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Abstract

The Escherichia coli transcription system is the best characterized from a biochemical and genetic point of view and has
served as a model system. Nevertheless, a molecular understanding of the details of E. coli transcription and its regulation,
and therefore its full exploitation as a model system, has been hampered by the absence of high-resolution structural
information on E. coli RNA polymerase (RNAP). We use a combination of approaches, including high-resolution X-ray
crystallography, ab initio structural prediction, homology modeling, and single-particle cryo-electron microscopy, to
generate complete atomic models of E. coli core RNAP and an E. coli RNAP ternary elongation complex. The detailed and
comprehensive structural descriptions can be used to help interpret previous biochemical and genetic data in a new light
and provide a structural framework for designing experiments to understand the function of the E. coli lineage-specific
insertions and their role in the E. coli transcription program.

Citation: Opalka N, Brown J, Lane WJ, Twist K-AF, Landick R, et al. (2010) Complete Structural Model of Escherichia coli RNA Polymerase from a Hybrid
Approach. PLoS Biol 8(9): e1000483. doi:10.1371/journal.pbio.1000483

Academic Editor: Leemor Joshua-Tor, Cold Spring Harbor Laboratory, United States of America

Received March 2, 2010; Accepted August 4, 2010; Published September 14, 2010

Copyright: � 2010 Opalka et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The use of the Rigaku/MSC microMax 007HF in the RU-SBRC was made possible by grant number 1S10RR022321-01 from the National Center for
Research Resources of the National Institutes of Health (NIH). SAD is a member of the NYSBC, a STAR center supported by the New York State Office of Science,
Technology, and Academic Research. This work was supported by NIH grants GM038660 to RL, GM073829 to FJA and SAD, and GM061898 and GM053759 to SAD.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Abbreviations: Abbreviations BBM1, b-b’ module 1; BBM2, b-b’ module 2; BH, bridge-helix; Cryo-EM, cryo-electron microscopy; Eco, Escherichia coli; hEM,
helical cryo-electron microscopy; MccJ25, microcin J25; NSLS, National Synchrotron Light Source; NYSBC, New York Structural Biology Center; paf, prevent Alc
function; RNAP, RNA polymerase; RU-SBRC, The Rockefeller University Structural Biology Resource Center; SBHM, sandwich-barrel hybrid motif; spEM, single-
particle cryo-electron microscopy; TEC, ternary elongation complex; Taq, Thermus aquaticus; TL, trigger-loop; TLH1, trigger-loop helix 1; TLH2, trigger-loop helix 2;
Tth, Thermus thermophilus; us-DNA, upstream DNA

* E-mail: asturias@scripps.edu (FJA); darst@rockefeller.edu (SAD)

Introduction

RNA in all cellular organisms is synthesized by a complex

molecular machine, the DNA-dependent RNA polymerase (RNAP).

In bacteria, the catalytically competent core RNAP (subunit

composition a2bb’v) has a molecular mass of ,400 kDa. Evolu-

tionary relationships for each of the bacterial core subunits have been

identified between all organisms from bacteria to man [1–3]. These

relationships are particularly strong between the two largest subunits,

b’ and b, which contain colinearly arranged segments of conserved

sequence (Figure 1) [3]. These conserved segments are separated by

relatively nonconserved spacer regions in which large, lineage-specific

gaps or insertions can occur [3,4]. The functional significance of these

lineage-specific differences is poorly understood due to a lack of

correlated biochemical and structural information. The bulk of our

biochemical and genetic knowledge on bacterial RNAP comes from

studies of Escherichia coli (Eco) RNAP but all of our high-resolution

structural information comes form Thermus RNAPs [5–8] as Eco

RNAP has not been amenable to X-ray crystallography analysis. The

Eco and Thermus b and b’ subunits harbor large sequence insertions

(.40 amino acids) that are not present in the other species and are

not shared across bacterial species (Figure 1) [3]. For example, the

Eco b’ subunit contains b’-insert-6 (or b’i6, using the lineage-specific

insert nomenclature of Lane et al. [3]), a 188-residue insertion in the

middle of the highly conserved ‘‘trigger loop.’’ On the other hand, the

Thermus b’ subunit lacks b’i6 but contains b’i2 (283 residues). High-

resolution structures of both of these lineage-specific inserts reveal

that they comprise repeats of a previously characterized fold, the

sandwich-barrel hybrid motif (SBHM) [9,10]. Similarly, the Eco b
subunit harbors three large insertions missing in Thermus, bi4 (119

residues), bi9 (99 residues), and bi11 (54 residues), whereas the

Thermus b subunit harbors bi12 (43 residues).

In some respects, the high-resolution Thermus RNAP structures

have served as good models to interpret the functional literature

obtained from biochemical, biophysical, and genetic studies of Eco

RNAP [11,12]. Nevertheless, a complete molecular model of Eco core

RNAP has not been available due to the absence of high-resolution

structural information on the Eco b subunit lineage-specific inserts.

The most detailed structural studies of Eco RNAP have come from

cryo-electron microscopy (cryo-EM) analysis of helical crystals at

about 15 Å-resolution [13]. This cryo-EM reconstruction of Eco core

RNAP could be interpreted in detail by fitting the Taq core RNAP X-

ray structure, revealing a large distortion of the structure (opening of

the active site channel by more than 20 Å) due to intermolecular
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contacts in the helical crystals. Strong electron density for Eco bi9 was

present in the cryo-EM reconstruction, but weak density for Eco bi4

and Eco b’i6 indicated these domains were flexible in the context of

the helical crystals [13]. Most previous EM reconstructions of various

forms of Eco RNAP have not revealed information concerning the

lineage-specific inserts (for instance, see [14]). A recent 20 Å-

resolution, negative-stain EM reconstruction of an activator-depen-

dent transcription initiation complex containing Eco RNAP [15]

allowed the positioning of the Eco b’i6 crystal structure [10], but the

lack of structural information on the other Eco lineage-specific inserts

prevented the detailed interpretation of additional densities present in

the reconstruction [15].

In this study, we used a combination of structural approaches to

generate a complete molecular model of Eco core RNAP. We

determined two new high-resolution X-ray crystal structures of Eco

RNAP b subunit fragments that include Eco bi4 and bi9 and used

an ab initio method to predict the structure of the small Eco bi11

[16]. The three available X-ray crystal structures of Eco RNAP

fragments (the two structures determined herein and the structure

of Eco b’i6 [10]) and the predicted structure of Eco bi11 were

incorporated into a homology model of Eco core RNAP. Finally,

we used cryo-EM imaging combined with single-particle image

analysis to obtain a low-resolution structure of the solution

conformation of Eco core RNAP in which densities corresponding

to lineage-specific insertions could be clearly identified. Flexible-

fitting of the Eco RNAP homology model into cryo-EM densities

generated a complete molecular model of Eco core RNAP and an

Eco RNAP ternary elongation complex (TEC).

Results

Crystal Structure of Eco RNAP b2-bi4
The lineage-specific insert bi4 (previously named b dispensable

region 1, or bDR1, or SI1 in the literature [13,17,18]), located

between bacterial shared regions bb6 and bb7 (using the bacterial

RNAP common region nomenclature of Lane et al. [3]) in the b2

domain (Figure 1) [5,19], was predicted to comprise from one to six

tandem repeats of a structural motif termed the b-b’ module 2

(BBM2) [4]. The bi4 of Acidobacteria, Mollicutes, and Proteobac-

teria (including Eco) was predicted to comprise two tandem BBM2

repeats [3]. Eco bi4 comprises b residues 225–343 (Figure 2A).

