributes to the maintenance of FLT3-ITD-positive leukemic stem cells [24].

Impaired myeloid differentiation in FLT3-ITD-positive AML blasts is a consequence of deregulated
gene expression and is induced by multiple signaling pathways. FLT3-ITD mutations lead to
downregulation of myeloid transcription factors, such as PU.1 or CEBPA [25]; the latter has been shown
to be phosphorylated and inhibited by FLT3-ITD-signaling [26]. Additionally, RGS2, an important
regulator of myeloid differentiation, is repressed by FLT3-ITD [27]. In contrast, high expression of
RUNX1 has been identified in FLT3-ITD-positive AML cells, which may contribute to the development of
AML and blockade of differentiation in FLT3-ITD blasts [28]. Thus, profound changes in transcriptional
programs may block differentiation in the presence of FLT3-ITD mutations.

Maturation of FLT3-ITD receptor represents a complex process of post-translational modifications
that includes multiple steps of glycosylation occurring in the Golgi apparatus (GA) and endoplasmic
reticulum (ER). Importantly, the majority of FLT3-ITD molecules can be detected in the ER of AML
cells, while a relatively small amount of FLT3-ITD protein is located at the cell membrane [29].
The hypoglycosylated 130 kDa species of FLT3-ITD that is retained in the ER can induce PIM-1
expression via aberrant STAT5 signaling [30]. Importantly, critical differences in downstream signaling
are observed depending on the cellular localization of FLT3-ITD [30]. Surface localization of FLT3-ITD
primarily leads to constitutive activation of PI3K/AKT and MEK-ERK signaling, while FLT3-ITD
bound to the GA or ER predominantly activates the STAT5/PIM pathway. Notably, inhibition of
FLT3-ITD glycosylation can lead to further reduction in surface FLT3-ITD and consecutive decrease of
downstream signaling. Protein stability of oncogenic kinases, such as FLT3-ITD, is highly dependent
on chaperones, including heat shock proteins (e.g., HSP90) [31]. Inhibition of these chaperones may
lead to induction of apoptosis through enhanced proteasomal degradation of mutant FLT3 [32].

The diversity of FLT3-ITD mutations in regard to their localization and length indicates that ITD
mutations are in most cases unique for each AML patient [33]. This sequence diversity increases the
complexity of FLT3-ITD biology regarding its use as a molecular marker for monitoring the minimal
residual disease [34]. Notably, only 70% of FLT3-ITD mutations are typically localized within the JM
region of FLT3. The remaining 30% of FLT3-ITD insertions can be detected in TKD1 and are associated
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with a different prognostic impact than JM-ITDs [35,36]. The upstream localization of FLT3-ITD
mutations correlates with a higher rate of complete remission following induction chemotherapy of
patients with FLT3-ITD-positive AML [37]. Nevertheless, the molecular mechanisms that lead to
differential signaling depending on ITD localization and size are not fully understood.

3. FLT3 Inhibitors

Several FLT3 inhibitors have been developed for treatment of FLT3-mutated AML. However,
only two (midostaurin and gilteritinib) are currently approved by the Food and Drug Administration
(FDA) and the European Medical Agency (EMA) for distinct clinical indications. More promising
compounds have been investigated so far in clinical trials, and comprehensive data exist to understand
the molecular mechanisms contributing to FLT3-inhibitor resistance. Table 1 summarizes the key
features of FLT3 inhibitors that are either approved or under investigation in advanced phases of
clinical trials. These inhibitors can be divided into two distinct functional subtypes based on their
mechanism of action. While type I inhibitors can bind and inhibit both active and inactive states of the
mutated receptor, type II inhibitors are restricted to binding inactive receptor molecules. This results
in distinct patterns of inhibition. The second-generation FLT3 inhibitor quizartinib (type II) cannot
inhibit FLT3-TKD mutations at therapeutically relevant doses, which may result in the development
of secondary resistance. Importantly, the in vitro sensitivity of FLT3-TKD mutations towards type
II FLT3 inhibitors can significantly differ depending on the specific amino acid substitution within
the D835 codon. In contrast, the type I FLT3 inhibitors gilteritinib or crenolanib can inhibit both
FLT3-ITD and FLT3-TKD and therefore show less development of resistance [38,39]. Furthermore,
first-generation inhibitors are less specific for FLT3 and show significant “off target” effects. Conversely,
second-generation inhibitors are more specific and characterized by a narrow kinome-profile. Below,
we provide a detailed description of FLT3 inhibitors in clinical use:

