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Abstract

Genome-scale models of metabolism have only been analyzed with the constraint-based modelling philosophy and there
have been several genome-scale gene-protein-reaction models. But research on the modelling for energy metabolism of
organisms just began in recent years and research on metabolic weighted complex network are rare in literature. We have
made three research based on the complete model of E. coli’s energy metabolism. We first constructed a metabolic
weighted network using the rates of free energy consumption within metabolic reactions as the weights. We then analyzed
some structural characters of the metabolic weighted network that we constructed. We found that the distribution of the
weight values was uneven, that most of the weight values were zero while reactions with abstract large weight values were
rare and that the relationship between w (weight values) and v (flux values) was not of linear correlation. At last, we have
done some research on the equilibrium of free energy for the energy metabolism system of E. coli. We found that Eout (free
energy rate input from the environment) can meet the demand of Ech

in (free energy rate dissipated by chemical process) and
that chemical process plays a great role in the dissipation of free energy in cells. By these research and to a certain extend,
we can understand more about the energy metabolism of E. coli.
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Introduction

Since various ‘Omics’ datasets are becoming available, biology has

transited from a data-poor to a data-rich environment. Systems

biology has become a rapidly growing field as well [1]. Genome-scale

models of metabolism have only been analyzed with the constraint-

based modelling philosophy [2,3]. Genome-scale network models of

diverse cellular processes have been generated and there have been

several genome-scale GPR (gene-protein-reaction) models [4–10].

An extensive set of methods for analyzing these genome-scale models

have also been developed and have also been applied to study a

growing number of biological problems [12,13]. But research on the

energy metabolism of organisms just begin in recent years, such as

FVA (flux variability analysis) [14,15] and EBA (energy balance

analysis) [16–18], and so on. All these methods are depended on the

modelling of energy metabolism system of organisms. Data of Gibbs

free energy of formation of every compound and Gibbs free energy

change of every reaction is the core in this kind of modelling. Up to

now, the most detailed genome-scale GPR model is the iAF1260

version of E. coli [5], but the modelling of it’s energy metabolism is still

incomplete [5]. There are 2381 reactions (not including the reaction

defined for growth) and 1039 metabolites in E. coli_iAF1260, and

apart from 304 EX_ & DM_ reactions (The text ‘EX_’ denotes an

exchange reaction for a metabolite that can enter or leave the extra-

cellular compartment. ‘DM_’ reactions are similar and signify

compounds that the degradation pathway is unknown), the

reconstructed reaction number is 2077 [5]. By the newest group

contribution method (GCM), DrG of 1996 reactions (96%) and

Df Gof872compounds (84%)canbeestimated [19–22].There leaves

Gibbs free energy change (DrG) of 81 reactions (4%) and Gibbs free

energy of formation (Df G) of 167 compounds (16%) unknown for E.

coli_iAF1260 [5,19]. We have complemented, by computational

method, the remaining unknownDrG (including the standard Gibbs

free energy change DrG’0 and the free energy change of reaction at

1 mM concentrations for all species DrG’m) and Df G (just the

standard Gibbs free energy formation Df G’0). Energy metabolism

models of other organisms, as we know, do not exist up to now.

Research on metabolic weighted complex network are also rare in

literature except that Almaas has used flux value as the weight of

metabolic network [23].

In this paper, we have done three research on the complete model

of E. coli’s energy metabolism. First, we construct a metabolic

weighted network using the rates of free energy consumption in

metabolic reactions as the network weights. Then we did some

research on some structural characters of the metabolic weighted

network we constructed. At last, we did some research on the

equilibrium of free energy for the energy metabolism system of E. coli.

Materials and Methods

Before constructing the metabolic weighted network, we

complement the remained unknown DrG and Df G in E. coli

_iAF1260. Then we construct the model using the rates of free

energy consumption in metabolic reactions as the network weights.
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At first, we draw the metabolic unweighted network of E. coli; we

then calculate the flux distribution of E. coli_iAF1260; the third, we

calculate the weights of the metabolic weighted network of E. coli

that we will construct; at last, we calculated the input and output of

free energy about E. coli.