We prepared a construct comprising the Eco b2 domain

including bi4 inserted within it (Eco b residues 152–443, hereafter

called Eco b2-bi4). After reductive methylation [20], the protein

formed crystals that diffracted X-rays to 1.6 Å-resolution (Table 1).

The structure was solved by single-anomalous dispersion using a

dataset collected from crystals of selenomethionyl-substituted

protein [21] and refined to an R/Rfree of 0.209/0.229 at 1.6 Å-

resolution (Table 1, Figures 2, S1).

As expected, the Eco b2 (Eco b residues 151–224 and 344–445)

and the Thermus b2 (Taq or Tth b residues 138–325) domains have

similar overall structures (Figure S2). A superimposition of the two

domains over 100 residues (excluding flexible loops connecting

secondary structural elements) yields a root-mean-square deviation

in a-carbon positions of 1.68 Å. Significant differences in the

structures include: (i) the loop connecting the first two b-strands of

the b2 domain, where Eco has a 5-residue insertion (Eco b residues

164–168, disordered in our structure), and (ii) the loop connecting

the last two a-helices of the b2 domain, which includes a 7-residue

insertion present in Taq b (Taq b residues 293–299; Figures 2A,

S2).

The bi4 domain is inserted at the surface of the b2 domain

distal to the connection with the RNAP (Figure 2B). A 3-residue

segment of Taq b (Taq b 212–214) is replaced by the 119-residue

Eco bi4 (Figure 2A). The Eco bi4 folds into a compact, cylinder-

shaped domain about 22 Å in diameter and about 50 Å in length

(Figures 2B, 2C). The compact domain is connected to the b2

domain by two short connector loops (Eco b 225–226 and 337–

345). The bi4 domain packs against b2, resulting in the burial of a

modest 618 Å2 of surface area. As predicted [4], the Eco bi4

includes two tandem BBM2 motifs (Figure 2A, 2C).

Crystal Structure of Eco RNAP bflap-bi9
The lineage-specific insert bi9 (previously named b dispensable

region 2, or bDR2, or SI2 in the literature [13,18,22,23]) is located

between bacterial shared regions bb13 and bb14 [3] at the base of

the flap domain (Figure 1) [5,19]. The bi9 is found in

Acidobacteria, Aquificae, Bacteriodetes, Chlamydiae, Chlorobi,

Planctomycetes, Proteobacteria (including Eco), and Nitrospirae

[3]. Eco bi9 comprises b residues 938–1042 (Figure 3A).

A construct comprising the Eco flap domain (Eco b 831–1057),

including bi9, was crystallized as a complex with bacteriophage T4

gp33 (K.-A.F.T., P. Deighan, S. Nechaev, A. Hochschild, E.P.

Geiduschek, S.A.D., in preparation). The structure was solved by a

combination of molecular replacement (using the Taq flap domain

as a search model) and single-anomalous dispersion using data

collected from selenomethionyl-substituted protein (Table S1,

Figure S3) [21]. The complete structure was refined to an R/Rfree

of 0.264/0.291 at 3.0 Å-resolution. T4 gp33 interacts primarily

with the flap-tip and does not make any interactions with bi9.

These and further details of the complex with T4 gp33 will be

described elsewhere (K.-A.F.T., P. Deighan, S. Nechaev, A.

Hochschild, E.P. Geiduschek, S.A.D., in preparation).

The bi9 domain is inserted at the base of the flap domain, near

the C-terminal connection of the flap with the rest of the RNAP

and distal to the flap-tip (Figure 3B). A 6-residue segment of Taq b
(Taq b 809–814) is replaced by the 105-residue Eco bi9 (Figure 3A).

The Eco bi9 comprises two long, parallel a-helices of 38 and 32

Author Summary

Transcription, or the synthesis of RNA from DNA, is one of
the most important processes in the cell. The central
enzyme of transcription is the DNA-dependent RNA
polymerase (RNAP), a large, macromolecular assembly
consisting of at least five subunits. Historically, much of
our fundamental information on the process of transcrip-
tion has come from genetic and biochemical studies of
RNAP from the model bacterium Escherichia coli. More
recently, major breakthroughs in our understanding of the
mechanism of action of RNAP have come from high
resolution crystal structures of various bacterial, archae-
bacterial, and eukaryotic enzymes. However, all of our
high-resolution bacterial RNAP structures are of enzymes
from the thermophiles Thermus aquaticus or T. thermo-
philus, organisms with poorly characterized transcription
systems. It has thus far proven impossible to obtain a high-
resolution structure of E. coli RNAP, which has made it
difficult to relate the large collection of genetic and
biochemical data on RNAP function directly to the
available structural information. Here, we used a combi-
nation of approaches—high-resolution X-ray crystallogra-
phy of E. coli RNAP fragments, ab initio structure
prediction, homology modeling, and single-particle cryo-
electron microscopy—to generate complete atomic mod-
els of E. coli RNAP. Our detailed and comprehensive
structural models provide the heretofore missing structural
framework for understanding the function of the highly
characterized E. coli RNAP.

Structural Model of E. coli RNA Polymerase
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residues (Eco b 943–980 and 1006–1037, respectively) with a short,

hook-like connecting segment (residues 981–1005) at the end distal

to the flap (Figure 3B), forming an apparently rigid structure

reminiscent of a hook-and-ladder that extends nearly 65 Å out

from the flap domain. The bi9 is connected to the flap domain by

two connector loops (Eco b 938–942 and 1038–142) but makes

minimal interactions with the flap itself. The structure does not

appear to conform to the b-b’ module 1 motif (BBM1, similar to

the BBM2 motif, Figure 2C) predicted for bi9 [4]. The 105-residue

Eco bi9 is at the lower end of the size range for bi9 sequences,

which ranges from 105 residues in some Proteobacteria to 143

residues in some Bacteriodetes. An alignment of 307 non-

redundant bi9 sequences (see Dataset S1) reveals that the two

long, ladder a-helices do not harbor insertions; all of the insertions

occur in the hook-like connector at the distal end of bi9

(Figure 3A). Therefore, we conclude that bi9 has a conserved

core structure with the two ladder a-helices of conserved length.

Cryo-EM Reconstruction of Eco RNAP
We generated a single-particle cryo-EM (spEM) reconstruction

of Eco RNAP by analyzing ,42,000 images of Eco RNAP particles

preserved in vitreous ice (Figures 4A, S4–S6). Initial image

orientation parameters were determined using a 35 Å-resolution

RNAP model based on the Taq core RNAP X-ray structure [5].

Final refinement of image orientation parameters by projection

matching yielded a structure of Eco RNAP with a 0.5 Fourier-shell

cutoff resolution of ,11.2 Å (Figure S4). Nevertheless, information

beyond about 14 Å resolution was very weak, and so the figures

and analysis described herein were performed on a low-pass

Fourier-filtered map [24,25]. Although the cryo-EM grids were

prepared with samples of Eco RNAP holoenzyme (core RNAP plus

the promoter-specificity s70 subunit), the s70 subunit apparently

dissociated during grid preparation as density corresponding to

s70 was completely absent. Dissociation during cryo-EM sample

preparation has been noted for other macromolecular complexes

[26] and is also consistent with reports of dissociation constants for

the s70/core RNAP complex as high as 200–300 nM (the RNAP

concentration used here was about 200 nM). The spEM

reconstruction showed Eco core RNAP in a conformation similar

to that observed in Thermus X-ray structures but with clear density

corresponding to bi4, bi11, and b’i6 (Figures 4A, S5, S6).