Sorafenib is a type II inhibitor that has been approved for the treatment of several solid tumors. It is
one of the most intensively evaluated compounds in AML with activating FLT3 mutations. Sorafenib
inhibits specifically FLT3-ITD. FLT3-TKD mutations are not inhibited at therapeutic concentrations.
Besides diarrhea and fatigue, skin toxicity (e.g., hand–foot syndrome) is frequently observed and may
eventually lead to treatment discontinuation [40]. Despite promising results in several clinical trials
(including reports on survival benefit after ASCT), sorafenib has not been approved by the FDA or
EMA [41] so far.

Midostaurin is a potent type I multikinase inhibitor and targets constitutively activated
FLT3 receptor. Midostaurin has been approved in combination with induction and consolidation
chemotherapy as well as for maintenance therapy of AML patients who do not undergo ASCT.
As shown in the randomized phase 3 RATIFY trial, most relevant side effects of midostaurin study
include pulmonary complications such as drug-induced pneumonitis. Frequent side effects also include
nausea, vomiting, edema, bruising, and QTcF prolongation [12,42].

Lestaurtinib is a potent first-generation type I inhibitor that has been investigated in several
clinical trials and indications. It inhibits both FLT3 wildtype and constitutively activated forms
at low nanomolar doses. Lestaurtinib has an acceptable toxicity profile, which includes nausea,
diarrhea, and (more frequently) infectious complications [43,44]. Importantly, clinical development of
lestaurtinib has been discontinued after randomized clinical trials combining lestaurtinib either with
first-line or with salvage chemotherapy could not confirm the expected clinical benefit [44,45].

Quizartinib is a highly potent and selective type II inhibitor. It has been investigated in several
clinical trials, including the QuantumR study comparing chemotherapy with quizartinib monotherapy
in patients with relapsed or refractory AML (R/R AML). Despite a notable clinical benefit, quziartinib is
still awaiting approval. Importantly, quizartinib can selectively inhibit ITDs but has no clinically relevant
activity against FLT3-TKD mutations. Side effects include QTcF prolongation and “off-target” effect
against c-kit, which explains cytopenias accompanying the reduction of bone marrow blasts [46,47].
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Crenolanib is a second-generation type I inhibitor targeting both FLT3-ITD and FLT3-TKD mutations.
This inhibitor effectively inhibits FLT3 compound mutations (e.g., FLT3-ITD plus D835Y), thereby
reducing the risk of secondary resistance. Crenolanib is highly specific without relevant “off-target”
activity and shows an acceptable toxicity profile, which includes nausea and vomiting [48,49].

Table 1. Selected FMS-like tyrosine kinase 3 (FLT3) inhibitors (FLT3i) evaluated in clinical trials.

FLT3
Inhibitor

Generation and
Subtype of FLT3i

Inhibition of
FLT3-TKD

“Off Target”
Inhibition

Data of Phase 3
Clinical Trial (e.g.,)

FDA Approval
for AML

Sorafenib 1st
Type II No RAF; VEGFR,

KIT, PDGFRB No No

Midostaurin 1st
Type I Yes

PKC, SYK,
SRC, KIT,
VEGFR,

PDGFR, AKT

Yes
[12] Yes

Lestaurtinib 1st
Type I Yes JAK2 Yes

[44] No

Quizartinib 2nd
Type II

D835Y/V/I/F
resistant KIT, PDGFR Yes

[46] No

Crenolanib 2nd
Type I Yes PDGFRB, KIT No No

Gilteritinib 2nd
Type I Yes AXL Yes

[50] Yes

Abbreviations: FLT3i, FLT3 inhibitor; TKD, tyrosine kinase domain; FDA, Food and Drug Administration.

