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Understanding sex differences at the neurobiological level has become increasingly
crucial in both basic and applied research. In the study of developmental dyslexia, early
neuroimaging investigations were dominated by male-only or male-dominated samples,
due at least in part to males being diagnosed more frequently. While recent studies
more consistently balance the inclusion of both sexes, there has been little movement
toward directly characterizing potential sex differences of the disorder. However, a string
of recent work suggests that the brain basis of dyslexia may indeed be different in
males and females. This potential sex difference has implications for existing models of
dyslexia, and would inform approaches to the remediation of reading difficulties. This
article reviews recent evidence for sex differences in dyslexia, discusses the impact
these studies have on the understanding of the brain basis of dyslexia, and provides a
framework for how these differential neuroanatomical profiles may develop.
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INTRODUCTION

Developmental dyslexia is a neurodevelopmental learning disability, estimated to affect between 5
and 13% of the U.S. population (Katusic et al., 2001). The hallmark behavioral profile of dyslexia
is difficulty with recognition and decoding of words that cannot be accounted for by classroom
instruction, motivation, or overall cognitive abilities (Lyon et al., 2003; Peterson and Pennington,
2012). Neuroimaging studies suggest aberrations to temporo-parietal and inferior frontal language
regions and occipito-temporal visual processing cortex (e.g., the visual word-form area, VWFA,
in the left fusiform; Dehaene et al., 2002) in comparison to age-matched control subjects (Maisog
et al., 2008; Richlan et al., 2011, 2013; Linkersdörfer et al., 2012; Eckert et al., 2016; Martin et al.,
2016). However, individual studies remain variable in terms of the brain profile of dyslexia. Some of
this may be due to the age of participants (Richlan et al., 2011; Martin et al., 2015), the potential for
different subtypes of reading difficulty (Tamboer et al., 2015), or more specifically degree of reading
experience (Krafnick et al., 2014), but another crucial and often overlooked factor for dyslexia as a
field is the potential impact of sex differences.

The study of sex differences has become an increasingly relevant topic of scientific pursuit.
Searching for “sex differences” on PubMed1 returns over 250,000 publications from 1899 through
2017, and over half of these occur within the last 10 years (2008–2017; Figure 1A). A similar
pattern is observed for the study of sex differences in the brain (Figure 1B). As such, the particular
importance of this work for better characterization of the brain and individual differences in

1www.ncbi.nlm.nih.gov/pubmed
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behavior has been reviewed and discussed in detail (Cahill, 2006,
2012; Cosgrove et al., 2007; McCarthy et al., 2012; Hausmann,
2017). In terms of human brain structure alone, sex differences
are observed within the typical population in children and
adolescents (De Bellis et al., 2001; Lenroot et al., 2007; Peper et al.,
2009; Simmonds et al., 2014; Tyan et al., 2017), adults (Good
et al., 2001; Luders et al., 2009), the elderly (Coffey et al., 1998),
and across the lifespan (Sowell et al., 2007; Giedd et al., 2012).
Several of these studies capture changes over time in longitudinal
samples (Coffey et al., 1998; De Bellis et al., 2001; Peper et al.,
2009; Simmonds et al., 2014). These are only but a few examples
of the now vast literature; for a recent meta-analysis see Ruigrok
et al. (2014).

Beyond the importance of understanding these differences in
the typical population is the necessity for this research in order
to fully understand the etiology of psychiatric, neurological, and
developmental disorders related to brain structure and function
(Cahill, 2006; Cosgrove et al., 2007; Hausmann, 2017; Choleris
et al., 2018). Acknowledging the existence and importance of
potential sex differences can drastically change the understanding
of behavior, brain structure, and brain function in models of both
typical development and disease (see Cahill, 2012 for examples).
This is particularly crucial considering many levels (e.g., rodent,
non-human primate, human) of neuroscience research are often
dominated by male samples; it is a fallacy to assume these
results can simply be extrapolated to the greater population of

FIGURE 1 | Literature of sex differences over time. Searches via PubMed. (A) Results for search parameters: (Sex differences; OR Gender differences). (B) Results
for search parameters: (Sex differences; OR Gender differences) AND brain. (C) Results for search parameters: (Sex differences; OR Gender differences) AND
dyslexia. Note scale difference for y axes across panels.
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both sexes (Cahill, 2012; Choleris et al., 2018). Additionally,
while studying sex differences in the typical population can
provide insight that is relevant to neurological and psychiatric
phenomena, it is equally crucial to study sex differences in the
context of disorders to obtain a full picture. Sex differences
within the context of a disorder may reflect an exaggeration of
typical sex differences (e.g., brain differences described above)
or help elucidate unique characteristics of sex to the etiology of
manifestation of symptoms. Only extending research in both of
these domains will provide the critical information needed to
determine how sex differences impact specific disorders.

While it is true that evidence for the influence of sex is growing
(highlighted by the dramatic increase in studies on the topic),
the importance of this work is still not universally embraced
by the neuroscience community. In a call to action for brain
scientists, Cahill (2006) described several misconceptions that are
commonly used to shrug off influences of sex on the brain. These
misconceptions include: (1) sex effects are small and unreliable,
and (2) if there are no sex differences in behavior than the brain
must also show no differences. Over a decade later, there are still
periodic calls for the greater neuroscience community to take
sex differences into account within their respective domains of
study (Cahill, 2012; McCarthy et al., 2012; Choleris et al., 2018),
including directly from funding agencies (Clayton and Collins,
2014), because much of this skepticism continues to persist. In the
domain of language, while several studies have demonstrated sex
differences in brain function for language-related paradigms in
both children and adults (Shaywitz et al., 1995; Jaeger et al., 1998;
Rossell et al., 2002; Bell et al., 2006; Burman et al., 2008, 2013),
there are not necessarily consistent findings for sex differences
in language specific regions of cortex (Wallentin, 2009). As the
study of sex differences continues to grow, individual fields will
be better able to compare across studies and amongst varying
paradigms to disentangle where these differences do exist and
how they affect our understanding of both the healthy and
disordered brain.