Molecular Model of the Complete Eco Core RNAP
In order to interpret the spEM map of Eco core RNAP, we

generated a homology model of Eco core RNAP using the core

component of the T. thermophilus (Tth) RNAP holoenzyme structure

Figure 1. Sequence architecture of the bacterial RNAP large subunits. The vertical bars represent the primary sequence of the bacterial RNAP b
(top, light cyan) and b’ (bottom, light pink) subunits.The white boxes indicate sequence regions common to all bacterial RNAPs, as defined by Lane et al.
[3]. Important structural features are labeled above the bars [19]. Lineage-specific insertions (labeled according to the nomenclature of Lane et al. [3] are
shown below the bars. The color-coding for the large subunits and the lineage-specific insertions shown here is used throughout this article.
doi:10.1371/journal.pbio.1000483.g001

Structural Model of E. coli RNA Polymerase
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Figure 2. Sequence and structure of Eco RNAP b2-bi4. (A) Sequence alignment comparing Eco RNAP b2-bi4 with the corresponding region of
Taq (which lacks bi4). Shaded residues are identical between the two sequences. The secondary structures are indicated directly above (for Eco) and
below (for Taq) the sequences; filled rectangles denote a-helices, open rectangles denote b-strands, the dashed lines denote disordered regions. The
number scale above the Eco secondary structure corresponds to the Eco b subunit sequence. Above the number scale, black lines denote the
sequence regions common to all bacterial RNAPs [3]. The yellow and orange lines denote the two BBM2 motifs [4]. The extent of the common b2
domain (thick cyan line) and the lineage-specific insert bi4 (thick green line) is indicated at the top. (B) Ribbon diagram of Eco b2-bi4 (b2 domain,
cyan; bi4, green). A disordered loop (Eco b 161–169) is denoted by small spheres. The view corresponds to the reference view of Taq core RNAP (lower
left, b-side view), shown as a backbone worm and color-coded as follows: aI, aII, v, gray; b’, light pink; b, light cyan, except the b2 domain is colored
cyan and labeled. (C) Ribbon diagram of Eco bi4 (same view as B). The tandem BBM2 motifs predicted by Iyer et al. [4] are color-coded as in (A)
(BBM2a, yellow; BBM2b, orange).
doi:10.1371/journal.pbio.1000483.g002
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(PDB ID 1IW7) [7] as a template. The locations of the Eco lineage-

specific insertions bi4, bi9, bi11, and b’i6 (absent in Thermus) were

left as gaps in the Eco sequences. Thermus-specific inserts bi12 and

b’i2 (Figure 1) were also removed from the structural template.

The crystal structures of Eco b2-bi4 (Figure 2B) and bflap-bi9

(Figure 3B) were spliced into the resulting homology model by

superimposition of the overlapping b2 and bflap domains,

respectively. At this stage, the Eco RNAP model was readily fit

manually into the spEM map. The spEM map contained clear

density corresponding to bi4, but density for bi9 was absent.

Density for the v subunit as well as the C-terminal helix of b’ were

also absent. In addition, extra density not accounted for by the

homology model was present for bi11 and b’i6. An ab initio

predicted structure of the short bi11 (see below) was placed into

the corresponding density to fill in the gap in the Eco b sequence

between 1121 and 1181. The crystal structure of Eco b’i6 (PDB ID

2AUK) [10] was readily fit manually into excess density in the

vicinity of its insertion point in b’. Two criteria were used to

determine the orientation of b’i6 with respect to the rest of the

RNAP. First, although b’i6 comprises a tandem repeat of two

SBHM domains, the C-terminal SBHM domain (SBHMb) [10]

harbors larger insertions between the core SBHM b-strands,

making b’i6 asymmetric in shape. The asymmetry is clearly seen in

the spEM density as well (see Figure 4A, top view). Moreover, only

one orientation of b’i6 allows connection to the gap in the Eco b’

sequence (between residues 940 and 1132) without severe

distortion. The positioned b’i6 was readily connected to the open

(unfolded) trigger-loop (TL) conformation of the model.

Flexible-fitting of the final Eco RNAP model (excluding v, the

C-terminal 41 residues of b’, and bi9) into the spEM map was

performed using YUP.SCX [27], resulting in a superb fit of the

conserved RNAP as well as of the lineage-specific inserts

(excluding bi9; Figures 4A, S5, S6). In order to position bi9 in

the context of the entire RNAP structure, we used our previously

determined helical cryo-EM map of Eco core RNAP (hEM) and fit

of the Taq core RNAP X-ray crystal structure [13] since the hEM

map contains strong density for bi9. The bflap portion (excluding

the flexible flap-tip) of the Eco bflap-bi9 crystal structure

(Figure 3B) was superimposed on the Taq bflap domain in the

context of the Taq RNAP fit into the hEM density. The resulting

position of bi9 did not correspond to the hEM density (light

orange, bi9 in Figure 4B) but was fit into the density by a rotation

of about 35u (orange, bi9’ in Figure 4B). This positioning of bi9 is

consistent with the location of positive difference density observed

in the context of the helical crystals due to a 234-residue insertion

between Eco b residues 998 and 999 (red dot, Figure 4B). The Eco

core RNAP model was completed by adding back the C-terminal

segment of b’ as well as v (in accordance with the Thermus RNAP

structures).

The Eco core RNAP model was then used as the basis for

generating a homology model of an Eco TEC, using the Tth TEC

crystal structure (open TL conformation, PDB ID 2O5I) [8]. For

both models, the lineage-specific inserts (bi4, bi9, bi11, b’i6 for

Eco; b’i2 and b’i12 for Tth) were removed. The nucleic acids

present in the Tth crystal structure were fixed during the modeling.

The Eco lineage-specific inserts were added back to the resulting

TEC model (according to their positions in the Eco core RNAP

model), and missing portions of the nucleic acids (the upstream

double-stranded DNA, and the nontemplate strand of the DNA

within the transcription bubble) were modeled according to

Korzheva et al. [28].

Discussion

In this work, two new X-ray crystal structures (Eco b2-bi4,

Figure 2; Eco bflap-bi9, Figure 3) and an ab initio predicted

structure (Eco bi11, see below), combined with a previously

determined X-ray crystal structure of Eco b’i6 [10], provide high-

resolution structural descriptions of each of the lineage-specific

sequence insertions found in the highly biochemically and

genetically characterized Eco RNAP [3]. In addition, a new 15

Å-resolution cryo-EM single-particle reconstruction of Eco RNAP

(Figures 4A, S4–S6) reveals clear electron density for bi4, bi11,

and b’i6, while a previously determined cryo-EM reconstruction of

Eco core RNAP from helical crystals contains strong electron

density for bi9 [13,23]. The combination of these structural data

provides the basis for a detailed and complete atomic model of Eco

RNAP and an Eco core RNAP TEC.

The large b and b’ subunits comprise regions of sequence

shared among all bacterial RNAPs [3]. These shared regions,

which make up 63% of the Eco b and 67% of the Eco b’ sequence,

are expected to have nearly identical structure among all bacterial

RNAPs. The a subunits are also highly homologous [5,29]. Thus,

most of the Eco RNAP structure is expected to be highly similar, if

not identical, to the Thermus RNAP structures. The unique

contribution of this work is the high-resolution structural

information on the Eco lineage-specific inserts bi4, bi9, and bi11,

as well as the detailed structural model of all the lineage-specific

Table 1. Crystallographic statistics for Eco RNAP b2-bi4
crystals.