Gilteritinib is a promising second-generation type I inhibitor that has been approved for patients
with R/R AML. Patients on gilteritinib showed relevant survival benefit compared to those on
chemotherapy regimens in the phase 3 ADMIRAL study. Gilteritinib had an acceptable safety profile,
with lower grade diarrhea; liver toxicity; and fatigue among the observed side effects. In contrast to
quizartinib, the “off-target” activity of gilteritinib is more favorable, and inhibition of the receptor
tyrosine kinase AXL may even reduce the development of secondary resistance [50,51]. Comparison of
the ADMIRAL and the QUANTUMR trials revealed a higher rate of grade > 3 febrile neutropenia for
patients on gilteritinib (46% versus 31%), while QTc prolongation was more frequent (up to 50%) in
patients on quizartinib. Importantly, severe QTc prolongation (grade 3) was rare (3%) [46,50].

4. Clinical Activity of FLT3 Inhibitors

Several clinical trials have investigated different FLT3 inhibitors in distinct clinical settings,
including monotherapy, combination of either epigenetic approaches or standard chemotherapy
regimens (first-line or salvage protocols), and maintenance therapy. In this section, we will focus on
early clinical trials focusing on the efficacy of monotherapy regimens (Table 2). Moreover, we will
highlight key findings of the RATIFY and SORMAIN trials.

More than a decade ago, midostaurin was evaluated in patients with R/R AML. Monotherapy
with this inhibitor demonstrated disappointing results with respect to AML response and survival
in this patient cohort [52,53]. In contrast, better results were obtained in clinical trials investigating
sorafenib in patients with R/R AML; these trials showed clinically relevant response rates while
long-lasting remissions were rare. However, early progression even in patients who achieved a
temporary hematological response resulted in short-term survival. Importantly, a survey on patients
who underwent ASCT prior to AML relapse demonstrated improved leukemia-free survival compared
with those patients who did not receive prior ASCT [40,54].

The RATIFY trial demonstrated improvement of overall survival for all three subgroups of
patients with activating FLT3 mutations (FLT3-ITD or FLT3-TKD) by adding midostaurin after
intensive induction or consolidation therapy, including maintenance treatment in those patients who
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did not undergo subsequent ASCT [12]. For this subset of patients the role of maintenance therapy is
still a matter of current debate as post-hoc analyses could not demonstrate improvement of disease-free
survival [55]. The randomized and placebo-controlled phase 2 SORMAIN trial showed improved
relapse-free survival (RFS) in AML patients with FLT3-ITD mutations when sorafenib was applied
as maintenance therapy after ASCT. In detail, after 24-months sorafenib treatment RFS was 85% as
compared to 53% in the placebo group [41].

Table 2. Clinical trials containing single agent treatment with FLT3 inhibitors (FLT3i).

FLT3
Inhibitor

AML
Setting Patients (n) FLT3

Mutation Phase
Response, n

CRc (%)
PR (%)

LFS (mo) OS
(mo) Ref.

Midostaurin r/r AML
AML 1st line

17
2

ITD 18
TKD 1 2 0 (0)

1 (5.2) n.a. n.a. [52]

r/r AML 35 ITD 26
TKD 9 1 0 (0)

1 (2.9) n.a. 3.3 [53]

Sorafenib r/r AML 13 ITD 12
ITD + TKD 1 2 6 (46.2)

n.a. 2.4 n.a. [54]

r/r AML 65 ITD 65
no TKD Survey 25 (38)

no ASCT:
4.5

prior
ASCT: 6.5

n.a. [40]

Crenolanib r/r AML 34
ITD
and
TKD

2 4 (12%)
1 (3%) n.a. 4.4 [49]

r/r AML
Cohort A
(no prior

TKI)

18
ITD 9
TKD 6

ITD + TKD 3
2 7 (39%)