The dyslexia neuroimaging field represents an important
area of study that needs to take into account the potential for
male and female differences. One important indicator is that
dyslexia (similar to many other neurodevelopmental disorders,
e.g., autism; Halladay et al., 2015) has higher odds ratios for
boys compared to girls (Flannery et al., 2000; Katusic et al.,
2001; Rutter et al., 2004; Liederman et al., 2005; Quinn and
Wagner, 2015). Likely, at least in part due to this discrepancy, the
neuroimaging literature has been biased toward higher numbers
of male subjects. For example, of the studies included in a
meta-analysis of functional differences between individuals with
dyslexia and typical controls (Richlan et al., 2011), 65% of the
subjects in pediatric studies were male and 95% of the subjects in
adult samples were male. A similar trend is observed in structural
brain imaging studies: 81% of subjects with dyslexia were male in
a meta-analysis of volumetric studies of dyslexia (Richlan et al.,
2013).

Considering the odds ratio discrepancy, it is reasonable that
there have historically been more male subjects included in these
studies. However, this is problematic because (as discussed above)
it cannot be assumed females will show the same profile as

their male counterparts. Even now, when more studies show
similar numbers of males and females in their cohorts, the
framework for interpretation still relies on theories generated
by male-dominated samples. Since the original call for studying
sex differences in neuroimaging studies of dyslexia (Lambe,
1999) there has been an increase in attention (see Figure 1C),
but only more recently has there been a noticeable change
in specifically looking for potential sex differences. Structural
differences between females and males (as compared to typical
controls) have been observed (Sandu et al., 2008; Altarelli et al.,
2013, 2014; Clark et al., 2014; Evans et al., 2014; Su et al., 2018),
and in a separate line of investigation, it has been demonstrated
that genetic risk for dyslexia may be mediated in part by estrogen
and estrogen receptors (Massinen et al., 2009; Tammimies
et al., 2012). As such, Ramus et al. (2018) recently highlight
sex as an often overlooked but potential explanatory factor
for the heterogeneity of findings in dyslexia imaging studies.
Continued work in these domains has great potential impact on
understanding the etiology of dyslexia and the manifestation of
brain-based differences between individuals with dyslexia and
typical readers, as well as in shaping how educators and scientists
design interventions to ameliorate reading difficulties.

The purpose of this review is to: (1) highlight recent work
demonstrating differences between males and females with
dyslexia (2) encourage researchers in the field to not just balance
sex inclusion but to make understanding sex differences a
specific and purposeful aspect of studies whenever possible, and
(3) present a potential framework for the manifestation and
relevance of these differences. We first discuss recent evidence
for sex differences in dyslexia with a brief section on behavioral
evidence, followed by a review of the recent neuroimaging
research that speaks to brain differences in males and females
with dyslexia. Next, we explore the genetic risk factors for dyslexia
that may affect differentiation of the brain basis of dyslexia
between the sexes. Finally, we conclude by describing how this
recent work impacts our understanding of the dyslexic brain and
make recommendations for the field to consider moving forward.

BEHAVIORAL EVIDENCE

Given the differential diagnosis of developmental dyslexia
between males and females, one might also expect sex differences
in reading behavior to manifest. These differences could present
in the performance of dyslexic individuals on measures of
either domain-specific abilities of spoken or written language,
or more domain-general characteristics (e.g., IQ, working
memory, processing speed, inhibitory control) that could provide
an alternative explanatory account. Keeping in mind that a
divergence in behavior would not necessarily accompany a
divergence in etiology for dyslexic males and females (for
review see Vogel, 1990), there has been some exploration
into sex-specific behavioral differences, especially since there
is evidence of such expression in typical readers. Overall, the
literature on behavioral sex differences in reading behavior is
quite limited, which is not surprising given that diagnosis and
evaluation is identical for all children. We provide a brief
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review of behavioral findings in the general and learning-disabled
populations here, and discuss implications for similar behavioral
profiles manifesting from differential genetic and neurobiological
cascades.

Among typical readers, there is the tendency for girls to
acquire reading skills at a more rapid pace than boys (n = 87; Wolf
and Gow, 1986). This has been attributed to a female advantage
in both the rate of linguistic processing as well as in basic word
recognition. Across the range of reading abilities (including those
at risk for reading difficulty), there is evidence for not only lower
mean scores in males, but also a higher variance in reading ability
in males compared to females; in the low end of the distribution
males are disproportionately represented, but no sex differences
are found in the high end (n = 2,399; Arnett et al., 2017). Slower
processing speed and lower inhibitory control in males provides
partial explanation, although males do demonstrate higher verbal
reasoning which could enable some degree of compensation. On
the whole, differential strengths and weaknesses in both domain-
specific reading and domain-general attributes are seen in males
and females.

