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IL1RL1 gene variations are associated with asthma 
exacerbations in children and adolescents using inhaled 
corticosteroids

To the editor,
Asthma, one of the most common chronic diseases in childhood, is 
caused by interactions between genes and environmental factors. 
The mainstay of treatment is daily use of inhaled corticosteroids 
(ICS), which are the most effective medication for controlling asthma 
symptoms and preventing (severe) exacerbations. ICS use reduces 
both hospitalizations and mortality rates1 and improves asthma con‐
trol; reflected in forced expiratory volume in 1 second (FEV1) levels 
and fraction of exhaled nitric oxide (FeNO). These effects are par‐
ticularly observed in asthma patients with eosinophilic, type 2 air‐
way inflammation.2 However, responses to ICS are heterogeneous, 
which while controversial, possibly reflect genetic associations.3,4

Genome‐wide association studies (GWAS) have reproducibly 
found the Interleukin 1 receptor like 1 (IL1RL1, ST2) gene to be associ‐
ated with asthma susceptibility.5 IL1RL1 single‐nucleotide polymor‐
phisms (SNPs) and IL1RL1 expression levels have been associated 
with blood eosinophils and markers of Th2 type inflammation.6,7 
However, the influence of IL1RL1 SNPs on the effectiveness of 
asthma treatment has not been investigated. Since the IL‐33/IL1RL1 
pathway has been associated with eosinophilic, type 2, inflamma‐
tion, we hypothesized that IL1RL1 SNPs may affect corticosteroid 
treatment response in asthma patients. Since IL1RL1‐a functions as 
a decoy receptor to dampen IL‐33‐induced signaling, genetically de‐
termined low levels of IL1RL1‐a may predispose to enhanced IL‐33‐
induced inflammation with consequently more exacerbations.

In the current study, we investigated whether IL1RL1 gene vari‐
ants are associated with asthma exacerbations (based on ER visits/
hospitalizations and courses of oral corticosteroid [OCS] use), ques‐
tionnaire‐based asthma control and FeNO levels in asthma patients 
using ICS. Furthermore, we aimed to identify whether there is a 
pharmacogenetic effect of IL1RL1 variants on change in FeNO lev‐
els and FEV1% predicted in asthma patients after 4‐6 weeks of ICS 
treatment.

After close inspection of the Linkage Disequilibrium struc‐
ture of IL1RL1, we selected 6 IL1RL1 SNPs that tag important LD 
blocks in IL1RL1 (r2 > .8) with SNPs previously found to be associ‐
ated with asthma5; rs13431828, rs1041973, rs1420101, rs1946131, 
rs1921622, and rs10204137 (Table S1). Cross‐sectional IL1RL1 SNP 
discovery analysis was performed in ICS treated asthmatic children, 
mainly of European ancestry, from the Pharmacogenetics of Asthma 
Medication in Children: Medication with Anti‐inflammatory effects 

(PACMAN) cohort (N = 820) using logistic and linear regression mod‐
els. We replicated FDR corrected significant findings (P < .05) in four 
different cohorts collaborating within the Pharmacogenomics in 
Childhood Asthma (PiCA) consortium,8 one Hispanic/Latino study; 
Genes‐Environment and Admixture in Latino Americans (GALA II, 
N = 876) study, one African American population; Study of African 
Americans, Asthma, Genes, and Environments (SAGE, N = 525), and 
two European studies (≥96% European ancestry); the Effectiveness 
and Safety of Treatment with Asthma Therapy in children (ESTATe, 
N = 197) and SLOVENIA (N = 104). In addition, we performed a me‐
ta‐analysis (N = 2412). The longitudinal effect of IL1RL1 on FeNO lev‐
els and FEV1% predicted upon ICS treatment in asthmatic children 
and adults was assessed in the SLOVENIA cohort. Conditional analy‐
sis was performed in PACMAN to assess the independent effects of 
the IL1RL1 SNPs.

A detailed representation of the included cohorts and the allele 
frequencies of the IL1RL1 SNPs are provided in Tables S2 and S3, 
respectively. In PACMAN, we found a significant association be‐
tween four of the six SNPs (rs13431828, rs1420101, rs1921622, 
and rs10204137) with ER visits and “any exacerbation” (Table 1A‐C), 
which were selected for the replication study. Sensitivity analyses 
on Dutch ethnicity, atopy, and medication adherence did not change 
these results. We did not observe an association with question‐
naire‐based asthma control or FeNO measurements (Table S4A‐B).