2 (11%) n.a. 7.8 [56]

Quizartinib r/r AML 76 ITD 76
no TKD 2 36 (47.4)

14 (18.4) 5.3 22.6 [47]

r/r AML
245

(allocated to
Quizartinib)

ITD 245
no TKD 3 118 (48)

51 (21) n.a. 6.2 [46]

Gilteritinib r/r AML 191

ITD 162
TKD 16

ITD + TKD
13

1–2 70 (37)
23 (12) n.a. 30.0 [57]

r/r AML
247

(allocated to
Gilteritinib)

ITD 215
TKD 21

ITD + TKD 7
Other 4 *

3 134 (54.3)
33 (13.4) 4.4 9.3 [50]

Abbreviations: ASCT, allogeneic stem cell transplantation; CRc—composite complete remission; FLT3i, FLT3
inhibitor; ITD, internal tandem duplication; LFS—Leukemia-free survival, OS—Overall survival TKD, tyrosine
kinase domain; PR, partial remission; r/r AML, relapsed or refractory AML; * four patients with unconfirmed FLT3
mutation were assigned to the gilteritinib group.

The clinical benefit of crenolanib monotherapy was first demonstrated in heavily pretreated
patients with R/R AML, including the majority of patients with prior FLT3 inhibitor therapy [49].
In this cohort of 34 evaluable patients, only 12% achieved complete remission with incomplete recovery
(CRi). Furthermore, crenolanib has been studied in a small cohort of patients with R/R AML and
FLT3-ITD or FLT3-TKD mutations who were not previously treated with any other FLT3 inhibitor.
Crenolanib monotherapy resulted in an impressive overall response rate of 50%, including 7/18 patients
(39%) achieving complete remission (CRc, composite CR) [49,56]. Larger number of R/R AML patients
were included in phase 2/3 studies investigating the second-generation FLT3 inhibitors quizartinib
and gilteritinib. Here, quizartinib monotherapy resulted in an overall response rate of about 66%.
The subsequent randomized phase 3 QuantumR study demonstrated an excellent overall response
rate, with 48% of patients achieving CRc and an overall survival of 6 months for quizartinib treated
patients. So far, quizartinib is still awaiting approval for the treatment of patients with R/R AML [46,47].
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In contrast, Gilteritinib has recently been approved for the treatment of patients with FLT3-mutated
R/R AML. Approval was based on data obtained within the phase 3 ADMIRAL study; here, the authors
demonstrated a CRc rate of 54% and an overall survival of 9 months when patients were treated with
gilteritinib only. These data were consistent with results of the previously published phase 1/2 clinical
trials [50,57].

5. Molecular Mechanisms of Resistance

Primary or secondary mechanisms of resistance may affect the clinical response during FLT3
inhibitor therapy.

5.1. Primary Resistance

Primary resistance may arise from various cellular mechanisms, including specific FLT3-TKD
mutations (either single TKD mutations or compound mutations within the FLT3-ITD allele), mutations
in genes other than FLT3, activation of alternative signaling pathways in leukemic cells or the bone
marrow niche, and availability of FLT3-TKI.