Se1a Se2

Data collection

Space group P21212 P21212

Cell dimensions

a, b, c (Å) 106.28, 51.84, 61.77 106.31, 52.04, 61.83

a b c (u) 90, 90, 90 90, 90, 90

Peak Remote

Wavelength 0.9785 0.9919

Resolution (Å) 25.0–1.90 (1.97–1.90) 25.0–1.60 (1.64–1.60)

Rsym 0.081 (0.596) 0.0690 (0.416)

I/sI 11.0 (2.7) 40 (5.1)

Completeness (%) 94.1 (87.1) 98.5 (94.0)

Redundancy 2.6 (2.4) 7.0 (6.5)

Refinement

Resolution (Å) 25.0–1.60

No. reflections 42,737

Rwork/Rfree 0.209/0.229

No. atoms

Protein 2,345

Water 386

B-factors

Protein 14.51

Water 24.58

R.m.s deviations

Bond lengths (Å) 0.008

Bond angles (u) 1.134

aScaling statistics for Se1 dataset calculated without combining anomalous
pairs.

doi:10.1371/journal.pbio.1000483.t001
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inserts in the context of the entire RNAP and a TEC. The

following discussion therefore focuses on the Eco lineage-specific

inserts and insights into their role in RNAP function provided by

our new structural information.

bi4
RNAPs harboring deletions or insertions within bi4 support cell

growth and retain basic in vitro transcription function, leading to

its designation as ‘‘dispensable region I’’ of the b subunit [17].

Nevertheless, careful studies of a nearly precise bi4 deletion

(deletion of Eco b 226–350) revealed defects [18]. The purified

Dbi4-RNAP showed only very mild defects, or no defects at all, in

a number of in vitro tests [17,18]. In vivo, however, the Dbi4-

RNAP was unable to support cell growth at 42uC and could only

support slow growth at 30uC.

In our model of the Eco TEC, bi4 extends out from the b2

domain roughly in the direction of the downstream double-

stranded DNA (Figure 5). However, bi4 is unlikely to interact

Figure 3. Sequence and structure of Eco RNAP bflap-bi9. (A) Sequence alignment comparing the sequence context of Eco RNAP bi9 with the
corresponding region of Taq (which lacks bi9). Shaded residues are identical between the two sequences. The secondary structure for Eco is indicated
directly above the sequence; filled rectangles denote a-helices, open rectangles denote b-strands. The number scale above the Eco secondary
structure corresponds to the Eco b subunit sequence. Above the number scale, black lines denote the sequence regions common to all bacterial
RNAPs [3]. Gaps in the bi9 sequence with numbers above denote the location and residue length of insertions in an alignment of 307 non-redundant
bi9 sequences (see Supporting Information). The extent of the common bflap domain (thick cyan line) and the lineage-specific insert bi9 (thick orange
line) is indicated at the top. (B) Two orthogonal views of Eco bflap-bi9 (bflap, cyan; bi9, orange). The views correspond to the reference views of Taq
core RNAP (left, bottom view; right, front view), shown as a backbone worm and color-coded as follows: aI, aII, v, gray; b’, light pink; b, light cyan,
except the bflap domain is colored cyan and labeled.
doi:10.1371/journal.pbio.1000483.g003
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directly with the downstream DNA to form part of an extended

DNA binding channel since bi4 tilts away from the DNA, creating

a roughly 15 Å gap between itself and the DNA. Moreover, the

solvent-exposed surface of bi4, including the entire surface facing

the DNA, is highly acidic (Figure 5, front view), except for a

‘‘neutral patch’’ that arises from three conserved residues, Eco b
R268, R272, and R275 (Figure 5, top view). These positions are

conserved as basic residues (either R or K) in 98%, 91%, and 91%

of the sequences, respectively, in an alignment of 316 non-

redundant bi4 sequences (containing only ‘‘Eco-like’’ bi4 sequences

comprising two BBM2 domains; see Dataset S2) and may

comprise an interaction determinant for an as yet unidentified

regulatory factor.

The bacteriophage T4 Alc protein interacts with the host Eco

RNAP [30] and causes premature transcription termination on

Eco DNA while allowing Eco RNAP-mediated transcription of

phage DNA containing 5-hydroxymethylcytosine [31]. Eco paf

mutants (prevent Alc function) have been mapped to the rpoB gene

encoding the RNAP b subunit [17,32]. Eco b mutants R368H,

R368C, and a double mutant (P345S/P372L) display the paf

phenotype, possibly by directly preventing Alc interaction with

RNAP [17]. These mutations lie within a region of the b subunit

that could be deleted without disrupting basic transcription

function [17] but are not, in fact, contained within bi4

(Figure 2A). Two of the mutated positions (368 and 372) lie

within bb7, a region shared among all bacterial RNAPs (Figure 2A)

[3]. In our structural model of the Eco RNAP TEC, bR368 and

bP372 lie within a structural feature that sits at the entrance of the

main RNAP active site channel, inside the ‘‘V’’ formed by the

upstream and downstream DNA of the TEC (Figure 5, channel

and front views). These residues are not near any nucleic acids in

the TEC (the closest approach is for the backbone carbonyl of

bP372, which is 15 Å away from the nontemplate DNA phosphate

backbone at the -10 position) but could comprise part of an Alc

binding determinant on the RNAP [17]. The 19 kDa Alc protein

bound in this vicinity (Figure 5, channel and front views) would be

well positioned to distinguish the presence of cytosine or 5-

hydroxymethylcytosine in either the downstream double-stranded

DNA (where the 5-hydroxymethyl moiety would be exposed in the

major groove) or the single-stranded non-template DNA in the

transcription bubble.

bi9
RNAPs harboring deletions or insertions within bi9 support cell

growth and retain in vitro transcription function, leading to its

designation as ‘‘dispensable region II’’ of the b subunit

[17,22,23,33]. Nevertheless, careful studies of a precise bi9

deletion (deletion of Eco b 938–1040) revealed defects [18]. The

purified Dbi9-RNAP showed only very mild defects, or no defects

at all, in a number of in vitro tests [18]. The bi9 contains the

epitope for the PYN-6 monoclonal antibody and, consistent with

in vitro tests showing little effect of deleting bi9 on normal RNAP

function, RNAP can be immobilized using the PYN-6 antibody

but remains active for in vitro transcription [22]. In vivo, however,

Figure 5. Three views (channel, front, and top) of the Eco RNAP TEC model. In each view, the RNAP is shown as a molecular surface, and the
nucleic acids are shown as phosphate backbone worms (DNA template strand, dark green; DNA nontemplate strand, light green; RNA transcript,
gold). Channel view (left): The RNAP is color coded as follows: aI, aII, v, grey; b, cyan, except bi4 is green, bi9 is orange, and bi11 is magenta; b’, pink,
except b’i6 is red. The positions of two paf mutants (bR368 and bP372) [17,32] are colored blue. b’T1068 (within b’i6), which is phosphorylated by
bacteriophage T7 Gp0.7 [48], is shown in yellow. The thick black arrow points in the downstream direction. Front view (middle): The RNAP molecular
surface is colored according to the solvent-exposed electrostatic surface distribution [67], scaled from –10 kT (red) to +10 kT (blue). The locations of
the paf mutants bR368 and bP372, and b’T1068, are denoted. The upstream DNA (us-DNA) is labeled. Top view (right): The RNAP molecular surface is
colored according to the solvent-exposed electrostatic surface distribution [67], scaled from 210 kT (red) to +10 kT (blue). The locations of highly
conserved basic residues in bi4 (bR268, R272, and R275) are denoted. In this view, the nucleic acids are fortuitously hidden from view.
doi:10.1371/journal.pbio.1000483.g005