In GALA II, we replicated our findings with significant results 
with the same direction of effect for rs13431828, rs1420101, and 
rs1921622 on ER visits/hospitalizations and “any exacerbation.” 
Rs10204137 showed a significant association with “any exacerba‐
tion” (Table 1A‐C). In SAGE, rs1921622 was associated with “any 
exacerbation” but the direction of the effect differed when com‐
pared to PACMAN. No association between IL1RL1 and question‐
naire‐based asthma control was found. In the smaller SLOVENIA and 
ESTATe studies, no significant cross‐sectional or longitudinal associ‐
ations were found (Table S5).

Meta‐analysis of the 4 IL1RL1 SNPs carried through to replication 
showed statistically significant results for rs13431828. The C allele of 
rs13431828 was associated with ER visits/hospitalizations (OR = 1.32, 
P = .02) and increased risk of “any exacerbations” (1.31, P = .02; Table 1A‐
C, Figure 1). No evidence of heterogeneity was found (Q = 3.6, P = .33).

Conditional analysis in PACMAN on rs13431828, rs142010, 
rs1921622, and rs10204137 for “any exacerbation” indicated 
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that rs13431828 was the most independently associated SNP  
(Table S6).

These results provide new evidence that children and adolescents 
with the IL1RL1 risk alleles are prone to more exacerbations than chil‐
dren with the protective genotypes, while using ICS. This extends pre‐
vious findings that SNPs in IL1RL1 are important in different asthma 
phenotypes, with more prominent effect in studies investigating child‐
hood‐onset asthma.5 Rs1420101 has been specifically linked to the 
type 2‐high asthma phenotype,6 as well as to increased eosinophil num‐
bers in peripheral blood.9

We observed replicable associations of the same IL1RL1 risk alleles 
in the Caucasian (PACMAN) and Hispanic/Latino (GALA II) population, 
but not in the African American study population (SAGE). This could be 
due to differences in ethnicity between study groups and LD patterns 
in this gene, suggested by the observed differences in allele frequency 
between the cohorts (see Table S3). It is possible that our results may 
have been influenced by factors other than currently included in the 
model such as inhalation technique or respiratory infections, but as 
such data were not available in all cohorts these were not considered.

Different mechanisms may explain our findings. Firstly, IL1RL1 
SNPs may modify the asthma phenotype into a more severe phe‐
notype, with more severe exacerbations, which are insufficiently 
treated with the ICS dosages prescribed to the children in this study. 
The risk alleles described in our study for rs13431828 (C), rs1420101 
(T), rs1921622 (A), and rs10204137 (A) were previously associ‐
ated with lower IL1RL1 blood methylation levels and lower serum 
IL1RL1‐a levels,7 indicating that the associated SNPs are important 
for regulation of IL1RL1 expression. Another mechanism to explain 
our results is that IL1RL1 may have a direct pharmacogenetic inter‐
action with steroids resulting in reduced efficacy of the steroids. 

Rs10204137 is a missense mutation and has been associated with 
increased IL1RL1‐a expression, which induces IL‐33 expression and 
enhances IL‐33 responsiveness.10 Moreover, rs10204137 tags an LD 
block that contains 5 nonsynonymous coding SNPs that result in 
changes to four amino acids in the intracellular domain of IL1RL1‐b. 
These coding changes affect the Toll/interleukin‐1 receptor (TIR) 
domain of the intracellular part of the IL1RL1 protein, which plays an 
important role in IL‐33 induced signal transduction by IL1RL1. This 
triggers a signaling cascade that eventually results in the activation 
of downstream mitogen‐activated protein kinases and transcription 
factors, such as nuclear factor kB (NF‐kB) and activator protein‐1.5 
Through this pathway, asthmatic children carrying the risk allele of 
rs10204137 may be more sensitive to IL‐33. As IL1RL1 is expressed 
on effector cells of the type‐2 immune response such as mast cells, 
eosinophils, basophils, Th2 cells and ILC2 cells,11 an increased sensi‐
tivity to IL33 will contribute to an exaggerated type‐2 inflammatory 
response after viral or allergen exposure.

Secondly, IL1RL1 may have a direct pharmacogenetic interaction 
with steroids resulting in reduced efficacy of the steroids. A recent 
study on ulcerative colitis found an association between dexameth‐
asone and upregulation of soluble IL1RL1 transcription mediated via 
interaction of the steroid with the glucocorticoid‐responsive ele‐
ment in the IL1RL1 promotor patients carrying polymorphisms.12 To 
gain more insight into the mechanism underlying our finding, future 
studies should be performed in larger cohorts or with the use of bio‐
bank data.

This study shows that an IL1RL1 SNP effect is present in asth‐
matic children using ICS. This highlights the potential investigating if 
novel treatment strategies targeting the IL33/IL1RL1 pathway could 
be used as add‐on asthma treatment in patients using ICS.