The presence of a single FLT3-TKD mutation itself can mediate primary compound-specific
resistance to certain FLT3 inhibitors. A wide range of FLT3-TKD mutations has been reported to
mediate primary resistance against the second-generation inhibitor quizartinib [39]. In particular,
the co-occurrence of FLT3-ITD and FLT3-TKD mutations within the same subclone of an individual
patient with AML (1–2% of patients at diagnosis) may confer primary resistance to several FLT3
inhibitors (Figure 1). Moreover, patients harboring such compound mutations of FLT3 show lower
sensitivity to cytotoxic agents due to increased expression of the anti-apoptotic protein Bcl-x(L) and
an impaired cell cycle regulation caused by overexpression of RAD51 [58]. Given the large diversity
of FLT3-ITD mutations, the location and amino acid sequence of ITD can also contribute to primary
resistance by altering protein conformation that leads to the activation of alternative downstream
signaling pathways. The FLT3-ITD variant FLT3-ITD627E confers primary resistance to midostaurin
and is characterized by consecutive and inhibitor-independent overexpression of the anti-apoptotic
protein MCL-1 [59]. Furthermore, differential sensitivities of FLT3-ITD variants to various kinase
inhibitors may also be explained in part by dysregulation of relevant gene-expression programs [60].Cells 2020, 9, x FOR PEER REVIEW 7 of 18 
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Additionally, the bone marrow stroma can contribute to the development of resistance against
FLT3 inhibitors via different mechanisms. FLT3-ITD-expressing leukemic stem cells (LSC) are protected
within the bone marrow niche. FLT3-mutated leukemic cells are able to reprogram the bone marrow
compartment through exosomes, which may lead to suppression of normal hematopoiesis while
promoting leukemia (stem-) cell proliferation [70,71]. Second, the metabolism of FLT3 inhibitors by
cytochrome P450 3A4 (CYP3A4) is significantly affected by bone-marrow-stromal-cell-expressing
cytochromes. In detail, high CYP3A4 expression in the bone marrow microenvironment can prevent
effective dose levels in the niche, thus contributing to pharmacological TKI resistance, independent
of pharmacologic interactions [72]. Finally, high expression of the chemokine receptor type 4
(CXCR-4) has been reported in FLT3-ITD-positive primary AML cells. Thus, the interaction between
FLT3-ITD-positive leukemia cells and bone marrow stroma via the stromal cell-derived factor-1
(SDF1)-CXCR-4 axis has the potential to enhance FLT3 inhibitor resistance [73].

Finally, resistance to FLT3 inhibitors can also be mediated by additional mutations that are not
related to FLT3. Pre-existing mutations in the CCND3 gene (encoding cyclin D3) have been described
in patients with FLT3-ITD-positive AML who did not respond to the FLT3 inhibitor PLX3397 in an
early clinical trial [74].

5.2. Secondary Resistance

To understand secondary mechanisms underlying FLT3 resistance, it is important to distinguish
between molecular changes within the FLT3-ITD allele (also known as “on-target resistance”) and
aberrant signaling that mediates constitutive activation of non-FLT3-dependent oncogenic pathways
(“off-target resistance”). Several in vitro models have been used to investigate potential mechanisms of
resistance towards different FLT3-TKI. In this section, we will focus primarily on molecular mechanisms
of resistance that have been identified in patient samples derived from clinical trials.

The first resistance-mediating mutation was detected in vivo upon midostaurin monotherapy.
Molecular analyses in serial samples derived from a patient with R/R AML revealed that a single
amino acid substitution at (N676K) within the FLT3 kinase domain conferred resistance to clinically
relevant midostaurin trough levels [75]. Following this initial publication, additional point mutations
within FLT3 have been shown to mediate secondary resistance against sorafenib. Patient samples from
two clinical trials showed resistance-mediating mutations either at the gatekeeper residue (F691) or at
codon 835 of the activation loop [54,76]. Molecular analyses revealed A848P mutation as the cause
for secondary resistance to sunitinib and sorafenib while preserving sensitivity to midostaurin [77].
Furthermore, several mutations causing resistance against quizartinib, crenolanib, and gilteritinib have
been identified.

Quizartinib specifically targets FLT3-ITDs without affecting FLT3-TKD mutations at clinically
relevant concentrations. Therefore, secondary resistance of FLT3-ITD cells against quizartinib is mainly
reflected by the acquisition of additional point mutations either at the activation loop residue D835 or
the gatekeeper residue of the kinase domain (F691) [63]. Targeted sequencing of single cells derived
from patients with R/R AML showed polyclonal blast populations harboring several subclones with
compound mutations (ITD plus distinct D835 mutations—D835V, Y or F) as well as FLT3-ITD negative
subclones with newly acquired FLT3-TKD mutations. These findings indicate that mechanisms of
acquired FLT3 inhibitor resistance may not be mutually exclusive, and suggest that the evolution of
relevant subclones should therefore be assessed in individual patients at the time of relapse [78].