Complement the Remained Unknown Free Energy
Change of E. Coli_iAF1260

1) Infer the unknown standard Gibbs free energy of

formation for 167 compounds. The stoichiometric matrix, S,

is the center-piece of a mathematical representation of genome-

scale metabolic networks. It represents each reaction as a column

and each metabolite as a row, where each numerical element is the

corresponding stoichiometric coefficient. In the calculation of Df G

of compounds or DrG of reactions, we should use ‘‘reaction with

marvin charges (pH7)’’ as the stoichiometry [5].

There are 1039 metabolites in the iAF1260 model, and if

distinguishing the different compartments in the cell, i.e. [c]

(cytoplasm), [e] (extracellular space), and [p] (periplasm), the total

number of metabolites in the model is 1668. So there are 1668

rows in the stoichiometric matrix S. For a certain compound even

in different compartments, the free energy change of formation is

the same. In these 1039 metabolites, Gibbs free energy of

formation of 872 compounds (84%) can be estimated by group

contribution method [19–22], while 167 compounds (16%)

remained unknown for E. coli_iAF1260. There are 2381 reactions

in the iAF1260 model, so there are 2381 columns in the

stoichiometric matrix S. For those 2077 reconstructed reactions,

Gibbs free energy change of 1996 reactions (96%) can be

estimated by group contribution method [19–22], while 81

reactions (4%) remained unknown for E. coli_iAF1260.

From the equation (1) and (2) of the paper [19], we can infer

that

DrG
0
est0~

Xm

i~1

vi

XNgr

j~1

njDgrG
0
j0

 !
for each compoundð Þ ð1Þ

Df G’0est~
XNgr

j~1

njDgrG’0j for each compoundð Þ ð2Þ

DrG’0est~
Xm

i~1

vi(D
i
f G’0est) ð3Þ

Where DrG’0est is the estimated DrG’0; vi is the stoichiometric

coefficient of species i in the reaction, and m is the number of

species involved in the reaction; DgrG’0j is the contribution of group

j; nj is the number of instances of group j in the molecular

structure; Ngr is the number of groups for which DgrG’0j is known;

Df G’0est is the estimated Df G’0; Di
f G’0est is the estimated Gibbs free

energy of formation of i-th species. Equation (3) reflects the

relationship between Df G’0 and DrG’0for a reaction.

From those 167 compounds with unknown Df G’0, we seek out

their involved reactions. Gibbs free energy change of one reaction

can not be calculated, if a compound with unknown free energy

change of formation appears in it. But the case is not for all. In the

reactions involving the structural group with unknown energy, the

structural group appears on both sides of the reaction, which

means it cancels out of ‘‘group energy change’’ for the reaction.

That is to say, while the compounds contain a structural group

with unknown energy (such as ‘‘R’’ group, a pseudoatom) and

appear in a reaction and the reaction does involve a change in the

group, we can still calculate and estimate the energy change of the

reaction, but we cannot estimate the formation energies of the

compounds. Because a reaction with unknown DrG may include

several compounds with unknown Df G, from equation (3), the

values of those 81 unknown DrG and the values of those 167

unknown Df G may be interdependent. So we cannot infer the

unknown Df G of compounds in a reaction just from the value of

known DrG of this reaction, but we may infer the 167 unknown

Df G of compounds from all of the values of known DrG by solving

their simultaneous equations.

Now we infer these unknown Df G’0 from the known DrG’0 data

of those involved reactions. We use vector X (with dimension

16761) to indicate the values of those unknown Df G’0 of 167

compounds; Use vector P (with dimension 166861) to indicate the

values of Df G’0 of entire 1668 compounds in the model of E.