F I G U R E  1   Forest plot showing the 
meta‐analysis result of the association 
between the IL1RL1 SNP rs13431828 
(C) and ‘any exacerbation’ (P = 0.02). 
Included cohorts are PACMAN, GALA II, 
SAGE, SLOVENIA and ESTATe. Odds ratio 
(OR) and 95% confidence intervals (CI) 
are shown for the effect alleles (additive 
model). ‘Any exacerbation’ was defined as 
ER visits/hospitalizations and/or OCS use
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TA B L E  1   Results of associations of IL1RL1 SNPs with ER visits/hospitalizations, OCS use, and “any exacerbation” per study and  
meta‐analysis

A.

SNP
Allele 
(R/E)a

ER visits/hospitalisations

PACMAN (n = 698) GALA II (n = 876) SAGE (n = 525) SLOVENIA (n = 187) ESTATe (n = 104) Meta‐analysis (n = 2421)

OR (95% CI) P Pb OR (95% CI) P Pb OR (95% CI) P Pb OR (95% CI) P Pb OR (95% CI) P Pb OR (95% CI) P Pb N

rs13431828 T/C 2.78 (1.11‐6.94) .02 .04 1.45 (1.04‐2.03) .03 .04 1.18 (0.88‐1.58) .26 .52 1.20 (0.62‐2.35) .57 .77 1.01 (0.18‐5.72) .99 .99 1.32 (1.08‐1.62) .005 .02 2412

rs1041973 A/C 1.35 (0.77‐2.37) .30 .30                 

rs1420101 G/A 1.61 (1.05‐2.47) .02 .04 1.28 (1.04‐1.58) .02 .04 0.90 (0.69‐1.17) .45 .60 1.09 (0.67‐1.76) .72 .77 1.35 (0.56‐3.25) .51 .94 1.16 (1.01‐1.34) .03 .06 2412

rs1946131 G/A 1.47 (0.81‐2.68) .20 .24                 

rs1921622 G/A 1.89 (1.18‐3.03) .01 .04 1.30 (1.06‐1.59) .01 .04 0.74 (0.55‐0.99) .05 .20 0.93 (0.57‐1.51) .77 .77    1.13 (0.97‐1.31) .13 .17 2308

rs10204137 G/A 1.37 (0.87‐2.16) .18 .24 1.24 (0.99‐1.56) .06 .06 1.01 (0.76‐1.35) .92 .92 0.75 (0.46‐1.22) .24 .77 0.81 (0.34‐1.94) .63 .94 1.10 (0.95‐1.29) .18 .18 2412

B.

SNP
Allele 
(R/E)a

OCS use

PACMAN (n = 720) GALA II (n = 876) SAGE (n = 525) SLOVENIA (n = 187) ESTATe (n = 104) Meta‐analysis (n = 2421)

OR (95% CI) P Pb OR (95% CI) P Pb OR (95% CI) P Pb OR (95% CI) P Pb OR (95% CI) P Pb OR (95% CI) P Pb N

rs13431828 T/C 2.70 (1.08‐6.79) .03 .09 1.25 (0.87‐1.79) .23 .65 0.93 (0.68‐1.27) .65 .70 1.60 (0.57‐4.47) .36 .90 1.15 (0.46‐2.85) .77 .77 1.13 (0.91‐1.41) .24 .78 2412

rs1041973 A/C 1.52 (0.86‐2.66) .15 .27                 

rs1420101 G/A 1.32 (0.88‐1.98) .18 .27 1.10 (0.86‐1.40) .49 .65 0.78 (0.57‐1.05) .09 .20 0.95 (0.49‐1.85) .89 .90 0.68 (0.34‐1.36) .28 .77 0.98 (0.84‐1.16) .90 .90 2412

rs1946131 G/A 1.08 (0.57‐2.02) .83 .83                 

rs1921622 G/A 1.20 (0.78‐1.86) .41 .49 1.10 (0.88‐1.38) .44 .65 0.76 (0.54‐1.08) .10 .10 0.81 (0.41‐1.59) .54 .90    1.00 (0.84‐1.18) .96 .96 2308

rs10204137 G/A 1.69 (1.05‐2.73) .03 .09 1.03 (0.81‐1.32) .80 .80 0.94 (0.69‐1.28) .70 .70 1.04 (0.52‐2.05) .90 .90 1.15 (0.58‐2.27) .70 .70 1.07 (0.90‐1.27) .39 .39 2412

C.