Crenolanib and gilteritinib represent type I FLT3 inhibitors and show high activity against FLT3-ITD
and FLT3-TKD mutations. In contrast to quizartinib, secondary resistance against crenolanib and
gilteritinib is rarely caused by FLT3-TKD2 point mutations. For this reason, TET2 and IDH1 mutations
have been described predominantly in clones harboring activating FLT3 mutations. In contrast, NRAS
and IDH2 mutations were detected in FLT3-independent subclones. Importantly, the co-occurrence of a
FLT3 gatekeeper (F691) mutation was detected in only two patients with prior exposure to quizartinib.
Development of activation loop mutations could not be identified upon crenolanib treatment [79].



Cells 2020, 9, 2493 8 of 18

This is consistent with genomic data from AML specimens obtained in clinical trials for gilteritinib
treatment. In these trials, 13/41 (32%) patients developed secondary NRAS mutations (3/13 KRAS
mutations; 2/13 NRAS and KRAS mutations). F691L resistance-mediating mutations were detected in
5/41 (12%) patients [80]. Recently, preliminary reports have described co-existing or acquired mutations
of Janus kinases (JAK1, JAK2, or JAK3) that may confer clinical resistance to sorafenib, midostaurin,
or quizartinib in about 4% of patients with FLT3-ITD mutations [81].

Clonal evolution during FLT3 inhibitor treatment may lead to the acquisition of additional oncogenic
mutations (e.g., RAS) in FLT3-ITD-positive subclones [80]. The loss of FLT3-ITD mutation at AML
relapse has been described by several groups suggesting “off-target” mechanisms of resistance [82,83].
The overexpression of oncogenic kinases (e.g., PIM-2) has been described as a putative mechanism
for the development of clinical resistance against sorafenib. Similarly, overexpression of the receptor
tyrosine kinase AXL can substantially contribute to FLT3 inhibitor resistance by activation of constitutive
STAT5 signaling. As indicated above, the ability of gilteritinib to inhibit AXL downstream signaling
may explain improved clinical response and reduced development of resistance [50,84,85]. Finally,
sorafenib-resistant FLT3-ITD-positive cell lines and blood samples from AML patients showed aberrant
expression of signaling molecules of the PI3K/mTOR pathway, which has been linked to the development
of drug resistance [86,87]. Recently, selection of BCR-ABL1-positive clones has been shown in a case
series of AML patients who developed resistance to FLT3 inhibitor treatment. While BCR-ABL1 itself
is a rare finding in AML, screening for BCR-ABL1 is clinically feasible and may help to identify and
target a potential mechanism of resistance [88].

Taken together, various molecular mechanisms confer resistance to FLT3 inhibitors. Importantly,
different mechanisms described above are not mutually exclusive, and therefore, highly relevant for
diagnostic strategies and therapeutic considerations.

6. Molecular Strategies to Overcome Resistance

Understanding the mechanisms of FLT3-inhibitor resistance is the basis for development of
diagnostic strategies and therapeutic approaches. Emergence of the F691I/L gatekeeper mutation
may vary depending on the choice of FLT3-TKI. While it confers high-level resistance to midostaurin,
sorafenib, quizartinib, and gilteritinib, the multi-kinase inhibitor ponatinib may overcome resistance
in vitro [89]. Recently, the novel FLT3 inhibitor FF-10101 has also been demonstrated to overcome
resistance in FLT3-ITD-F691L-expressing cell lines [90].

Aberrant expression PI3K/mTOR signaling pathway members may not only contribute to FLT3
inhibitor resistance but also suggest therapeutic inhibition of mTOR itself (e.g., with rapamycin).
PI3K/mTOR signaling is required to induce apoptosis of FLT3-ITD-expressing AML cells treated with
valproic acid and all-trans retinoic acid [87,91]. Additionally, the efficacy and safety of combining
epigenetic approaches (e.g., azacitidine) with FLT3 inhibitors (e.g., sorafenib) has been investigated
in pre-clinical and early clinical trials. Favorable response rates and good tolerability could be
documented in older patients (>60 years) with relapsed FLT3-ITD-AML. Similar results were obtained
when combining quizartinib with azacitidine or low dose cytarabine [92–94].

