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Hodgkin-Huxley (HH) equation is the first cell computing model in the world and pioneered the use of model to study
electrophysiological problems. The model consists of four differential equations which are based on the experimental data of ion
channels. Maximal conductance is an important characteristic of different channels. In this study, mathematical method is used to
investigate the importance ofmaximal sodium conductance 𝑔Na andmaximal potassium conductance 𝑔K. Applying stability theory,
and taking 𝑔Na and 𝑔K as variables, we analyze the stability and bifurcations of the model. Bifurcations are found when the variables
change, and bifurcation points and boundary are also calculated.There is only one bifurcation point when 𝑔Na is the variable, while
there are two points when 𝑔K is variable. The (𝑔Na, 𝑔K) plane is partitioned into two regions and the upper bifurcation boundary
is similar to a line when both 𝑔Na and 𝑔K are variables. Numerical simulations illustrate the validity of the analysis. The results
obtained could be helpful in studying relevant diseases caused by maximal conductance anomaly.

1. Introduction

Hodgkin-Huxley (HH) equation is created on the foundation
of huge experimental data of sodium and potassium channels
by Hodgkin and Huxley who are both excellent biology
scientists and had long engaged in nerve conduction research.
In about 1952, they took squid giant axon as experiment
subject and continuously published four papers describing
the electrical excitation of this kind of cell [1–4]. In their
experiment, all the ion channelswere divided into three types,
sodium channel, potassium channel, and the others. Now we
know there are many ion channels on the cell membrane,
such as 𝐼Na, 𝐼Kr, 𝐼Ks, 𝐼NaCa, 𝐼K1, 𝐼CaL, 𝐼Ca, 𝐼to, 𝐼NaK, 𝐼NaL, and
𝐼KATP [5–7]. However the discovery of sodium and potassium
channels was marvelous at that time. Experimental data was
obtained by voltage-clamp technology, while the patch-clamp
technology is widely used at present. On this basis, a four-
dimensional ordinary differential equation set, called HH
model, was proposed, which was autonomous and contained
intricate transcendental equations.

The work of Hodgkin and Huxley was recognized as
excellent achievement and with significant contribution to

the development of electrophysiology. It is the basis of
the subsequent models of ion channels. Not only was the
HH model consistent with the obtained experiment data
accurately, but also it could precisely simulate the change
of action potential. The model discovered the relationship
of transmembrane potential and current and maximum
conductance of ions. This made it possible to research the
character of ion channel withmathematicalmethods. In 1960,
Professor Nobel who pioneered the cardiac electrophysiology
simulations applied HH model to myocardial cell and got
the famous Purkinje fiber cell model [8], which was the
first computing myocardial cell model. From then on, HH
model was broadly applied to almost all kinds of cardiac
cells such as atrial muscle cell model [9] and sinoatrial
node cell model [10]. HH model laid the cornerstone of
computing electrophysiology. Even today, a large part of
electrophysiological models are created on the foundation
of HH model. Verkerk’s sinoatrial model [11], Butters’s atrial
model [12], O’Hara’s ventricular model [13], and Li’s Purkinje
cell model [14], and so forth, all belong to HH model type.

Because of the importance of HH model, the stability
has long attracted the researcher’s attention. Hassard et al.
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Figure 1: The electrophysiological process and equivalent circuit of neuron.

were the earlier researchers caring about the bifurcation phe-
nomenon of HH model. And they indicated that bifurcation
would occur at the equilibrium points when the external
current 𝑖ext changed which was injected into the neuron
from microelectrode [15]. Stable and unstable solutions of
the model with regard to 𝑖ext were analyzed by Rinzel and
Miller, and the influence of temperature was also discussed
[16]. Two stable steady states were found by Aihara and
Matsumoto [17]; when the two states existed, the bifurca-
tion structure was complex, which included a stable limit
cycle, two unstable equilibrium points, and one asymptoti-
cally stable equilibrium point. Guckenheimer and Labouriau
investigated the influence of 𝑖ext and potassium ion potential
𝑉K on the bifurcations of the model [18]. Bedrov et al.
gave the relationship between the numbers of negative slope
regions and presented some results about the possible bifur-
cation giving rise to maximal sodium conductance 𝑔Na and
maximal potassium conductance 𝑔K [19, 20]. Fukai and his
fellows examined the structure of the model’s bifurcations
produced by 𝑖ext and one of the other parameters [21]. Taking
leakage conductance 𝑔