In the realm of disability, school-aged females identified
with learning disabilities (LDs), including but not specific to
reading disability, demonstrate lower intelligence scores than
their male counterparts (Holowinsky and Pascale, 1972; Bradbury
et al., 1975; Lawson et al., 1987). Interestingly, this pattern also
manifests in young adults (Vogel and Walsh, 1987; n = 49).
Analogous to what has been reported in typical readers, relative
to males with LD, females with LD display strengths in verbal
conceptualizations. This is consistent with the observed relative
strength in language skills in female children with dyslexia, with
dyslexic boys demonstrating lower scores in working memory
and orthographic coding compared to the girls (Berninger
et al., 2008; n = 122). A small (n = 7) eye tracking study of
visual prediction in dyslexia produced some interesting results
in the realm of visuospatial processing: males with dyslexia
perseverated on the current target, where females with dyslexia
more quickly predicted subsequent targets (Suroya and Al-
Samarraie, 2016).

These results as a whole indicate that females with dyslexia
may have a combination of strengths in both domain-general
(e.g., IQ, working memory, visuospatial) and domain-specific
(e.g., verbal conceptualization, orthographic coding) reading
skills relative to their male counterparts. On the other hand,
males tend to have higher domain-specific skills in verbal
reasoning abilities. This line of research supports a differential
dyslexic phenotype in males and females, which is further
corroborated by results at the brain and genetic levels, detailed
below.

BRAIN EVIDENCE

General Neuroanatomy of Dyslexia
The neuroanatomical profile of dyslexia has been under
investigation for several decades. From early post mortem
studies (Galaburda and Kemper, 1979; Galaburda et al., 1985;
Humphreys et al., 1990) to more recent neuroimaging

meta-analyses (Maisog et al., 2008; Richlan et al., 2011,
2013; Linkersdörfer et al., 2012; Eckert et al., 2016; Martin et al.,
2016), the literature suggests a primarily left hemisphere network
of regions (i.e., temporo-parietal, occipito-temporal, and inferior
frontal) that show differences in structure and/or function
between individuals with dyslexia and age-matched controls.
This network is reflected in early brain models of reading
and reading disability in which temporo-parietal regions are
involved in grapheme-phoneme conversion, occipito-temporal
regions are involved in word-form identification, and inferior
frontal regions are involved in articulatory output (Pugh et al.,
2000, 2001). These core attributes still provide the basis for
more recent (and more complex) models of reading where the
relative contribution of brain regions to reading and language
is described with greater granularity (Dehaene, 2009; Price,
2012).

While this general left hemisphere dominant model is
prominent (and many results are interpreted in the context of
this left hemisphere deficiency model), there is not necessarily
consensus among studies as to the contributions of individual
brain regions to dyslexia (for example, a large study across
multiple countries and languages where the only group difference
was the thalamus; Jednoróg et al., 2015). There are likely
several complicating factors that contribute to variable results
observed across individual studies. For example, the age of
subjects is likely to play a substantial role in the heterogeneity
of results (Richlan et al., 2011; Black et al., 2017). Studies often
use an age range in both their typical reading controls and
individuals with dyslexia that include beginning readers (i.e.,
age 6) through adolescents (i.e., age 14+). Although larger
samples helps increase statistical power, such wide age ranges
presume the profile of dyslexia is invariant to age and experience
(Black et al., 2017). This relates to the idea that older children
with dyslexia are likely to have received increased instruction
and/or intervention, or at the very least have acquired additional
experience with reading. Also, older individuals with dyslexia
have also likely had time to compensate for their reading difficulty
(Shaywitz et al., 2003). One approach to address this is to
focus on studying pre-readers at risk for developing dyslexia
(for example, see Raschle et al., 2011, 2012; and recent review:
Vandermosten et al., 2016). Following at-risk children into their
reading years (and potential diagnosis) allows for the exploration
of brain precursors to the disorder (Clark et al., 2014; Kraft
et al., 2016). Another experimental approach is comparing
both reading-matched controls and age-matched controls to
examine the effect of reading experience on brain differences
in dyslexia (Hoeft et al., 2007; Krafnick et al., 2014). More
such studies, as well as those in larger cohorts with a tighter
age range offer promise to help clarify the variability seen
thus far.

While there are other issues relating to the variability across
studies that will not be discussed here in the interest of scope [e.g.,
differences in language/orthography (Paulesu et al., 2001; Martin
et al., 2015), the role of the cerebellum (Nicolson et al., 2001);
non-phonological deficit subtypes/theories (Goswami, 2003;
Ramus, 2003, 2004)], a clear major contributor to differences
across studies is sex. The contributions of this factor have begun
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to be explored by the neuroimaging community, which we review
next.

Sex Differences in Dyslexia Brain
Research
Dyslexia is ripe for a male-biased literature in part due to
the higher odds ratio (Flannery et al., 2000; Katusic et al.,
2001; Rutter et al., 2004; Liederman et al., 2005; Quinn and
Wagner, 2015). Importantly, this higher odds ratio exists even
when controlling for ascertainment bias (Liederman et al., 2005;
Quinn and Wagner, 2015). While Lambe (1999) called for
studying sex differences in neuroimaging studies of dyslexia
nearly 20 years ago, there has been relatively little traction
until recently. Studies are much more likely to have balanced
inclusion of males and females in their samples today than
in the early dyslexia neuroimaging literature, but still suffer
from being interpreted in light of models developed from
a male biased literature. More studies designed to directly
investigate sex differences in the functional and structural
neuroanatomy of dyslexia are necessary in order to better

understand the impact of sex on the manifestation of the
disorder.

While the study of sex differences in the typical population
gives us important information that can inform developmental
disorders like dyslexia, only studying these differences in dyslexia
specifically will provide a full picture. Here, we will examine the
seven studies that examined sex differences in the brain structure
of dyslexia using MRI (Sandu et al., 2008; Altarelli et al., 2013,
2014; Clark et al., 2014; Evans et al., 2014; Su et al., 2018; see
Table 1 for details on individual studies). To our knowledge,
these studies represent the whole of the existing sex differences
literature for studies in subjects with dyslexia.