Figure 4. Fitting into cryo-EM densities to generate a molecular model of Eco RNAP. (A) Three views of the spEM density map and
corresponding fit of the Eco RNAP homology model (excluding v, the C-terminal 41 residues of b’, and bi9). For each view (b-side, top, and channel
views), the left image shows the spEM density map (grey surface, contoured at 2.5 s), and the right image shows the spEM density map (grey
transparent surface) with the fitted Eco RNAP homology model superimposed. The Eco RNAP homology model is shown as a backbone worm, color-
coded as shown in the key (lower left). (B) View of the hEM density map and corresponding fit of the Taq core RNAP crystal structure [13]. The small
view (left, which corresponds roughly to the bottom view) shows the entire structure (weak density due to bi4 is noted). The boxed region is
magnified on the right, where the Eco bflap-bi9 structure (bflap, cyan; bi9, light orange) is superimposed via the flap domain (excluding the flap-tip).
The resulting position of bi9 (light orange) was adjusted to fit into the hEM density (bi9’, orange). The red dot denotes the position of a positive
difference peak from a hEM reconstruction of a mutant RNAP harboring a 234-residue insertion in bi9 between residues 998 and 999 [23].
doi:10.1371/journal.pbio.1000483.g004
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the Dbi9-RNAP was unable to support cell growth in minimal

media [18].

Our crystal structure of the Eco bflap-bi9 suggests that bi9 is

attached to the flap via flexible linkers and does not make a

significant, stable interaction with the flap (Figure 3B), suggesting

that bi9 is highly flexible in its orientation with respect to the flap.

Indeed, the position of bi9 in the bflap-bi9 crystal structure

appears to be determined by packing interactions with neighbor-

ing, symmetry-related molecules. In keeping with this, there is no

density for bi9 in the spEM reconstruction (Figures 4A, S5, S6).

However, in our previous hEM reconstruction of Eco RNAP,

strong density consistent with bi9 was observed, and this density

was shown to correspond to bi9 through a helical reconstruction

of a mutant RNAP harboring a large insertion between positions

998 and 999 [23]. In the helical crystals, the packing of a

neighboring, symmetry-related RNAP molecule restricts the

range of positions available to bi9, allowing its visualization

(Figure 4B). Fitting bi9 into the corresponding density in the

hEM reconstruction required a large change in the position of bi9

with respect to the flap, but the final model fits very well into the

density and is also consistent with the EM localization results

[23], which were not used as a constraint in the fitting (Figure 4B).

This model for the position of bi9 in the context of the entire

RNAP is presented as an example of a particular orientation that

is possible for bi9 (since it was observed in the helical crystals), but

the evidence indicates that bi9 does not adopt a particular

conformation with respect to the RNAP but can access a wide

range of positions (Figure 6).

Figure 6. Orientational flexibility of bi9. Bottom view of the Eco RNAP model. The RNAP is shown as a molecular surface (aI, aII, v, grey; b, light
cyan, except bi4 is green and bi11 is magenta; b’, light pink) except for bi9, which is shown as a backbone worm. The modeled position of bi9 (see
Figure 4B) is colored orange. Selected alternative orientations accessible to bi9 are colored light orange. The potential reach of bi9 maps out roughly
a hemisphere with a radius of 65 Å.
doi:10.1371/journal.pbio.1000483.g006
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The modeled position of bi9 is not near any nucleic acids in the

TEC or in the open promoter complex [34]. Moreover, the solvent-

exposed surface of bi9 is primarily acidic (Figure S7). Interestingly,

an alignment of 307 non-redundant bi9 sequences (see Dataset S1)

reveals that conserved, solvent-exposed residues are all displayed on

the back face of the ‘‘ladder,’’ opposite the ‘‘hook’’ (Figure S7).

Conserved features of this face comprise charged residues D959

(conserved as D or E in 97% of the sequences), E962 (D/E, 95%),

R974 (K/R, 89%), K1032 (K/R, 95%), and K1035 (K/R, 94%),

and one conserved hydrophobic residue, I966. These features

suggest that this face of the ladder may serve as an interaction

determinant for as yet unidentified regulatory factors. D959 and

K1032 participate in an apparently conserved salt bridge.

Predictably, a number of conserved hydrophobic residues partic-

ipate in the hydrophobic core of the domain, either between the

ladder and the hook (L979, L989) or in the packing interface

between the two ladder helices (L1029, I1036).

bi11
The lineage-specific insert bi11 is located between bacterial

shared regions bb14 and bb15 (Figures 1, 7A) [3]. The bi11 is

found in Acidobacteriaceae, Aquificae, and Proteobacteria

(including Eco) [3]. In each bacterial species where it is found,

bi11 has a length ranging from 54–69 residues. Comparing Taq

with Eco, a 5-residue segment of Taq b (Taq b 895–899) is replaced

by the 59-residue Eco bi11, comprising Eco b residues 1122–1180

(Figure 7A).

Although a construct corresponding to Eco RNAP bi11

overexpressed and was well behaved, we were unable to obtain

crystals suitable for X-ray analysis. The Robetta server (http://

robetta.bakerlab.org/) provided an ab initio predicted structure of

this short, 59-residue fragment (Figure S8) that is consistent with a

number of observations from our structural and sequence analyses:

(i) The overall predicted structure of bi11 fits well into the

corresponding spEM density (Figure 7B, right).

(ii) The termini of the predicted bi11 structure could be

readily connected to the corresponding gap in the Eco

RNAP b structure with only minor modifications.

(iii) In an alignment of 310 non-redundant bi11 sequences (see

Dataset S3), insertions and gaps occur in locations

consistent with the predicted structure (i.e. in loops

connecting secondary structural elements and away from

the RNAP; Figure S8).

(iv) Analysis of the bi11 sequence alignment reveals that most

of the conserved residues are hydrophobic in nature and

are buried in the hydrophobic core of the bi11 fold (Figure

S8C). Two conserved, solvent-accessible polar residues

(R1142 and D1166) form an apparently conserved salt-

bridge that may stabilize the structure (Figure S8C).

The bi11 was only recently recognized as a distinct, lineage-

specific insertion [3,4]. To our knowledge, no information on the

effects of deletions or mutations in this region is available.

Inspection of the spEM map and the aligned X-ray structure of

Taq core RNAP in the region of the b subunit between shared

regions bb14 and bb16 revealed a clear discrepancy that

corresponds to Taq bi12 (Figure 7B). In our Eco RNAP model,

the Taq bi12 was removed and the resulting gap was connected by

the loop corresponding to Eco b residues 1200–1207. The

predicted structure of Eco bi11 (Figure S8) was then spliced

between Eco b residues 1121 and 1181 and oriented to fit into the

EM density, resulting in a good fit. The resulting location of Eco

bi11 clashed with the position of the b-subunit N-terminus, which

was redirected to relieve the clash (Figure 7B).

b’i6
While the large Eco lineage-specific insertions bi4 and bi9

appear to play only peripheral roles in RNAP function, and the

complete deletion of either one results in relatively minor growth

defects [18], b’i6 plays a more important role in Eco RNAP

function. Complete deletion, or even partial deletion, of b’i6 is not

viable [18,35]. Complete deletion causes a severe defect in RNAP

assembly, both in vivo and in vitro [18,35], but the in vivo–

assembled Db’i6-RNAP can be obtained from cells simultaneously

overexpressing the other RNAP subunits [18], and partial

deletions of b’i6 can be assembled in vitro [35]. Biochemical

studies of enzymes with complete or partial b’i6 deletions reveal a

number of severe defects. The Db’i6-RNAP forms dramatically

destabilized open promoter complexes [18]. RNAPs harboring

partial deletions in b’i6 are defective in transcript cleavage and

have a dramatically reduced transcript elongation rate at

subsaturating NTP concentrations [35]. Antibody binding to

epitopes within b’i6 inhibit transcription as well as intrinsic

transcript cleavage [35,36].