The co-occurrence of IDH mutations in FLT3-ITD-subclones (e.g., IDH1) or in non-ITD AML cells
(e.g., IDH2) upon giltertinib treatment provides a rationale for the use of IDH-inhibitors either as
monotherapy (e.g., enasidenib) or combination therapy (e.g., ivosidenib). This would be of special
interest in case of co-occurring RAS mutations in FLT3-independent cells and specifically for the
emergence of resistance-mediating subclones harboring NRAS and/or KRAS mutations. Similarly,
targeting the MEK/ERK pathway (e.g., with trametinib) or the anti-apoptotic machinery (e.g., with
BH3 mimetics) may also represent promising combinatorial approaches to overcome resistance [79,95].

Maturation of FLT3-ITD has been associated with distinct glycosylation-dependent localization
or activation of downstream oncogenic signaling pathways. Pharmacological inhibition of FLT3-ITD
glycosylation is a potential therapeutic strategy to overcome resistance to FLT3 inhibitors. Fluvastatin
or 2-deoxy-d-glucose-mediated inhibition of FLT3-ITD glycosylation results in the retention of the
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mutated receptor in the endoplasmic reticulum and constitutive activation of the downstream
STAT5-PIM-axis [30,96,97]. Furthermore, 2-deoxy-d-glucose may sensitize AML cells to BCL-2
antagonists by affecting the expression of MCL-1 [97]. Constitutive activation of the STAT5-PIM-axis
by FLT3-ITD contributes to oncogenic transformation of AML cells and may be involved in conferring
resistance to FLT3 inhibitors. Therefore, targeting of STAT5 or PIM isoforms may also represent a
combination strategy for overcoming FLT3-TKI resistance [23,98–100]. PIM-1 not only stabilizes the
hypo-glycosylated 130 kDa FLT3-ITD variant but also inhibits its glycosylation. Furthermore, chaperone
proteins, such as HSP90, have been shown to protect FLT3-ITD from proteasomal degradation. The use
of HSP inhibitors is another potential strategy for overcoming clinical resistance given the high
susceptibility of FLT3-ITD-expressing cells to HSP inhibitors [21,32,101]. Recent data also demonstrate
the promising approach of pharmacological inhibition of the Menin-MLL (mixed-lineage leukemia 1-)
complex in AML cells with both NPM1 mutation and FLT3 mutation. In detail, combined treatment
with FLT3 inhibitors was able to induce apoptosis and to enhance differentiation in AML patient
samples [102].

Figure 2 gives an overview of signaling pathways that could be targeted to address distinct
mechanisms of resistance to FLT3 inhibitors.Cells 2020, 9, x FOR PEER REVIEW 10 of 18 
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Figure 2. Potential signaling pathways to overcome resistance to FLT3 inhibitors.

Recently, the Bcl-2 inhibitor Venetoclax has been approved in combination with hypomethylating
agents for patients inelegible for intensive chemotherapy. It is tempting to speculate whether
the combination of venetoclax with FLT3-TKI (and particularly next-generation inhibitors) may
be a promising strategy for future clinical development. Recent publications have demonstrated
(pre-) clinical synergistic activity of venetoclax in combination with midostaurin, quizartinib,
and gilteritinib [103,104]. Table 3 gives an overview of ongoing clinical trials investigating promising
strategies of targeted therapy that might contribute to overcoming resistance in AML with activating
FLT3 mutations.
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Table 3. Ongoing clinical trials with targeted therapies including patients with activating
FLT3 mutations.