𝑙
and sodium channel effective bias

voltage 𝑉
𝑚
as parameters, Terada et al. analyzed bifurcation

in Hodgkin-Huxley model for muscles of frogs [22].
Wang et al. [23–26] did a lot of research on the stability of

HH model. They studied the bifurcations caused by leakage
conductance 𝑔

𝑙
and sodium ions antielectromotive force

when ELF external electric field was considered.The stability
and bifurcation control were analyzed and controllers were
designed. Bifurcation in HH model exposed to DC electric
fields was investigated in detail.

Bifurcation means qualitative changes in the solution
structure of a dynamic system when the parameters vary.
From analyzing the bifurcation, we can get the effects of the
parameters. Further, changing the corresponding parameters,
we could make the solution into an ideal condition. Bifurca-
tion is an important branch in mathematics and applied to
much different field [27–29]. In recent years, it is also widely
studied in electrophysiology. Indeed, there are many diseases
having close relations with bifurcations, such as Parkinson’s,
epilepsy, and pathological heart rhythms [30].

In the past, for HH model, external current 𝑖ext and
leakage conductance 𝑔

𝑙
have been most investigated, because

theywere easilymeasured.The sodium current is the contrib-
utor which leads to depolarization of the neuron while it is
potassium current that plays the major role of repolarization.
However, 𝑔Na and 𝑔K are seldom taken into consideration
to analyze the stability of model, as the relevant data is not
abundant. In this study, the effects of 𝑔Na and 𝑔K on the
stability and bifurcations of the model will be discussed,
respectively, and collectively. And we will give the critical
points of 𝑔Na and 𝑔K when they play the role separately, and
the critical boundaries in𝑔Na-𝑔K planewill be providedwhen
together. Simulation results demonstrate the validity of the
theoretic analysis.

The rest of the paper is organized as follows. The HH
equations are introduced in detail in Section 2. In Section 3
we analyze the effects of 𝑔Na and 𝑔K on the model and
calculate the bifurcation points (line). Finally, discussion and
conclusion are presented in Section 4.

2. Hodgkin-Huxley Equations

HH model was proposed on the foundation of ion channels.
The electrophysiological activities of a cell are shown in
Figure 1(a). The gray circle is membrane, which ensures
orderly biochemical reaction. 𝐼Na, 𝐼K, and 𝐼L are the ion cur-
rents corresponding to respective channels on themembrane.
When an electrical stimulation makes the sodium channels
open, a large number of Na+ flow inward, forming current
𝐼Na, resulting in the rise of transmembrane potential. The
open of potassium channels makes a large outflux of K+,
creating the current 𝐼K and the reduction of potential. The
model is comprised of four autonomous ordinary differential
equations to describe the electrophysiological activities of cell
shown in Figure 1(a). In the model, membrane is taken as a
constant capacitance and the ion channels are seen as variable
resistances. Figure 1(b) shows the equivalent circuit in detail,
in which 𝑅Na = 1/𝑔Na, 𝑅K = 1/𝑔K, and 𝑅

𝑙
= 1/𝑔

𝑙
. 𝑅Na and 𝑅K

vary with time.
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The equations were obtained according to electrical for-
mulas and experimental data, which are shown as follows:

𝑑𝑉

𝑑𝑡
=

1

𝐶
𝑀

[𝑖ext − 𝑔Na𝑚
3
ℎ (𝑉 − 𝑉Na)

−𝑔K𝑛
4
(𝑉 − 𝑉K) − 𝑔

𝑙
(𝑉 − 𝑉

𝑙
)] ,

𝑑𝑚

𝑑𝑡
=𝛼
𝑚
(𝑉) (1 − 𝑚) −𝛽

𝑚
(𝑉)𝑚,

𝑑ℎ

𝑑𝑡
=𝛼
ℎ
(𝑉) (1 − ℎ) −𝛽

ℎ
(𝑉) ℎ,

𝑑𝑛

𝑑𝑡
=𝛼
𝑛
(𝑉) (1 − 𝑛) −𝛽

𝑛
(𝑉) 𝑛,

(1)

where

𝛼
𝑚
(𝑉) =

0.1 (𝑉 − 25.0)