coli_iAF1260; Let the value of P(i), i-th sub-variable of P, be 0, if

the Df G’0 of i-th compound is unknown; Use vector F (with

dimension 238161) to indicate the values of DrG’0 of entire 2381

reactions in the model of E. coli_iAF1260. From equation (3), we

can obtain the following equation

ST:(T:XzP)~F ð4Þ

Where T (with dimension 16686167) is the transfer matrix from

vector X to the vector indicating the values of Df G’0 of entire 1668

compounds in the model of E. coli_iAF1260; S (with dimension

166862381) is the stochiomatrix of E. coli_iAF1260, ST is its

transpose. Further we obtain

ST:T:X~F{ST:P ð5Þ

Write it as

�SS:X~�FF ð6Þ

Where �SS~ST:T, �FF~F{ST:P
The dimension of vector �FF is 2381, and there are 1996 �FF(i) with

known DrG’0. But there are 244 rows of �SS:X with unknown DrG’0

in the corresponding 1996 rows of �FF(i), for the product of the

corresponding rows of �SS and X includes the sub-variables of X and

while the remained 1752 rows of �SS:X do not include the sub-

variables of X. So we can use these 244 rows from �SS:X~�FF to get a

new equation

ŜS:X̂X~F̂F ð7Þ

Where the dimensions of matrix ŜS and F̂F are respectively

2446167 and 24461. By solving equation (7), we can obtain the

Df G’0 values of those 167 compounds which are unknown

previously. Although equation (7) is not an exact equation (the

row rank of matrix ŜS is not equal to the column rank of matrix ŜS),

its solution is of least-squares.

2) Calculate the unknown Gibbs free energy change of 81

reactions. Conversely, we now use the obtained Df G’0 data to

Model of Energy Metabolism in E. coli
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calculate the 81 unknown DrG’0. The method is to substitute the

solution value (defined as X0) of X̂X which we got from equation (7)

to the equation (4), and by a simple calculation, we got the vector

F0 of DrG’0

ST:(T:X0zP)~F0 ð40Þ

Now all the sub-variables of F0 are known, so we can now

obtain the DrG’0 values of those 81 reactions which are unknown

previously.

3) Adjust DrG’0(the standard Gibbs free energy change) to

DrG’m (the free energy change of reaction at 1mM
concentrations). The 1M reference state for the metabolite

concentrations on which DrG’0 is based does not accurately reflect

the metabolite concentrations found in the cell (approximately

1 mM). Thus, we should computationally adjust all estimated

DrG’0 to the free energy change of reaction at 1 mM concentra-

tions for all species, DrG’m. The relationship between DrG’m and

DrG’0is as follows [5,19].

DrG’m~DrG’0zDGTransportzRT
XPR

i~1

niln(0:001) ð8Þ

Where R is the universal gas constant; T is the temperature

assumed to be 298 K; ni is the stoichiometric coefficient of

compound i in the reaction (ni is negative for reactants and positive

for products); PR is the set of products and reactants in this

reaction. Note also that for H2, we should substitute 0.000034 for

0.001; For O2, we should substitute 0.000055 for 0.001; For H2O

and H+, we should not include these compounds in the

concentration portion of the calculation at all [5,19]. Here, all of

the DrG’mvalues reported in our work have included the energy

contribution of the transmembrane electrochemical potential and

proton gradient for all reactions involving transport across the

cytoplasmic membrane.

Unweighted Network of E. Coli_iAF1260
The general features of E. coli_iAF1260 are given in Ref. [5].

Two SBML (systems biology markup language) format files to the

model E. coli_iAF1260 can be downloaded from the supplemen-

tary information of Ref. [5]. The in silico model that we used is E.

coli_iAF1260_flux1.xml. SBML file properties are also given in

Ref. [5]. The dimensions of rxns, mets, and genes are

respectively 2382, 1668, 1261. The minimal media of in silico

model is also an important aspect. The computational minimal

Figure 1. Flux distribution of E. coli_iAF1260. X-axis indicating every reaction in rxns (the order is as the same as in rxns, total 2382) and y-axis
indicating the value of its corresponding flux (unit is mmol gDW21h21). Rxns is the reaction set in the model.
doi:10.1371/journal.pone.0055137.g001

Table 1. Our computation result comparing with Ref. [5].

A B C D

A 81 244 1752 1996

B can’t compare consistent consistent consistent

Note: Row A – Number in E. coli_iAF1260; Row B – Our computation result
comparing with Ref. [5].
Column A – reactions with unknown DrG; .
Column B – reactions with known DrG but involving compounds with unknown
Df G; .