SNP
Allele 
(R/E)a

Any exacerbation

PACMAN (n = 720) GALA II (n = 876) SAGE (n = 525) SLOVENIA (n = 187) ESTATe (n = 104) Meta‐analysis (n = 2421)

OR (95% CI) P Pb OR (95% CI) P Pb OR (95% CI) P Pb OR (95% CI) P Pb OR (95% CI) P Pb OR (95% CI) P Pb N

rs13431828c T/C 2.63 (1.33‐5.18) .006 .03 1.63 (1.14‐2.32) .009 .01 1.04 (0.78‐1.39) .80 .80 1.19 (0.66‐2.12) .73 .83 1.09 (0.47‐2.56) .83 .86 1.31 (1.07‐1.59) .007 .02 2412

rs1041973 A/C 1.28 (0.84‐1.96) .26 .26                 

rs1420101 G/A 1.52 (1.08‐2.13) .01 .03 1.35 (1.06‐1.72) .01 .01 0.83 (0.63‐1.10) .18 .36 1.05 (0.65‐1.67) .83 .83 0.85 (0.48‐1.53) .60 .60 1.14 (0.98‐1.32) .07 .14 2412

rs1946131 G/A 1.37 (0.83‐2.25) .22 .26                 

rs1921622 G/A 1.45 (1.03‐2.04) .03 .04 1.35 (1.08‐1.70) .009 .01 0.67 (0.50‐0.90) .009 .03 0.84 (0.52‐1.35) .47 .83    1.08 (0.92‐1.25) .31 .31 2308

rs10204137d G/A 1.52 (1.05‐2.18) .02 .04 1.29 (1.00‐1.66) .04 .04 0.91 (0.68‐1.21) .50 .66 0.81 (0.50‐1.30) .38 .83 0.95 (0.53‐1.70) .86 .86 1.11 (0.96‐1.30) .14 .18 2412

Note: Bold‐faced results are FDR corrected significant results (P < .05). Missing values mean the SNP was not present in the study.
Abbreviations: CI, confidence interval; ER. Emergency room; OCS, oral corticosteroid; OR, odds ratio; SNP, single‐nucleotide polymorphism.
aR = reference allele, E = effect allele. 
bFDR corrected P value. 
crs13431828 was not present in ESTATe, and rs3771180 was used as a surrogate marker (LD r2 = 1). 
drs10204137 was not present in ESTATe, and rs4988956 was used as a surrogate marker (LD r2 = 1). 
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Transcriptomic and methylomic features in asthmatic and 
nonasthmatic twins

To the editor,
Asthma is the most prevalent chronic lung inflammatory disorder 

characterized by reversible airflow obstruction, affecting 358 mil‐
lion people worldwide,1 with aggravating factors like obesity, atten‐
tion‐deficit/hyperactivity disorder, socioeconomic status like poor 
healthcare affordability and facility, smoking and alcohol intake.2 
RNA sequencing (RNA‐seq) in atopic asthma,3 childhood asthma4 
and adult‐onset severe asthma5 has improved our understanding 
of cellular and molecular pathways involved. Genome‐wide DNA 
methylation studies investigating 5‐methylcytosine in CpG sites 
have linked methylation in lung cells with asthma endotypes and 
genetic risk.6 Studies focusing on integration of genomics and inter‐
actomes have also been performed in asthma.7 However, this multi‐
faceted asthma phenotype together with genetic heterogeneity and 
environmental influences makes it challenging to fully understand 
the features that trigger and influence asthma development and 
progression. Towards addressing these challenges, we investigated 
transcriptomic and methylomic data in a twin cohort of asthmatic 
and nonasthmatic individuals.

In this exploratory study, the individuals were identified as asth‐
matics (GINA score ≥ 1) according to the Global Strategy for Asthma 
Management and Prevention guidelines (http://ginas thma.org). 
Participants with any viral or bacterial infections or immune disorder 
were excluded. All the participants with asthma were on a low dose 
of inhaled corticosteroid and rescue inhaler (albuterol) only. We col‐
lected PBMC from 16 female monozygotic twin pairs (5 concordant 
asthmatic pairs; 8 concordant nonasthmatic pairs and 3 pairs discor‐
dant for asthma) among which 13 individuals were asthmatic (GINA 
score 1 n = 4; 2 n = 4; 3 n = 5, Table 1). The transcriptomic RNA‐seq 
was done on all 16 twin pairs, and the methylomic whole‐genome 
bisulfite sequencing was done on 8 twin pairs (3 concordant asth‐
matic pairs; 5 concordant nonasthmatic pairs) wherein 6 individuals 
were asthmatics (GINA score 1 n = 1; 2 n = 1; 3 n = 4). Methods are 
detailed in Data S1.

Unsupervised hierarchical clustering of transcriptomic profiles 
shows 9/16 twin pairs clustering together, while only 2/8 twin pairs 
cluster together in methylomic profiles. 2/3 twin pairs discordant 
for asthma clustered together in transcriptomic profiles reflects 
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