1 − exp [− (𝑉 − 25.0) /10]
,

𝛽
𝑚
(𝑉) = 4.0 exp(− 𝑉

18.0
) ,

𝛼
ℎ
(𝑉) = 0.07 exp(− 𝑉

20.0
) ,

𝛽
ℎ
(𝑉) =

1

1 + exp [− (𝑉 − 30.0) /10]
,

𝛼
𝑛
(𝑉) =

0.01 (𝑉 − 10.0)

1 − exp [− (𝑉 − 10.0) /10]
,

𝛽
𝑛
(𝑉) = 0.125 exp(− 𝑉

80.0
) .

(2)

In these equations, 𝑉 is the transmembrane potential.
0 ≤ 𝑚 ≤ 1 and 0 ≤ ℎ ≤ 1 are the gating variables
indicating activation and inactivation of sodium ion current,
respectively. 0 ≤ 𝑛 ≤ 1 is the gating variable showing
activation of potassium ion current. 𝑔Na, 𝑔K, and 𝑔

𝑙
represent

the maximal conductance of corresponding currents. 𝐶
𝑚

=

1.0 𝜇F/cm2 is membrane capacitance. 𝑖ext is the current
injected into the neuron. In our paper, we suppose 𝑖ext = 0 and
𝑔Na = 120mS/cm2, 𝑔K = 36mS/cm2, and 𝑔

𝑙
= 0.3mS/cm2,

which are the ideal experimental data.

3. Stability Analysis of HH Model

Stability is one of amodel’s important properties. If themodel
is stable, it will reach a rest state at last. Otherwise, periodic
phenomenon or chaos may appear. To analyze an ordinary
differential system, equilibrium points are one of its most
important aspects, which may be the final state of the system.
Suppose (𝑉

∗
, 𝑚
∗
, ℎ
∗
, 𝑛
∗
) is the equilibrium points of the

model. So it should make the right side of (1) equal to zero.
That is,

𝑖ext − 𝑔Na𝑚
3

∗
ℎ
∗
(𝑉
∗
− 𝑉Na) − 𝑔K𝑛

4

∗
(𝑉
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𝑙
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∗
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𝑙
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𝛼
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∗
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∗
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𝛼
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) (1 − ℎ

∗
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∗
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𝛼
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(𝑉
∗
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∗
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∗
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(3)

Then the linearization of (1) around the equilibrium could be
obtained as follows:

𝑑𝑉

𝑑𝑡
= 𝐽
11
𝑉 + 𝐽
12
𝑚 + 𝐽
13
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(4)

where
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We can get the eigenmatrix of (4):

𝐽 = (

𝐽
11

𝐽
12

𝐽
13

𝐽
14

𝐽
21

𝐽
22

0 0

𝐽
31

0 𝐽
33
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𝐽
41

0 0 𝐽
44

) (6)

and then the characteristic equation can be obtained:

𝜆
4
+ 𝑎𝜆
3
+ 𝑏𝜆
2
+ 𝑐𝜆 + 𝑑 = 0, (7)

where
𝑎 = − (𝐽
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+ 𝐽
22
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33
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44
) ,

𝑏 = 𝐽
11
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44
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22
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44
)
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33
𝐽
44

− 𝐽
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𝐽
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− 𝐽
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𝐽
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− 𝐽
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𝐽
41
,

𝑐 = 𝐽
12
𝐽
21
(𝐽
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+ 𝐽
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𝐽
31
(𝐽
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+ 𝐽
44
)

+ 𝐽
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𝐽
41
(𝐽
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+ 𝐽
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𝐽
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)
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+ 𝐽
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𝐽
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,

𝑑 = 𝐽
11
𝐽
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𝐽
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𝐽
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− 𝐽
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𝐽
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𝐽
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𝐽
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𝐽
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𝐽
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𝐽
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𝐽
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(8)

According to Routh-Hurwitz criterion, if 𝑎 > 0, 𝑎𝑏 > 𝑐,
𝑑 > 0, 𝑎𝑏𝑐 > 𝑐

2
+𝑎
2
𝑑, the real parts of all the roots are minus.