Column C – reactions with known DrG but not involving compounds with
unknown Df G; .

Column D – total reactions with knownDrG.
doi:10.1371/journal.pone.0055137.t001

Figure 2. Weight value distribution of the metabolic network
of E. coli_iAF1260. X-axis indicates every reaction in the reconstructed
reactions (the order is as the same as in rxns, total 2077) and y-axis
indicates the value of its corresponding weight. rxns is the reaction set
in the model.
doi:10.1371/journal.pone.0055137.g002

Model of Energy Metabolism in E. coli
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media of E. coli_iAF1260 is also included in the supplementary

information of Ref. [5]. In the method of constraint-based

analysis, the biomass objective function (BOF) should be defined.

The BOF was generated by defining all of the major and essential

constituents that make up the cellular biomass content of E. coli

[5]. Gene-protein-reaction associations embodied in rxnGene-
Mat matrix, which is a matrix with as many rows as there are

reactions in the model and as many columns as there are genes in

the model. The ith row and jth column contains a one if the jth

gene in genes is associated with the ith reaction in rxns and zero

otherwise. The simulation condition (the nutrients and the uptake

rates of the nutrients) of this paper is the same as in the file.

Flux Distribution of E. Coli_iAF1260
We now calculate the flux distribution of E. coli_iAF1260. The

computational method we use is flux balance analysis (FBA) [11],

one of the fundamental genome-scale phenotypic calculations,

which can simulate cellular growth. FBA is based on linear

optimization of an objective function, which typically is biomass

formation. Given an uptake rate for key nutrients and the biomass

composition of the cell (usually in mmol component gDW21 and

defined in the biomass objective function), the maximum possible

growth rate of the cells can be predicted in silico.

max Z~vgrowth ð9Þ

Subject to

S:v~0 ð10Þ

aivvivbi ð11Þ

Where S is the stoichiometric matrix, and ai and bi define the

bounds through each reaction vi. The flux range was set arbitrarily

high for all internal reactions so that no internal reaction restricted

the network, with the exception of irreversible reactions, which

have a minimum flux of zero. The inputs to the system were

restricted to a minimal media. We use the COBRA toolbox [11] to

carry out this computation of FBA. The flux distribution of E.

coli_iAF1260 is illustrated in Fig. 1.

Metabolic Weighted Network Construction for E.
Coli_iAF1260

By the newest group contribution method, DrGof 1996

reactions (96%) and Df G of 872 compounds (84%) can be

estimated [19–22]. We have complemented, by computation

method, the remained unknown DrG (including the standard

Gibbs free energy change DrG’0 and the free energy change of

reaction at 1 mM concentrations for all species DrG’m) and Df G

(just the standard Gibbs free energy formation Df G’0). So a

complete set of the data of free energy changes for reactions in E.

coli can be obtained. .

Now we can construct a metabolic weighted network. There is

not a standard manner of determining reaction edge weights and

Almaas has used flux value as the weight of metabolic network

[23]. Here we use the rates of free energy dissipation in metabolic

reactions as the network weights. For DrG’m of a reaction is the

free energy dissipation in unit mol while flux is the passed mol

number in unit time (as second). So the rate of free energy

dissipation in every reaction is the multiplying product of the flux

in this reaction and the free energy change of this reaction.

wi~DrG’mi :vi ð12Þ

Where wi is the weight of i-th edge (i.e. reaction) of metabolic

network, DrG’mi is the free energy change of i-th reaction and vi is

the flux value of i-th reaction.

Calculation of Input and Output of Free Energy in E.
Coli_iAF1260

For an open system at nonequilibrium steady state, from the

theory of system science, its free energy rate dissipated by the

system, Ein, is in absolute value equal to the free energy rate input

by the environment, Eout.

EoutzEin~0 ð13Þ

We also distinguish the free energy rate Ein to Ech
in and E

ph
in

respectively dissipated by chemical process and by physical process

that take place in the cell (eq. 14a), while the free energy rate input

from environment and through physical process can be neglect-

ed(eq. 14b).