The b’i6 plays a central role in the pausing/termination

behavior of elongating Eco RNAP [18,35]. Full or partial deletions

in b’i6 result in RNAPs with dramatically altered pausing behavior

[18,35]. A genetic screen for termination-altering mutants in Eco

RNAP uncovered 10 positions scattered throughout b’i6 [37].

These profound effects of b’i6 on Eco RNAP function are

likely due to its insertion in the middle of a critical and highly

conserved structural feature of the RNAP, the so-called

‘‘trigger-loop’’ (TL), which connects two highly conserved a-

helices (TL-helices 1 and 2, TLH1 and TLH2; Figures 1, 8).

The TLHs, in turn, interact with another central structural

element, the bridge-helix (BH; Figure 8B). The TL tends to be

unstructured (open) in RNAP and in the substrate-free TEC but

is found in a structured conformation (closed) where it makes

many direct contacts with the incoming NTP substrate in the

TEC [38,39]. The TL has been proposed to cycle between open

and closed conformations at each nucleotide addition step to

promote rNTP substrate recognition, enzyme fidelity, and

possibly catalysis [38–42].

Microcin J25 (MccJ25) is a bactericidal 21-residue peptide that

inhibits transcription by binding bacterial RNAP within the

secondary channel [43–46]. Based on saturation mutagenesis of

Eco rpoC (the gene encoding the RNAP b’ subunit), MccJ25 does

not contact b’i6; most amino acid substitutions that yield strong

resistance against MccJ25 lie in the BH and the TL [43,44,46].

Nevertheless, a deletion of b’i6 perturbs the effects of MccJ25 [46],

likely through the effects of the b’i6 deletion on the TL

conformation.

Our positioning of b’i6 in the spEM density (Figures 4, S5, S6)

and its connections with the open TL conformation (Figure 8B)

are similar to the results of Hudson et al. [15]. The b’i6 sits

outside the RNAP active site channel and makes extensive

interactions with the b’-jaw (Figure 8B). The N-terminal SBHM

domain of b’i6 (SBHMa) faces the secondary channel, consistent

with the results of crosslinks mapped from backtracked TECs (in

which the 39-end of the RNA transcript is extruded out the

secondary channel) between analogs incorporated into the RNA

39-end and the N-terminal region of b’i6 [28]. SBHMb faces the

downstream double-stranded DNA-binding channel (Figures 5, 8)

but does not contact the DNA; the closest approach between the

DNA and b’i6 is 16 Å (between b’D1073 and the nontemplate

strand backbone phosphate at +14). Moreover, b’i6 is highly
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acidic over its entire solvent-exposed surface, including the region

facing the downstream double-stranded DNA (Figure 5, front

view).

Although b’i6 connects readily to the open conformation of the

TL via extended linkers (Figure 8B), modeling suggests it would

not be able to connect with the closed TL conformation in the

modeled position, a conclusion also reached by Hudson et al. [15].

Since the folding of the TL is required for interactions between

highly conserved TL-residues and the incoming nucleotide

substrate [19,38,39], it is likely that the position of b’i6 must

change to accommodate the folded TL conformation at each

nucleotide addition step of the transcription cycle.

During bacteriophage T7 infection, the Eco RNAP b’ subunit is

phosphorylated by the phage-encoded kinase Gp0.7 [47], and the

site of phosphorylation has been identified as a single amino acid

in b’i6, T1068 (Figures 5, 8) [48]. Phosphorylation at this site

appears to affect pausing, as well as r-dependent termination

behavior, of Eco RNAP [48]. This site is in the b’i6 loop that

makes the closest approach to the downstream DNA, but as

discussed above, this region is nevertheless not in close contact

Figure 7. Sequence and structural context of Eco RNAP bi11 and Taq bi12. (A) Sequence alignment comparing the sequence context of Eco
RNAP bi11 with the corresponding region of Taq (which lacks bi11 but harbors bi12) [3]. Shaded residues are identical between the two sequences.
The experimentally determined secondary structure for Taq is indicated directly below the sequence; filled rectangles denote a-helices, open
rectangles denote b-strands. The number scale above the Eco secondary structure corresponds to the Eco b subunit sequence. Above the number
scale, black lines denote the sequence regions common to all bacterial RNAPs [3]. The extent of Eco bi11 and Taq bi12 are denoted by the thick
magenta line (above) and the thick blue line (below). (B) A portion of the spEM map (contoured at 2.5 s) is shown (transparent grey surface) with the
superimposed Taq core RNAP structure (left, with bi12 colored blue) and the fitted Eco RNAP model (right, with bi11 colored magenta). The view
corresponds roughly to the reference view of the Eco RNAP model (top view), shown as a backbone worm and color-coded as follows: aI, aII, v, gray;
b’, light pink, except b’i6 is red; b, light cyan, except bi4 is green, bi9 is orange, and bi11 is magenta.
doi:10.1371/journal.pbio.1000483.g007
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with the DNA. The surface is already overall acidic (Figure 5, front

view), so it seems unlikely that phosphorylation at this site affects

RNAP function by affecting interactions with the downstream

DNA.

Conclusions
An understanding of the basic principles of transcription and its

regulation has been garnered largely through detailed study of the

transcription system of one organism, Eco, which has served as a

model for understanding transcription at the molecular and

cellular level for more than four decades. The detailed and

comprehensive structural description of Eco core RNAP and an

Eco RNAP TEC presented here sheds new light on the

interpretation of previous biochemical and genetic data. More-

over, the molecular models provide a structural framework for

designing future experiments to investigate the function of the Eco

RNAP lineage-specific insertions and their role in the Eco

transcription program, allowing a fuller exploitation of Eco as a

model transcription system.

Materials and Methods

Crystallization and Structure Determination of Eco RNAP
b2-bi4

Eco b2-bi4 was amplified by the polymerase chain reaction from

the Eco rpoB expression plasmid pRL706 [49] and cloned between

the NdeI and BamHI sites of a pET28a-based expression plasmid,

creating pSKB2(10-His)Ecob2-bi4, encoding Eco b2-bi4 with an

N-terminal PreScission protease (GE Healthcare) cleavable His10-

tag. The pSKB2(10-His)Ecob2-bi4 was transformed into Eco BL21

(DE3) cells. After growing transformed cells in LB medium with

kanamycin (50 mg/ml) at 37 uC to an A600 nm = 0.6, isopropyl b-

D-1-thiogalactopyranoside was added to a final concentration of

1 mM and cells were grown for an additional 3 h at 37 uC. Cells

were harvested by centrifugation, resuspended in lysis buffer

(20 mM Tris-HCl, 0.5 M NaCl, 0.5 mM b-mercaptoethanol, 5%

v/v glycerol, 0.5 mM phenylmethanesulphonylfluoride), lysed in a

continuous-flow French press (Avestin), and clarified by centrifu-

gation. The protein was purified by HiTrap Ni2+-chelating affinity

chromatography (GE Healthcare) and the His10-tag was removed

using PreScission protease (GE Healthcare). The sample was

further purified by a second, subtractive HiTrap Ni2+-chelating

affinity chromatography step to remove uncleaved His10-tagged

protein and the His10-tag released from the cleaved product, and

gel filtration chromatography (Superdex 75, GE Healthcare). The

purified protein was concentrated to 17 mg/ml by centrifugal

filtration (VivaScience) and exchanged into storage buffer (10 mM

Tris-HCl, pH 8.0, 0.15 M NaCl, 1 mM DTT), and stored at –80

uC. Selenomethionyl-substituted protein was prepared by sup-

pression of methionine biosynthesis [50] and purified by using

similar procedures. Reductive methylation of lysine residues was

performed as described [20].