Otherwise, all the real parts are not negative. In the following,
we will analyze the stability of the model according to this
criterion.

3.1. Effect of 𝑔Na on the Stability. In this section, we will
investigate the influence of 𝑔Na on the equilibrium, stability,
and bifurcations of the model. 𝑔Na is taken as variable,
and the other parameters are all kept with desired values.
Because the desired value of 𝑔Na is around 120mS/cm2,
𝑔Na ∈ [0, 500] is taken into consideration.When𝑔Na changes,
making the right side of (1) equal to zero, corresponding 𝑉

∗

can be acquired. Taking Matlab as a tool, we could obtain
the relationship between 𝑔Na and the equilibrium point 𝑉∗
shown in Figure 2.

From Figure 2, we can see that 𝑉∗ changes slowly when
𝑔Na ∈ [0, 300] and increases rapidly when 𝑔Na ∈ [350, 500].
This means that equilibrium points are sensitive to 𝑔Na when
𝑔Na ∈ [350, 500]; a slight change of 𝑔Na may lead the model
to a totally different state even though model is still stable.

Applying bifurcation theory and using the method
of bisection, we can get one bifurcation point 𝑔

∗

Na =

212.648720656 when 𝑔Na changes.
Substituting 𝑔

∗

Na into the original equation, we get the
equilibrium 𝑉

∗, and then substituting both 𝑔
∗

Na and 𝑉
∗ into

eigenmatrix of (4), we can gain the eigenvalues as follows:

𝜆
1
= − 4.9711711484,

𝜆
2
= − 0.1259717048,

𝜆
3
= 1.9 × 10

−16
− 0.3798402483𝑖,

𝜆
4
= 1.9 × 10

−16
+ 0.3798402483𝑖.

(9)
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V
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V

)
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Figure 2: The relationship between 𝑔Na and 𝑉
∗.

Here, we regard 1.9×10−16 as 0.With the help of computer,
we can get that all the real parts of 𝜆

𝑖
(𝑖 = 1, 2, 3, 4) are

negative when 𝑔Na < 𝑔
∗

Na. And there exist positive real parts
when 𝑔Na > 𝑔

∗

Na. According to the stability theory, the system
is stable around equilibrium when 𝑔Na ∈ [0, 𝑔

∗

Na) and it is
unstable when 𝑔Na ∈ (𝑔

∗

Na, 500]. The model undergoes Hopf
bifurcation at 𝑔Na = 𝑔

∗

Na.
Figure 3 shows the response of 𝑉 and 𝑚, ℎ, and 𝑛 to

different 𝑔Na. As the analysis above, when 𝑔Na = 198 < 𝑔
∗

Na,
the system is stable. Figure 3(a) is the potential-time (𝑉-𝑡)
curve, which shows that the action potential 𝑉 becomes
steady. Figure 3(b) displays the trajectory of gating variables
𝑚, ℎ, and 𝑛with time.We can see that the electrophysiological
activity of cell reaches an equilibrium state at last.

Figures 3(c) and 3(d) demonstrate that the system is
unstable when 𝑔Na = 250 > 𝑔

∗

Na. Figure 3(c) is the 𝑉-𝑡 graph,
from which we can see the potential changes periodically.
Figure 3(d) describes the trend of 𝑚, ℎ, and 𝑛, whose
trajectory is a circle finally. Both Figures 3(c) and 3(d) imply
that the system is unstable and the electrophysiological
activity of cell is in a periodical state at a certain frequency.

3.2. Effect of 𝑔K on the Model. In this part, we choose 𝑔K
as variable and keep the other parameters with ideal values.
The same method with analysis of 𝑔Na is taken to analyze
the effect of 𝑔K on the equilibrium, stability, and bifurcation
of HH model. 𝑔K ∈ [0, 200] is taken into consideration
because the desired value of 𝑔K is 36.0. First, the relation-
ship between 𝑔K and the equilibrium 𝑉

∗ is obtained in
Figure 4.

From Figure 4, we can see that 𝑉∗ varies rapidly when
𝑔K ∈ [0, 20] and decreases slowly when 𝑔K ∈ [30, 200].
This means that equilibrium points are sensitive to 𝑔K when
𝑔K ∈ [0, 20]. A slight change of 𝑔K may make the final state
of model change greatly.