Ein~Ech
in zE

ph
in ð14aÞ

Table 2. w scopes, number of reactions (NR) and their percentages.

w scopes ,2200 2200,2100 2100,250 250,0 0 0,40 40,100 .100

NR 2 0 3 248 1753 69 2 0

% 0.1 0 0.14 11.94 84.40 3.32 0.1 0

doi:10.1371/journal.pone.0055137.t002

Table 3. w scopes, number of reactions (NR) and reaction
names (RM).

w scopes ,2200 2100,250 .40

NR 2 3 2

RM CYTBO3_4ppNADH16pp ATPM
GLCptspp
PDH

ATPS4rpp
GAPD

doi:10.1371/journal.pone.0055137.t003

Model of Energy Metabolism in E. coli
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Eout~Ech
outzE

ph
out&Ech

out ð14bÞ

For E. coli, we have known all of its reactions, the values of

corresponding DrG’m and the values of corresponding flux, so we

can calculate its Ech
in and Eout using the following equation (15) and

(16).

Ech
in ~

XRin

i

DrG’mi :vi ð15Þ

Where Rin is the set of reactions of the metabolic network

excluding EX_ & DM_ reactions (The text ‘EX_’ denotes an

exchange reaction for a metabolite that can enter or leave the

extra-cellular compartment. ‘DM_’ reactions are similar and

signify compounds that the degradation pathway is unknown),

DrG’mi is the free energy change of i-th reaction in Rin and vi is the

flux value of i-th reaction inRin.

Eout&Ech
out~

XRout

j

DrG’mj :vj ð16Þ

Where Rout is the set of EX_ & DM_ reactions of the metabolic

network, DrG’mj is the free energy change of j-the reaction in Rout

and vj is the flux value of j-th reaction in Rout.
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Figure 3. The scatter diagram (w, v). X-axis indicates w and y-axis
indicates v.
doi:10.1371/journal.pone.0055137.g003

Table 5. Equilibrium of free energy.

Eout Ech
in E

ph
in

value 1890.1 21424.7 2465.4

% 100% 75.37% 24.63%

doi:10.1371/journal.pone.0055137.t005
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Results and Discussion

Complement the Remained Unknown Free Energy
Change of E. Coli_iAF1260

With our method, we obtain Gibbs free energy change (DrG) of

81 reactions (see Table S1) and Gibbs free energy of formation

(Df G) of 167 compounds (see Table S2) which are previously

unknown for E. coli_iAF1260. We add our computed Df G’0 of

those 167 compounds to the former known Df G’0 of 872

compounds, and obtain a complete set of Df G’0 of E.

coli_iAF1260. The entire Df G’0 values of E. coli_iAF1260 are

consistent with the known DrG’0 of 1996 reactions (see Table S2

and Table 1). So we conclude that our computed Df G’0 of those

167 compounds can also agree with the unknown DrG’0 of 81

reactions. Up to now, there is no experimental data in literatures

to test the Df G’0 values of those 167 compounds and the DrG’0

values of those 81 reactions.

It is important to know free energies for all metabolites and

reactions in E. coli by using our method. First of all, the reason why

GCM can’t calculate the free energies for all metabolites and

reactions in E. coli or other organisms is that the free energies of

some molecular substructures are present in organic-inorganic

complexes involving iron, nickel, or cobalt for which the new

group contribution method has not been designed [19]. So if we

use large scale free energy datasets, not confined to E. coli, such as

free energies for reaction of KEGG [19], we will get free energies

for more metabolites which can’t be calculated by the GCM in ref.

[19]. Even more, we can estimate some of the free energies of

some molecular substructures in organic-inorganic complexes. So

the method in our paper will directly contribute to GCM. At the

same time, free energies for reactions are useful reference in

determine the directions of reactions in cell [5,17] and can also be

used as constraints in FBA [18], so if we know all the free energies

of reactions for an organism, we can better carry out these tasks.