Examining primarily whole brain and whole hemisphere
volumes, Sandu et al. (2008) found differences between controls
and individuals with dyslexia, with larger effects in females.
No significant differences were found in gray matter volume
between males and females with dyslexia, but control females had
greater volume than those with dyslexia in the right hemisphere,
which was not the case in males (Sandu et al., 2008). Males
with dyslexia showed greater whole brain, left hemisphere, and
right hemisphere white matter volume compared to females

TABLE 1 | Sex differences in MRI studies of dyslexia.

Article Subject demographics Description of dyslexia sex differences

Sex Age (years)

Sandu et al., 2008 Control: 8M, 10F
Dyslexia: 8M, 5F

Control: 13.5
Dyslexia: 13.2

Control females had greater RH GMV, greater
WB/LH/RH WMV, and lower GMV/WMV ratio
than females with dyslexia, but no significant
differences in male comparisons

Altarelli et al., 2013-Study 1 Control: 11M, 8F
Dyslexia: 10M, 8F

Control: 11.58
Dyslexia: 11.75

Thicker functionally relevant occipito-temporal
cortex in female controls compared to females
with dyslexia, but no difference in male
comparisons

Altarelli et al., 2013-Study 2 Control (age-matched): 7M, 6F
Control (reading-matched): 7M, 6F
Dyslexia: 7M, 6F

Control (age): 9.75
Control (read): 6.67
Dyslexia: 9.83

Thicker functionally relevant occipito-temporal
cortex in female controls compared to females
with dyslexia, but no difference in male
comparisons

Clark et al., 2014∗ Control: 8M, 5F
Dyslexia: 5M, 6F

Control: 11.7
Dyslexia: 11.9

Thicker cortex in several regions throughout LH
in male controls compared to males with
dyslexia, but no differences in the female
comparisons

Evans et al., 2014∗∗ Adult Control: 14M, 13F
Child Control: 15M, 17F
Adult Dyslexia: 14M, 13F
Child Dyslexia: 15M, 17F

Adult Female Control: 27.9
Adult Female Dyslexia: 34.0
Child Female Control: 9.1
Child Female Dyslexia: 10.1
Adult Male Control: 41.1
Adult Male Dyslexia: 42.9
Child Male Control: 8.3
Child Male Dyslexia: 9.6

Greater GMV in male controls compared to
males with dyslexia mostly in regions within the
traditional reading network, while female
controls show greater GMV compared to
females with dyslexia in sensorimotor regions

Altarelli et al., 2014 Control: 20M, 15F
Dyslexia: 25M, 21F

Control: 11.0
Dyslexia: 11.0

Greater rightward asymmetry of planum
temporale surface area in males with dyslexia,
but not in females with dyslexia

Su et al., 2018 Control: 11M, 11F
Dyslexia: 11M, 7F

Control: 11.1
Dyslexia: 11.1

Greater axial diffusivity of left inferior longitudinal
fasciculus in control females compared to
females with dyslexia, but no difference
between male groups

∗Subject demographics given only for the portion of study relevant to sex differences. ∗∗Evans et al. (2014) separately examined males and females (and adults and
children) resulting in eight different groups. M, male; F, female; WB, whole brain; LH, left hemisphere; RH, right hemisphere; GMV, gray matter volume; WMV, white matter
volume.
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with dyslexia (a similar but non-significant trend was found in
the control data). Control females showed larger whole brain,
left hemisphere, and right hemisphere white matter volume
compared to females with dyslexia. Again, males did not show
this effect (Sandu et al., 2008). The gray matter/white matter ratio
showed significant sex differences in individuals with dyslexia
for whole brain, left hemisphere, and right hemisphere measures
with females having higher ratios than males (also true for the
control group). Females with dyslexia showed higher ratios than
control females in the left hemisphere, and this difference was
not observed in males (Sandu et al., 2008). Overall, these results
indicate volumetric effects at the gross level in females with
dyslexia that are not present in their male counterparts.

In two independent studies, Altarelli et al. (2013) used
fMRI to identify individual peaks within regions of interest in
occipito-temporal cortex that responded to words more than
other visual object categories (faces and houses); a standard
strategy for identifying the VWFA. These peak locations were
used to investigate cortical thickness differences between the
age-matched control and dyslexia groups. No sex differences (or
interactions) were observed in the location or extent of activation
for VWFA brain activity. Both studies showed thicker cortex
surrounding these peak functional responses in the age-matched
control group compared to the group with dyslexia. Additionally,
both studies found group x sex interactions where this effect was
only observed in the female subjects (Altarelli et al., 2013). That
is, female age-matched controls had thicker cortex around the
peak functional responses compared to females with dyslexia,
but there was no significant effect in age-matched male controls
versus males with dyslexia for either study. The second study
also included a reading-matched group of controls to examine
how the individuals with dyslexia compare to younger subjects
who read at the same level. Using the same size regions as in the
age-matched comparisons, there were no significant differences
between the reading-matched controls and dyslexia groups.
However, when a more focal region of interest was applied
(4 mm spheres, as opposed to the 10 mm spheres in the analyses
described above), there were again differences between the groups
that were specific to females without dyslexia showing thicker
cortex than females with dyslexia, but not in the corresponding
comparison in males (Altarelli et al., 2013). This technique (use of
a reading-matched control group) is used to look for differences
that are fundamental to dyslexia as opposed to perhaps being
due (at least in part) to reading experience, which is possible
when comparing to age-matched controls (Goswami and Bryant,
1989). These results suggest there may be a causal role of cortical
thickness in this region for females with dyslexia.