Using the method of bisection to calculate the eigenval-
ues, we can find two bifurcation points 𝑔∗K1 = 3.843499029
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and 𝑔
∗

K2 = 19.762260771 when 𝑔K varies. Substitute 𝑔
∗

K𝑖
(𝑖 = 1, 2) into (1), and obtain the corresponding equilibrium

points𝑉∗. Both 𝑔
∗

K𝑖 and𝑉
∗ are substituted into (7), and then

corresponding eigenvalues could be obtained as follows:

𝜆
1

1
= −5.3218099843,

𝜆
1

2
= −0.4223840650,

𝜆
1

3
= 3.2 × 10

−16
− 1.1305093754𝑖,

𝜆
1

4
= 3.2 × 10

−16
+ 1.1305093754𝑖,

𝜆
2

1
= −4.5370272278,

𝜆
2

2
= −0.1319002182,

𝜆
2

3
= 4.2 × 10

−16
− 0.3436440068𝑖,

𝜆
2

4
= 4.2 × 10

−16
+ 0.3436440068𝑖.

(10)

Here, 3.2 × 10
−16 and 4.2 × 10

−16 can be approximately
regarded as 0. From computing, all the real parts of eigenval-
ues are negative when 𝑔K ∈ [0, 𝑔

∗

K1) ∪ (𝑔
∗

K2, 200], and all of
them are not negative when 𝑔K ∈ (𝑔

∗

K1, 𝑔
∗

K2). According to
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Figure 5: The response of 𝑉 and𝑚, ℎ, and 𝑛 to different 𝑔K.

the stability theory, the system is stable around equilibrium
when 𝑔K ∈ [0, 𝑔

∗

K1) ∪ (𝑔
∗

K2, 200] and it is unstable when
𝑔K ∈ (𝑔

∗

K1, 𝑔
∗

K2). The model undergoes Hopf bifurcations
at 𝑔K = 𝑔

∗

K𝑖 (𝑖 = 1, 2). The system is from locally stable
state (𝑔K ∈ [0, 𝑔

∗

K1)) to unstable state (𝑔K ∈ (𝑔
∗

K1, 𝑔
∗

K2)) and
becomes stable (𝑔K ∈ (𝑔

∗

K2, 200]) again. Responses of 𝑉 and
𝑚, ℎ, and 𝑛 to different 𝑔K are shown in Figure 5.

Figure 5 shows the response of 𝑉 and 𝑚, ℎ, and 𝑛 to
different 𝑔K. When 𝑔K = 2.8 < 𝑔

∗

K1, the system is stable.

Figure 5(a) shows the trend of potential with time, from
which we can see that the potential reaches a fixed value.
Figure 5(b) is the trajectory of 𝑚, ℎ, and 𝑛 with time. All the
gating variables also stay at fixed values (a steady point in
Figure 5(b)) at last. These mean that the electrophysiological
activity of cell reaches a steady state ultimately.

Figures 5(c) and 5(d) are 𝑉-𝑡 and 𝑚-ℎ-𝑛 graphs, respec-
tively, when 𝑔

∗

K1 < 𝑔K = 15 < 𝑔
∗

K2. Figure 5(c) shows
that the action potential changes in a certain period. And
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Figure 5(d) describes the trajectory of 𝑚, ℎ, and 𝑛 with time,
from which we can find that the shape of the trajectory is
a loop. Figures 5(c) and 5(d) imply all the gating variables
and potential change periodically, which means that the
electrophysiological activity of cell is in a periodical state.

Figures 5(e) and 5(f) are 𝑉-𝑡 and 𝑚-ℎ-𝑛 curves, respec-
tively, when 𝑔K = 21 > 𝑔

∗

K2. From Figure 5(e) we can see
that the potential reaches the resting state at this occasion.
Figure 5(f) describes the trajectory of 𝑚, ℎ, and 𝑛, which
shows that the three variables stay at a fixed point at last. Both
Figures 5(e) and 5(f) show that all the potential and gating
variables no longer change with time, which implies the cell
reaches the resting state finally.