Some Structural Characters of the Metabolic Weighted
Network of E. Coli_iAF1260

1) Uneven distribution of the weight values of the

metabolic weighted network of E. coli_iAF1260. We can

calculate the weight values of the metabolic network of E.

coli_iAF1260 using the above equation (12) (see Table S2). We

can easily find that the distribution of the weight values is uneven

and that most of the weight values are near zero while reactions

with abstract large weight values are rare, illustrating in Fig. 2 and

Table 2. The reason for the uneven distribution of weight values

maybe lies in the uneven distribution of fluxes and the uneven

distribution of Gibbs free energy change of reactions. From the

uneven distribution of weight values, we can learn that there just

are some main channels of free energy dissipation in the

physiological process of E. coli. Table 3 has illustrated some

reaction channels which have large weight values and Table 4

gives the functions of these reactions.

2) Reactions of large weight values and their related

genes. Table 3 shows high w scopes, corresponding reaction

number within these scopes and these reaction names, and we call

these reactions the highly-dissipative reactions in the energy

metabolism of E. coli. We examined into these large weights and

found that they were the result of joint action from flux and free

energy dissipation, while their DrG’m values were not the highest

level. Table 4 gives all of the genes related to these reactions and

the rules among genes in these reactions (rules are defined as the

relationship among genes catalyzing a reaction such as ‘‘AND,

OR, NOT’’ and these rules can be found in Supplementary

Information 1 of [5]), and we find that all of them are not essential

genes from the literature [5]. This is important in the energy

metabolism of E. coli, the deletion or loss of one gene will not result

in death, and this may be due to the result of evolution.

3) Correlation between the weight values and the flux

values. By comparing the distribution of the weight values

(Fig. 2) with the distribution of fluxes (Fig. 1), we can also find

that they are not consistent. Fig. 3 is the scatter diagram (w, v),

2077 data pairs in total. Many data pairs are superposition and

locate at the same place. From the diagram, we can easily find that

the relationship between w and v is not of linear correlation. So we

can’t say that a reaction with high flux has a corresponding high

weight and vice verse, and in other words, we can’t say that a

reaction with high flux will dissipate more free energy. In fact,

many different flux values correspond to the same weight value.

Although there is no consistency between flux values and

energetic weights, energetic weights are very useful and important

in determine the distribution of reaction fluxes. We have defined

energetic weights as the rates of free energy dissipations, i.e. the

multiplying product of the reaction fluxes and the free energy

changes of reactions. Free energy dissipation can be regarded as

the counterpart of entropy increase. Based on maximum entropy

production principle (MEPP), the authors of the paper have

developed a method to improve the prediction accuracy of flux

balance analysis [24].

Equilibrium of Free Energy in the Energy Metabolism of
E. Coli_iAF1260

There are 2077 reactions in Rin and 304 reactions in Rout of E.

coli_iAF1260. The values of Ech
in and Eout which we calculated are

respectively 21424.7 and 1890.1, see Table 5. So Eout can meet

the demand of Ech
in and Eout is a little more than Ech

in . The absolute

difference between Eout and Ech
in is an estimation of E

ph
in , and we

can find that it takes about a quarter of Ein, so we can conclude

that chemical process plays a great role in the dissipation of free

energy in cells while physical process can not be ignored.

Conclusions
In this paper, we constructed a metabolic weighted network by

using the rates of free energy consumption within metabolic

reactions as the network weights. We found several important and

interesting results: 1) the distribution of the weight values was

uneven; 2) the relationship between w (weight values) and v (flux

values) was not of linear correlation; 3) by analyzing of the free-

energy equilibrium for the energy metabolism system of E. coli, we

found that it is chemical process other than physical process that

plays a great role in the dissipation of free energy in cells. By these

research and to a certain extend, we can understand more about

the energy metabolism of E. coli.

In our next step, we will conduct a similar type of analysis for

different organisms using some of the other readily available

constraint-based models and run the baseline simulations for

growth in different carbon substrate environments. We will also do

FBA analysis including energetic weighting as an additional

constraint to bias flux distributions.

Supporting Information

Table S1 Standard Gibbs free energy formation Df G’0of 167

compounds.

(XLS)

Table S2 Gibbs free energy change (DrG) of 81 reactions

(including the standard Gibbs free energy change DrG’0 and the
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free energy change of reaction at 1 mM concentrations for all

species DrG’m), flux distribution and weight values.

(XLS)
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