Using a longitudinal design, Clark et al. (2014) examined
cortical thickness data acquired in children beginning prior to
formal reading instruction (age 6) through potential formal
diagnosis of dyslexia (age 11). Sex differences at the pre-reading
stage are not described (though it is unclear if they were
examined), but sex differences were found at the third stage of
data collection (age 11). In the whole group, control children
showed thicker cortex compared to those with dyslexia in left
hemisphere anterior middle and superior temporal gyri, and
left orbitofrontal cortex. When just males with and without

dyslexia were compared, these same regions plus the traditional
reading network (left inferior frontal gyrus, left temporo-parietal
cortex, left fusiform gyrus) also showed thicker cortex in male
controls compared to males with dyslexia (Clark et al., 2014). No
significant differences were found at this stage between females
with and without dyslexia.

Evans et al. (2014) specifically examined volumetric
differences between individuals with dyslexia and controls
in males and females separately. It is unique compared to the
previous two studies in that examining the sexes separately was
part of the study design. Four different control versus dyslexia
group comparisons were made: female adults, male adults, female
children, and male children. In adults: male controls showed
greater gray matter volume in left middle/inferior temporal
gyri and right supramarginal gyrus, whereas female controls
showed greater gray matter volume in right precuneus and
medial frontal gyrus/paracentral lobule (Evans et al., 2014). In
children: male controls showed greater gray matter volume in left
supramarginal/angular gyrus, whereas female controls showed
greater gray matter volume in left cuneus and right precentral
and postcentral gyrus including the central sulcus (Evans et al.,
2014). Together, the pattern across children and adults appears
to be that males with dyslexia show less volume in traditional
reading network areas, while females with dyslexia show less
volume in sensorimotor areas.

Addressing a classic question in the dyslexia literature,
Altarelli et al. (2014) examined asymmetry of planum temporale,
posterior rami, and Heschl’s gyri in children with and without
dyslexia. Males with dyslexia showed greater right hemisphere
surface area compared to the left hemisphere of the planum
temporale (overall males had a higher incidence of rightward
asymmetry of the planum temporale as opposed to the more
common leftward asymmetry observed in the greater population;
Geschwind and Levitsky, 1968). Males with dyslexia also showed
a higher incidence of right hemisphere Heschl’s gyrus duplication
compared to control males (Altarelli et al., 2014). There were no
significant findings between the female groups for surface area
or asymmetry index, and no significant differences for cortical
thickness analyses (Altarelli et al., 2014).

In a diffusion tensor imaging (DTI) study of Chinese
children, Su et al. (2018) investigated alterations in dyslexia
within bilateral arcuate, inferior fronto-occipital, and inferior
longitudinal fasciculi. Beginning with fractional anisotropy of
these tracts, sex was included in all models but there were no
effects of sex or interactions with sex (Su et al., 2018). In further
examining the left arcuate and inferior longitudinal fasciculi
(where diagnosis effects of fractional anisotropy were observed),
there was a diagnosis x sex interaction for axial diffusivity in
the left inferior longitudinal fasciculus. Specifically, females with
dyslexia showed lower axial diffusivity compared to control
females, but there was no difference between the male groups (Su
et al., 2018). As the authors note, these findings are close to the
Altarelli et al. (2013) cortical thickness differences that were also
observed in females but not males (Su et al., 2018). This could
indicate both white and gray matter alterations in this region
for females with dyslexia, or perhaps an underlying factor that
impacts both of these types of measurements. The specificity of
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the result for axial diffusivity (and not fractional anisotropy) also
complicates interpretation (Su et al., 2018). Axial diffusivity has
been related to axonal degeneration as opposed to myelination
(see Alexander et al., 2007), though how this impacts the results
observed here is unclear.

These studies represent the importance of studying sex
differences in the dyslexia neuroimaging literature. While they
are too few to build a clear picture on their own or conduct
a formal meta-analysis, they do provide a starting point for
thinking about neuroanatomical sex differences in dyslexia. The
results of Altarelli et al. (2014), Clark et al. (2014), and Evans
et al. (2014) suggest that perhaps the traditional reading network
is impacted in dyslexia to a greater extent in males than in
females. Sandu et al. (2008), Altarelli et al. (2013), and Su et al.
(2018) suggest that in some regions, females with dyslexia may
show more drastic structural differences compared to controls
than their male counterparts. It is important to note that there
is a lot of variability in these studies in terms of design, age
of participants, sample size, natural orthography/writing system
of participants, type of brain measure, etc. Each of these may
interact with sex, and especially age, which can further complicate
the consistency across studies. There may be sex differences
in dyslexia observed at certain stages of development/reading
experience that are not present at other times. It is also important
to note that the sample sizes in these studies are relatively small.
While we have focused on highlighting similarities that provide
a framework for contextualizing these differences across studies,
it is important to clarify the specific differences in these studies
are not consistent (due at least in part to the other factors noted
above). More and larger scale studies designed to look for sex
differences in dyslexia will help clarify how, to what degree, and
under what conditions the neuroanatomical correlates of reading
difficulty differ between the sexes.