3.3. Effect of 𝑔Na and 𝑔K on the Model. Both 𝑔Na and 𝑔K
are taken as variables in this part to study the stability and
bifurcation of the model when 𝑔Na ∈ [0, 400] and 𝑔K ∈

[0, 60]. Keeping the other parameters with desired values,
using Matlab as a tool, we get the equilibrium points first
when 𝑔Na and 𝑔K both vary. Then the points are substituted
into eigenmatrix of (4) and the eigenvalues of the model can
be calculated. At last, Figure 6 is gained, in which all the real
parts of eigenmatrix are negative if 𝑔Na and 𝑔K belong to the
pink region and positive real parts appear if 𝑔Na and 𝑔K are
in white area.

From Figure 6, we can find that the upper boundary of
the regions is similar to a line. With the least square method
applied, the expression of the line can be gotten as 𝑔K =

0.175 × 𝑔Na − 1.675. However, the lower boundary is not
regular. According to stability theory, we can easily know that
the model is stable when 𝑔Na and 𝑔K are in pink region and
unstable when 𝑔Na and 𝑔K are in white. This means that the
electrophysiological activity can reach a steady statewhen𝑔Na
and 𝑔K are in pink region and it is periodic when 𝑔Na and
𝑔K are in white.The system undergoes bifurcations when 𝑔Na
and 𝑔K are on the boundary.

4. Discussion and Conclusion

The effects of 𝑔Na and 𝑔K on the stability and bifurcation of
HH model are analyzed in the paper. The critical values and
boundary are obtained. When 𝑔Na increases to the critical
value, the model will have bifurcation phenomenon, which
means system will reach stable state when 𝑔Na is less than
the critical value and the cell will have continuous action
potential after stimulation when 𝑔Na is greater. However,
there are two critical values about 𝑔K. The system will be
stable when 𝑔K is less than the smaller critical value and there
are periodic solutions when 𝑔K is greater than the value and
meanwhile is less than the larger one. The model will reach
steady state again when 𝑔K is greater than the larger critical
value. From analyzing 𝑔Na and 𝑔K collectively, we can get a
critical line which divides the 𝑔Na-𝑔K plane into two parts.
The system will be stable when (𝑔Na, 𝑔K) is in the upper half
plane and model will have periodic solutions when (𝑔Na, 𝑔K)
is in the lower half.

In our analysis, when 𝑔Na or 𝑔K are taken as the varia-
ble(s), all the other parameters are kept with desired values.
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Figure 6: The 𝑔Na-𝑔K plane and the critical boundary.

However, almost all the biological systems are coupled.All the
components influence one another and work together form-
ing the overall functionality. Therefore, when the sodium
(𝑔Na) and/or potassium (𝑔K) channels vary, do the other
parameters remain unchanged? Is it reasonable to keep
the other parameters still with desired values? We could
not ensure that it must be reasonable. Nevertheless, some
evidences may explain a certain rationality of the method.
For example, tetrodotoxin (TTX) selectively binds to the
outer vestibule voltage-gated sodium channels, preventing
channels from opening [31]. Ivabradine is a sinus node 𝐼

𝑓

channel inhibitor, which is selective for the 𝐼
𝑓
current but

does not affect other cardiac ionic currents [32]. Acacetin
could suppress the ultrarapid delayed rectifier K+ current and
the transient outwardK+ current and block the acetylcholine-
activatedK+ current; however, it has no effect onNa+ current,
L-type Ca2+ current, or even inward-rectifier K+ current [33].
All of these demonstrate that to an extent when one channel
changes, the others may not be affected. That is, when the
parameter describing a channel varies, it is reasonable to keep
parameters describing the other channels unchanged.

Stable states indicate that the electrophysiological activity
of cell will get to corresponding resting state at last, while
periodic phenomenon looks like response of pathological
cell’s action potentials caused by cardiac arrhythmias [34].
In other words, 𝑔Na and 𝑔K may be the causes of the
similar diseases to cardiac arrhythmias. So given appropriate
medicine to change 𝑔Na or 𝑔K to reasonable intervals, the cor-
responding diseases could be abolished or the discomfort can
be ameliorated. After all, our research could be a reference to
treat relevant diseases. Some diseases led to by abnormal ion
channelsmay be eased bymedicine to adjust the conductance
into corresponding intervals.
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