Crystals were grown at 22uC in sitting drops using vapor

diffusion by mixing equal volumes of protein solution (0.5 ml at

6 mg/ml in storage buffer) and crystallization solution (0.2 M

potassium-sodium tartrate, 20% PEG3350). Crystals (irregular

plates) appeared after a few days and grew to a maximum size of

about 2006100650 mm in 1 wk. Crystals were prepared for cryo-

crystallography by a quick soak in cryo-solution (0.2 M potassium-

sodium tartrate, 35% PEG3350), then flash frozen and stored in

Figure 8. Structural context of Eco b’i6. (A) b-side view of the Eco RNAP TEC model. The RNAP is shown as a backbone worm (aI, aII, grey; b, cyan,
except bi4 is green, bi9 is orange, bi11 is magenta; b’, pink, except b’i6 is red). b’T1068 (within b’i6), which is phosphorylated by bacteriophage T7
Gp0.7 [48], is shown as yellow CPK atoms. The nucleic acids are shown as phosphate backbone worms (DNA template strand, dark green; DNA
nontemplate strand, light green; RNA transcript, gold). The thick black arrow points in the downstream direction. The boxed region is magnified in
(B). (B) Magnified view of boxed region from (A). The obscuring portion of the b subunit has been removed to reveal the inside surface of the RNAP
active site channel. Color-coding is the same as (A) but the BH, TLH1, TLH2, the b’-jaw, and b’i6 are highlighted. The active-site Mg2+-ion is shown as a
yellow sphere.
doi:10.1371/journal.pbio.1000483.g008
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liquid nitrogen. Diffraction data were collected at beamline X3A

at the National Synchrotron Light Source (NSLS, Brookhaven,

NY) and processed using HKL2000 [51]. Six of seven possible Se

sites were located within the asymmetric unit using the anomalous

signal from the Se1 dataset (Table 1) using SHELX [52]. Heavy

atom refinement, phasing, and density modification calculations

were performed with SHARP [53] using the single-wavelength

anomalous dispersion data to 1.9 Å-resolution from the Se1

dataset, as well as the 1.6 Å-resolution Se2 dataset (Table 1),

yielding an excellent map that allowed automatic building of

almost the entire structure using ARP/wARP [54]. Iterative cycles

of refinement and model building were carried out using Coot [55]

and RefMac5 [56]. The final model was refined to an R/Rfree of

0.209/229 at 1.6 Å-resolution (Rfree was calculated using 5%

random data omitted from the refinement). 97.5% of residues fall

in the most favored regions of the Ramachandran plot, while no

residues are in disallowed regions.

Crystallization and Structure Determination of Eco RNAP
bflap-bi9

The Eco bflap-bi9 (Eco b residues 831–1057) was co-expressed

with bacteriophage T4 gp33 [57] as a single operon from a

modified pET29a vector [58] and the complex was purified using

standard procedures (K.-A.F.T., P. Deighan, S. Nechaev, A.

Hochschild, E.P. Geiduschek, S.A.D., in preparation). Seleno-

methionyl-substituted complex was produced by suppression of

methionine biosynthesis [50].

Crystals of the complex were grown at 22uC in sitting drops using

vapor diffusion by mixing equal volumes of protein solution (1 ml at

7.5–12 mg/ml in 10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% v/v

glycerol, 1 mM b-mercaptoethanol, 1 mM DTT) and crystallization

solution (0.2 M tri-potassium citrate, 20% w/v PEG3350). Crystals

were prepared for cryo-crystallography by slow exchange into cryo-

solution (0.2 M tri-potassium citrate, 20% w/v PEG3350, 20% v/v

ethylene glycol), then flash frozen and stored in liquid nitrogen.

Diffraction data were collected at beamline X3A at the NSLS

(Brookhaven, NY) and processed using HKL2000 (Table S1) [51]. A

molecular replacement solution was obtained using the Native

amplitudes (Table S1) with a search model consisting of a homology

model of the Eco bflap based on the Taq bflap generated using

MODELLER (the search model excluded the flexible flap-tip) [59].

The molecular replacement phases were used to locate four Se sites

from the anomalous signal of the Se dataset (Table S1). Heavy atom

refinement, phasing, and density modification calculations were

performed with SHARP [53] using the single-wavelength anomalous

dispersion data from the Se dataset (Table S1) yielding an

interpretable map (Figure S3). Iterative cycles of refinement and

model building were carried out using Coot [55] and RefMac5 [56].

The final model was refined to an R/Rfree of 0.265/0.291 at 3.0 Å-

resolution (Rfree was calculated using 5% random data omitted from

the refinement). 95.25% of residues fall in the most favored regions of

the Ramachandran plot, while no residues are in disallowed regions.

Cryo-EM Reconstruction of Eco RNAP by Single-Particle
Averaging

Purification of Eco core RNAP from an overexpression system

was performed as described [60]. This results in highly pure Eco

RNAP core enzyme, which is deficient in the v subunit. Eco

RNAP holoenzyme was prepared by incubating core RNAP

(3 mg/ml in 10 mM Tris-HCl, pH 8, 0.2 M NaCl, 0.1 mM

EDTA, 5 mM DTT) with a 5-fold molar excess of s70 for 30 min

at room temperature. For cryo-EM, a 5 ml sample (0.1 mg/ml in

the same buffer) was applied to a Quantifoil grid coated with holey

carbon film previously made hydrophilic by glow-discharge. The

grid was blotted with filter paper and then immediately plunged

into liquid ethane slush. The sample was imaged at 50,0006
magnification with a Tecnai F20 transmission electron microscope

operating at 200 kV. Micrographs displaying minimal astigmatism

were digitized at a 14 mm interval (corresponding to 2.8 Å on the

image) using a Zeiss SCAI flat-bed densitometer (ZI/Carl Zeiss).

Individual particles were selected by eye and windowed in 90690

pixel images. Defocus values were estimated from digitized

micrographs using ctfit (EMAN) [61].

We generated a spEM reconstruction of Eco RNAP by

analyzing ,42,000 cryo-images of Eco RNAP particles

(Figures 4A, S4–S6). Particle image orientation parameters were

approximately determined using reference projections of a volume

generated by low-pass filtration of the Taq core RNAP X-ray

structure [5] to 35 Å-resolution. We used a previously devised

protocol in which image orientation parameters are iteratively

refined by cycling through sets comprising relatively small

numbers of reference projections [62]. After a large number of

iterations (130) using the SPIDER software package [63], we

obtained a structure in which well-defined densities not present in

the original model volume were apparent. Further refinement of

image orientation parameters by projection matching [64] using

the SPARX software package [25] yielded a structure of Eco core

RNAP with a 0.5 Fourier-shell cutoff resolution of about 11.2 Å

(Figure S4). For further analysis, the map was Fourier filtered using

an ahyperbolic tangent low-pass filter [24] as implemented in the

SPARX software package [25] with a stop-band frequency of 0.28

and a fall-off of 0.45.

Sequence Alignments
Alignments for the Eco lineage-specific insertions (see Datasets

S1–S3) were created using the bacterial lineage-specific insertions

alignments from Lane et al. [3] as a starting point. The final

alignments were created by iterative cycles in which sequences that

did not match the Eco domains were removed, followed by re-

alignment with MUSCLE [65] or PCMA [66].