GENETIC FACTORS

Brief Overview of Genetic Risk Factors in
Dyslexia
In addition to the extensive literature on the behavioral and brain
characteristics of dyslexia, the genetic component of reading
disability has long been of interest. The scope of this paper
will not provide a detailed review regarding the genetics of
dyslexia, however, findings relevant to a potential mechanism
for sex differences in neuroanatomy will be incorporated (for
more in depth coverage, see reviews: Pennington, 1990; DeFries
and Alarcón, 1996; Schumacher et al., 2007; Scerri and Schulte-
Körne, 2010; Poelmans et al., 2011; Carrion-Castillo et al., 2013).
As discussed by Scerri and Schulte-Körne (2010), heritability
estimates of reading ability and reading deficits have a fairly
significant range from about 30 to 70% (DeFries et al., 1987;
Stevenson et al., 1987; Castles et al., 1999; Davis et al., 2001;
Gayán and Olson, 2001; Harlaar et al., 2005; Petrill et al., 2006;
Bates et al., 2007; Friend et al., 2009), though the ages of
participants and the specific reading constructs being measured
vary (Scerri and Schulte-Körne, 2010). So while environmental
and experiential factors play crucial roles in reading development

(which can be observed at the brain level as well; Carreiras
et al., 2009; Dehaene et al., 2010; Krafnick et al., 2014), genetic
components clearly also have a strong influence on reading
ability.

Going deeper than broad heritability, several genes have been
identified with mutations that confer risk of dyslexia diagnosis
and/or contribute to variation in reading and reading related
behaviors (Scerri and Schulte-Körne, 2010; Poelmans et al., 2011;
Carrion-Castillo et al., 2013). Across the genes identified, the
most common risk factors seem to share a role of contributing
to neuronal migration during development (Galaburda et al.,
2006; Schumacher et al., 2007; Scerri and Schulte-Körne, 2010;
Poelmans et al., 2011; Carrion-Castillo et al., 2013). These results
align well with the early neuroanatomical post mortem studies
of individuals with dyslexia that suggested neuronal migration
errors occurred in these individuals (Galaburda et al., 1985;
Humphreys et al., 1990). In addition to abnormal asymmetry
of the planum temporale, they reported cortical ectopias on
the surface of the brains of those with dyslexia during their
lifetime. More recently, anatomical MRI studies have found
a relationship between variation in temporo-parietal brain
structure and dyslexia risk genes (Darki et al., 2012, 2014).

Overall, this suggests that at least some of the genetic
susceptibility to dyslexia may be related to the migration and
organization of neurons during early stages of neurodevelopment
(Galaburda et al., 2006). However, it is important to note that
there are many genes that have been linked with dyslexia other
than those discussed here, including genes not related to neuronal
migration (like CNTNAP2, which is discussed below; and see
Guidi et al. (2018) for the need to develop additional theories).

Genes With Potential Link to Sex
Differences
One consistently identified dyslexia risk gene has particular
relevance to the understanding of sex differences in dyslexia:
dyslexia susceptibility 1 candidate gene 1 (DYX1C1). Disrupting
the rat homolog (Dyx1c1) with RNA interference (RNAi)
produces (1) heterotopias in white matter, (2) over-migration of
cortical neurons beyond their target layer of cortex (Wang et al.,
2006; Rosen et al., 2007; Currier et al., 2011; Szalkowski et al.,
2013), resulting in cortical ectopias similar to those observed
in humans (Rosen et al., 2007; Threlkeld et al., 2007), and (3)
cortical neurons that incorrectly migrate to the hippocampus
instead of cortex (Rosen et al., 2007; Threlkeld et al., 2007).
Behavioral deficits also manifest in rats with disrupted Dyx1c1, in
both acoustic processing and visual attention (Szalkowski et al.,
2013). There are similar anatomical and behavioral findings for
other dyslexia candidate risk genes, for example, DCDC2 (rat
homolog Dcdc2; Meng et al., 2005; Burbridge et al., 2008; Gabel
et al., 2011; Wang et al., 2011; Adler et al., 2013) and KIAA0319
(rat homolog Kiaa0319; Paracchini et al., 2006; Threlkeld et al.,
2007; Peschansky et al., 2010; Szalkowski et al., 2012; Adler et al.,
2013; Centanni et al., 2014a,b), however, DYX1C1/Dyx1c1 is of
particular interest for potential sex differences in dyslexia because
of its relationship with estrogen.
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One study demonstrated an interaction between DYX1C1
protein and the estrogen receptors alpha and beta (ERα and
ERβ) in human and non-human mammal cell lines, as well as
in vivo for rat homolog Dyx1c1 in the hippocampus (Massinen
et al., 2009). In a follow-up set of in vitro experiments,
the estrogen receptor ERβ interacted with the DYX1C1 gene,
specifically in a location that includes one of the common
single nucleotide polymorphisms (SNPs) associated with risk for
dyslexia (rs3743205; Tammimies et al., 2012). When estrogen
was present (17 β-estradiol), it increased the expression of
DYX1C1, providing a possible connection between hormone
signals and this dyslexia candidate risk gene (Tammimies et al.,
2012). This may suggest a neuroprotective mechanism in females,
though these are in vitro results and should be interpreted
with appropriate caution. Also of interest is a German study
(366 family trios; 66 female indices) that found a three SNP
haplotype (including rs3743205) conferred risk of dyslexia in
females, but not males, in their sample (Dahdouh et al., 2009),
suggesting the possibility of differential risk factors for males
and females. Further investigation is necessary to elucidate the
contribution of DYX1C1 to dyslexia risk; specifically, additional
in vivo studies focused on characterizing the relationship between
estrogen and DYX1C1 function and expression would provide
stronger evidence of this putative mechanism for sex differences
in dyslexia.