ClinicalTrials.gov
Identifier

Drug
Combination

Targets
(Inhibition) Phase n AML

NCT03625505 Venetoclax
Gilteritinib

BCL-2
FLT3mut 1b 64 r/r AML

NCT04140487
Venetoclax
Gilteritinib
Azacitidine

BCL-2
FLT3mut

DNA
methylation

1/2 42 r/r AML

NCT04336982 CC-9009
Gilteritinib

Cereblon E3
Ligase

FLT3-ITD
1/2 66 r/r AML

NCT03735875 Venetoclax
Quizartinib

BCL-2
FLT3-ITD 1/2 32 r/r AML

NCT03661307
Venetoclax
Quizartinib
Decitabine

BCL-2
FLT3-ITD

DNA
methylation

1/2 52 r/r AML
1L AML unfit

NCT03552029 Milademetan
Quizartinib

MDM2
FLT3-ITD 1 156 r/r AML

1L AML unfit

NCT03135054 Omacetaxine
Quizartinib

Protein
translation
FLT3-ITD

2 40 r/r AML
1L AML

NCT03063944
OPB-111077
Venetoclax
Decitabine

STAT3
BCL-2
DNA

methylation

1 59 r/r AML
1L AML

NCT03132454 Palbociclib
Sorafenib

CDK4/6
FLT3-ITD 1 54 r/r AML

NCT03008187 SEL24 Pan-PIM
FLT3mut 1/2 45 r/r AML

Abbreviations: 1L, first line; BCL-2, B-cell lymphoma 2; CDK4/6, cyclin dependent kinase 4/6; FLT3mut,
activating FLT3 mutation; ITD, internal tandem duplication; MDM2, mouse double minute homolog 2; PIM,
serine/threonine-protein kinase; r/r AML, relapsed or refractory AML; STAT3, signal transducer and activator of
transcription 3.

Patients with FLT3-ITD mutations receiving an allograft as consolidation therapy have been
shown to benefit with improved survival compared to those treated with conventional chemotherapy.
Recently, the use of sorafenib in the post-transplant setting has been found to improve leukemia-free
survival and the overall survival of patients with FLT3-mutated AML. Mechanisms beyond targeting
FLT3-ITD include modulation of graft-versus-leukemia (GvL) responses mediated by IL-15 [105–107].

Finally, FLT3-ITD mutations can generate neoepitopes that may be recognized by peptide-specific
T-cells with the potential for targeted immunotherapy. Moreover, chimeric antigen receptor (CAR)
T-cells directed against FLT3 demonstrate enhanced recognition of FLT3-ITD-positive AML cells after
treatment with crenolanib [108,109], a strategy that will be developed in future clinical trials.

7. Future Perspectives

Despite the improvement achieved by combining induction chemotherapy with FLT3 inhibitor
treatment, FLT3-ITD-positive AML remains a considerable challenge, and allogeneic stem cell
transplantation is still a frequent choice for post-induction therapy to reduce the considerable risk
of relapse. Development of improved diagnostic approaches by NGS may help to identify relevant
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AML subclones. Treatment decisions concerning the use of FLT3-TKI in the presence of small FLT3
mutated subclones and detailed molecular characterization of these AML need to be evaluated in
future clinical trials.

Resistance to FLT3 inhibitors involves various molecular mechanisms, and improved knowledge
of the affected cellular pathways may help to develop personalized treatment strategies. Importantly,
advances in diagnostic development are required for comprehensive analysis of leukemic cells,
including genomic, transcriptomic, proteomic, and epigenetic approaches.

The type of FLT3 TKI applied in clinical practice may help to anticipate the mechanism of
resistance. Additional FLT3 point mutations, acquisition of other mutations (e.g., NRAS, KRAS, IDH1,
IDH2), or activation/overexpression of alternative signaling pathways are among the most relevant
mechanisms with relevance to guide therapeutic decisions. Development of predictive biomarkers,
including intracellular protein activation or expression, may confirm the need for combinatorial
approaches (e.g., FLT3 inhibitors and BH3 mimetics) [95,110]. Improved diagnostic characterization of
AML beyond FLT3 mutations status and allelic ratio at diagnosis, may help to taylor individualized
treatment approaches.
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