Accession Numbers
Electron Microscopy Data Bank: The single-particle cryoEM

reconstruction volume has been deposited under ID code EMD-

5169. Protein Data Bank: Atomic coordinates and structure factors

for Eco RNAP b2-bi4 have been deposited under accession code

3LTI. The EM-fitted coordinate model of Eco core RNAP has

been deposited under accession code 3LU0. The coordinates of

the Eco RNAP TEC model are available in the Supporting

Information (Dataset S4).

Supporting Information

Dataset S1 beta-i9_blast_to_fas_to_aln_man4_cull.msf
– Sequence alignment (msf format) containing 307 non-
redundant bi9 sequences.

Found at: doi:10.1371/journal.pbio.1000483.s001 (0.07 MB TDS)

Dataset S2 beta-i4_blast_to_fas_to_aln_man5_cull.msf
– Sequence alignment (msf format) containing 316 non-
redundant bi4 sequences (only Eco-like bi4 sequences
comprising two BBM2 domains).

Found at: doi:10.1371/journal.pbio.1000483.s002 (0.12 MB TDS)

Dataset S3 beta-i11_blast_to_fas_to_aln_man4_cull.msf
– Sequence alignment (msf format) containing 310 non-
redundant bi11 sequences.

Found at: doi:10.1371/journal.pbio.1000483.s003 (0.07 MB TDS)
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Dataset S4 Eco_TEC_model.pdb – Coordinates (PDB
format) of the Eco TEC model.
Found at: doi:10.1371/journal.pbio.1000483.s004 (2.22 MB

TXT)

Figure S1 Eco b2-bi4 electron density map. Stereo view of

the 1.6 Å-resolution 2|Fo|–|Fc| map, contoured at 1.5 s. The

model is shown as sticks, with nitrogen atoms colored blue, oxygen

atoms red, and carbon atoms colored according to Figure 2B.

Water molecules are represented as red spheres. Shown is the

region surrounding dimethylated [20] K324.

Found at: doi:10.1371/journal.pbio.1000483.s005 (2.07 MB TIF)

Figure S2 Comparison of Taq b2 and Eco b2-bi4. The two

structures were superimposed over 100 a-carbon positions

(excluding flexible loops connecting secondary structural ele-

ments), yielding a root-mean-square-deviation of 1.68 Å. Other

than the insertion of bi4 in Eco, significant differences in the b2

structures include: (i) the loop connecting the first two b-strands of

the b2 domain, where Eco has a 5-residue insertion (Eco b residues

164–168, disordered in the structure), and (ii) the loop connecting

the last two a-helices of the b2 domain, which includes a 7-residue

insertion present in Taq b (Taq b residues 293–299; Figure 2A).

Found at: doi:10.1371/journal.pbio.1000483.s006 (5.47 MB TIF)

Figure S3 Eco bflap-bi9 electron density map. Stereo view

of the 3.0 Å-resolution 2|Fo|–|Fc| map, contoured at 1.0 s. The

model is shown as sticks, with nitrogen atoms colored blue, oxygen

atoms red, and carbon atoms colored according to Figure 3B.

Shown is a region of the bi9 ladder helices.

Found at: doi:10.1371/journal.pbio.1000483.s007 (2.90 MB TIF)

Figure S4 Image analysis. (A) Unprocessed electron micro-

graph of a field of Eco RNAP molecules preserved in vitreous ice.

Selected particles are circled. (B) Distribution of image orienta-

tions, plotted as a polar-angle diagram, viewed along the h= 0u
axis. (C) Fourier shell correlation [67,68] as a function of spatial

frequency.

Found at: doi:10.1371/journal.pbio.1000483.s008 (1.54 MB TIF)

Figure S5 Back, bottom, channel, and front views of
spEM density and fit of Eco RNAP model. For each view,

the left image shows the spEM density map (grey surface,

contoured at 2.5 s), and the right image shows the spEM density

map (grey transparent surface) with the fitted Eco RNAP homology

model superimposed (excluding v, the C-terminal 41 residues of

b’, and bi9). The Eco RNAP homology model is shown as a

backbone worm, color-coded as in Figure 4.

Found at: doi:10.1371/journal.pbio.1000483.s009 (7.72 MB TIF)

Figure S6 b’-side, bottom, b-side, and top views of spEM
density and fit of Eco RNAP model. For each view, the left

image shows the spEM density map (grey surface, contoured at 2.5

s), and the right image shows the spEM density map (grey

transparent surface) with the fitted Eco RNAP homology model

superimposed (excluding v, the C-terminal 41 residues of b’, and

bi9). The Eco RNAP homology model is shown as a backbone

worm, color-coded as in Figure 4.

Found at: doi:10.1371/journal.pbio.1000483.s010 (8.62 MB TIF)

Figure S7 Structural features of Eco bi9. Two views of Eco

bi9 are shown: The left column shows the ‘‘front’’ view (the side

facing the ‘‘hook’’), and the right column shows the ‘‘back’’ view

(the side away from the ‘‘hook’’). The top row shows the backbone

ribbon. The middle row shows the structure (with transparent

molecular surface) colored in a gradient according to the Blosum

62 information score (as determined by the program PFAAT [70])

calculated from an alignment of 307 non-redundant bi9 sequences

(see Supporting Information). The color gradient covers scores

from 0 to 1 (0, white; 0.5, yellow; 1.0, red). Individual residues with

score $0.75 are labeled. Underlined residues denote residues with

significant solvent accessibility. The bottom row shows the

molecular surface colored according to the electrostatic surface

distribution of the solvent-accessible surface in units of kT (25,

red; 0, white; +5, blue), as calculated by APBS [69].

Found at: doi:10.1371/journal.pbio.1000483.s011 (6.13 MB TIF)

Figure S8 Details of ab initio-predicted Eco bi11 struc-
ture. (A) Sequence context of Eco RNAP bi11. The secondary

structure for the predicted Eco bi11 structure (determined using

the Robetta server (http://robetta.bakerlab.org/)) is indicated

directly below the sequence (filled rectangles denote a-helices).

Above the number scale, black lines denote the sequence regions

common to all bacterial RNAPs [3]. Gaps in the bi11 sequence

with numbers above denote the location and residue length of

insertions in an alignment of 310 non-redundant bi11 sequences

(see Supporting Information). The insertions all occur in loops

connecting the helices. The extent of Eco bi11 is denoted by the

thick magenta line (above). (B) Backbone ribbon of the predicted

Eco bi11 structure. The grey spheres mark a-carbon positions

surrounding the insertions from the sequence alignment. The

numbers pointing to each insertion point denote the insertion

length. (C) The predicted Eco bi11 structure is colored in a

gradient according to the Blosum 62 information score (as

determined by the program PFAAT [70]) calculated from the

alignment of 310 non-redundant bi11 sequences (see Supporting

Information). The color gradient covers scores from 0 to 1 (0,

white; 0.5, yellow; 1.0, red). Individual residues with score $0.75

are labeled. Nearly all of the conserved hydrophobic residues are

buried in the hydrophobic core of the structure. Two solvent-

accessible polar residues (R1142 and D1166) form an apparently

conserved salt-bridge that may stabilize the structure.

Found at: doi:10.1371/journal.pbio.1000483.s012 (3.18 MB TIF)

Table S1 Crystallographic statistics for Eco RNAP
bflap-bi9 crystals.

Found at: doi:10.1371/journal.pbio.1000483.s013 (0.04 MB

DOC)
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