Recently, the contactin-associated protein-like 2 (CNTNAP2)
gene has been found to have sex-specific links with dyslexia in
a Chinese population (Gu et al., 2018). Specifically, two SNPs
(rs3779031 and rs987456) contained alleles that increased risk
of dyslexia in female, but not male subjects in a sample of
726 students aged 6–15 years old (372 dyslexics-90 female, 354
non-dyslexics-87 female; Gu et al., 2018). Adding this to the
DYX1C1 findings described above suggest females with reading
difficulty may have unique risk factors compared to males. It also
expands the genetic sex differences in dyslexia beyond cortical
migration errors and adds to the expanding knowledge of how
dyslexia may develop.

To our knowledge, these are the genes that have shown direct
links with sex effects in dyslexia. However, it is possible that other
dyslexia risk factors interact with sex as well. Further research into
dyslexia risk factors and whether there are sex-specific effects is
warranted to more fully complete this picture. Regardless, given
the sex difference in incidence and recent evidence of brain sex
differences discussed above, genetic studies like these provide
a potential mechanism for how these differences might arise.
Combined with the recent behavioral and anatomical data, we
can start to build a model for how sex differences in dyslexia
might manifest in the developing brain.

CONCLUSION AND FUTURE
DIRECTIONS

With the existing literature on sex differences in dyslexia in mind,
we propose a potential framework for how these differences may
develop. Of note, the possibility that deficits in the traditional
language network may better characterize males with dyslexia

(Altarelli et al., 2014; Clark et al., 2014; Evans et al., 2014),
while females instead show aberrations to sensorimotor areas
(Evans et al., 2014), is particularly interesting when considered
alongside work examining the impact of fetal testosterone levels
on adolescent gray matter volume (Lombardo et al., 2012). In a
sample of pediatric neurotypical males (8–11 years old), higher
levels of testosterone (as measured in utero) were correlated with
greater gray matter volume in bilateral somatosensory and motor
regions, and lower levels of testosterone were correlated with
less gray matter volume in bilateral temporo-parietal and frontal
regions (including the left hemisphere language network). An
overlap of these findings was observed in a cohort of males and
females directly compared in an analysis of sexual dimorphisms
of gray matter volume (Lombardo et al., 2012). These results
suggest that males may confer greater risk for disruption of
the reading brain network, which could in turn be exacerbated
by fetal testosterone levels. Females, on the other hand, may
show similar susceptibility to disruption of sensorimotor brain
regions, while the reading network is protected to a greater
extent. Figure 2A depicts a hypothetical relationship between
gray matter volume, fetal testosterone, and dyslexia. While this
relationship is expressed in regards to gray matter volume,
the results of Clark et al. (2014) suggest a similar relationship
may exist for cortical thickness as well. However, future studies
investigating the longitudinal relationship between cortical
thickness and hormones are necessary to broaden the model
to include cortical thickness as there may be both unique and
similar relationships among these variables. The protection of the
female brain in language relevant regions may also help explain
why females with dyslexia show relatively stronger language skills
compared to their male counterparts (e.g., Berninger et al., 2008).

Genetic risk also may mediate or compound the effect of
sex/hormones on these brain networks. Returning to the early
post mortem studies, the pattern of ectopias appears to differ
across male and female subjects. Males manifest with a fairly
consistent presentation of ectopias in perisylvian structures
(Galaburda et al., 1985), while this is not true for the female
subjects (Humphreys et al., 1990). Animal models of these
ectopias (induced by a freezing probe; Humphreys et al., 1991)
also suggest differences between sexes, as males and testosterone
treated females show greater anatomical effects of the freezing
probe application than do untreated female rats (Rosen et al.,
1999). Therefore, it is possible that the anatomical profile of
dyslexia genetic risk factors may differ based on sex. Figure 2B
diagrams how sex/hormone susceptibility of perisylvian regions
in males may overlap with the localization of ectopias caused by
genetic risk factors. This helps visualize how a male-dominated
literature might identify strong deficits in the anatomy of the
reading network, and why males might be more susceptible
to reading difficulty in general. Variation in fetal testosterone
may affect reading ability as reflected in behavioral differences
between the sexes, and in combination with certain genetic risk
factors (like DYX1C1) could compound potential poor outcomes.

For females, the relative protection of the reading network
has important implications for understanding the brain profile
of dyslexia. First, it could indicate an entirely separate network
of aberrations in females with dyslexia (e.g., Evans et al., 2014).
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FIGURE 2 | Framework for sex differences in dyslexia brain anatomy. (A) Hypothetical relationship between gray matter volume and fetal testosterone. At baseline,
males (dotted blue line) may have greater volume of sensory/motor structures (solid orange line) and lesser volume within traditional language network regions (solid
green line) compared to females (dotted red line), mediated by fetal testosterone. Adapted with permission from doctoral dissertation (Evans, 2013). (B) Hypothetical
overlap between volumetric reductions the language network in males with ectopias observed post mortem. Reduced GMV and neural migration errors may overlap
in the language network of males with dyslexia.

Dyslexia as being the result of sensorimotor impairment (as
opposed to a phonological deficit) has been suggested in
the literature (Ramus, 2003), though not specifically as an
explanatory account specific to females with dyslexia. Second,
it could mean that there is more variability in the anatomical
profile of dyslexia in females, which might explain the male-only
findings of Clark et al. (2014). Third, it is also possible that
some females with dyslexia manifest with disruptions within the
traditional left hemisphere language network, but perhaps these
individuals present with the less likely case of multiple risk factors
(e.g., a more masculine brain combined with genetic risk), which
would be consistent with the findings of Sandu et al. (2008) and
Altarelli et al. (2013). Any one of these scenarios underscore the
importance of not assuming that brain-based models of dyslexia
formed from male-dominated samples can be directly applied to
female or mixed-sex samples.

The potential of sexually dimorphic anatomical profiles of
dyslexia due to differential genetic effects is complicated by the
fact it is unclear whether there is a difference in heritability
between the sexes. Harlaar et al. (2005) found evidence of sex
differences in genetic influence on reading disability, which was
not replicated in a later study (Hawke et al., 2007). However, even
if there is no sex difference in the heritability of reading disability,
this does not necessarily mean the anatomical and/or behavioral
impact of the genetic risk factors are identical. The estrogen
specific DYX1C1 effects (Massinen et al., 2009; Tammimies et al.,
2012), and different risk factors for females provide evidence for
this being a real possibility. The genetic profile of dyslexia is
complex, and no one gene is the driving factor behind reading
difficulty. DYX1C1 and CNTNAP2 may only be two examples

of potential links between sex differences and the brain in
dyslexia.

Focusing on sex differences in dyslexia does not come without
concerns and challenges. Sample sizes in dyslexia neuroimaging
studies have been relatively small (though no different than
neuroimaging studies in general). A recent, large (n > 5,000),
single-site study in healthy adults found structural and functional
sex differences throughout the brain (Ritchie et al., 2018).
However, many of the volume, area, and thickness differences
were greatly reduced in terms of effect size (or statistically
insignificant) when controlling for overall brain size (Ritchie
et al., 2018). This highlights the need for larger sample sizes to
correctly identify small but true sex differences and eliminate
false positives. The existing evidence that we discuss here needs
replication to confirm the specific sex differences relevant to
dyslexia. Investigators should also report differences before and
after controlling for total brain size.

While sex differences may be small, this does not necessarily
imply they are inherently not meaningful. It is also possible that
there are larger sex differences within the context of disorders
or LDs. If this is true, it has meaningful impact on diagnosis
and treatment. For example, if there are different pre-reading
profiles for at-risk males and females, screening for reading
difficulties based on the average will likely miss individuals
of both sexes. Similarly, different brain-based manifestations
of dyslexia between the sexes may indicate the need for
different remediation strategies. As such, neuroimaging studies of
reading interventions have also shown variable results (Barquero
et al., 2014). Small sex differences in the adult population
also do not translate to pediatric populations. Sex differences
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in brain maturation (Giedd et al., 1999) suggest that the
differences between male and female brains (when examined
cross-sectionally) may change over time, which can also impact
the examination of sex differences in developmental disorders
and disabilities.

It is also worth noting the relatively smaller body of evidence
thus far for behavioral sex differences in the context of dyslexia.
While more examples may come, it is also possible that for males
and females with dyslexia, similar behavioral profiles arise via
distinct neurological pathways. Whether or not this is the case
is worth further examination in both the behavioral and imaging
dyslexia literature. Moving forward, studies should not simply
control for sex with equal recruitment, but include the direct
examination of sex differences as an aim whenever possible.
Fully understanding the impact of sex differences in dyslexia
requires investigation beginning in pre-readers, continuing after
diagnosis, as well as pre- and post-intervention. Thorough
investigation across the developmental time course is necessary.
Sample size should also be a consideration, as mentioned above.
Not finding sex differences in a small to moderate sample does
not necessarily mean males and females with dyslexia are the
same. While null results may be of concern, the movement
toward open science helps alleviate this issue. Many journals
now have options for registered reports2, where methodology and
analysis plans are reviewed and accepted prior to results being
known. This has also been advocated for recently by Ramus et al.
(2018). Well-designed studies to investigate sex differences in
dyslexia are needed regardless of outcome. Understanding when
sex does not play a role is just as important as understanding
when sex does play a role in dyslexia. The sex differences findings
in dyslexia thus far need to be replicated and extended in
larger sample sizes. Finally, investigating sex differences in the
context of genetic risk factors for dyslexia should also provide key
information. If these factors interact as suggested by studies of
DYX1C1 and CNTNAP2, it may help clarify how sex differences
manifest at the brain and behavioral levels.

However, an important concern is the overall mixed (or lack
of) evidence for the neuronal migration hypothesis at different
levels of research, which underlies the genetic component of
this model. A recent review highlighted this fact, and calls for
a reconsideration of the neurobiological and genetic basis of
dyslexia (Guidi et al., 2018). The etiology of dyslexia is certainly
complex and the model presented here is one potential piece
of a complicated puzzle. We encourage continued investigation
into genetic and neurobiological underpinnings rooted in
alternative explanations of dyslexia that can help explain these
putative sex differences. In regards to lack of evidence in
2 https://cos.io/rr/

neuroimaging literature for the neuronal migration hypothesis
(as indicated in Guidi et al., 2018), our model does provide
testable hypotheses for DYX1C1 and other candidate genes
related to neuronal migration, which will help clarify whether
these genes interact with sex in regards to brain phenotypes or
not.

Finally, we have focused here on looking for patterns in
neuroimaging studies of sex differences with dyslexia and linking
this with what we know about genetics and behavior. It cannot
be overstated that the literature here is still young. While we have
given a potential framework for how sex differences in the brain
may manifest (and how they may relate to heterogeneity across
imaging studies), it is quite possible more patterns may emerge
as the literature here grows. Our model represents one example
of how genetic risk, environmental factors, and brain phenotype
may interact.

The pathways that lead to sex differences in dyslexia are
likely multifaceted and complex, with several different underlying
factors possibly resulting in similar reading deficits. However,
this issue can no longer be ignored. We underscore the
importance of understanding these differences for the field,
especially in regards to the potential impact on both diagnosis
and treatment of reading disability. More direct investigation of
sex differences, and females with dyslexia, is crucial to the goal
of fully understanding the etiology of reading difficulty and the
manifestation of brain differences relative to typical readers.
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