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Background: Epigenetic regulations of the tumor microenvironment (TME) and
immunotherapy have been investigated in recent years. Nevertheless, the potential
value of mitochondrial ribosomal RNA (mt-rRNA) modification in regulation of the TME
and immunotherapy remains unknown.

Methods:We comprehensively investigated the mt-rRNA-modification patterns in glioma
patients based on nine regulators of mt-rRNA. Subsequently, these modification patterns
were correlated systematically with immunologic characteristics and immunotherapy. An
“mt-rRNA predictor” was constructed and validated in multiple publicly available cohorts
to provide guidance for prognosis prediction and immunotherapy of glioma patients.

Results: Two distinct patterns of mt-rRNA modification were determined based on the
evidence that nine regulators of mt-rRNA correlated significantly with most
clinicopathologic characteristics, immunomodulators, TME, immune-checkpoint
blockers (ICBs), and prognosis. Patients with mt-rRNA subtype II presented
significantly poorer overall survival/progression-free survival (OS/PFS), but higher tumor
mutational burden (TMB), more somatic mutations, and copy number variation (CNV).
These two mt-rRNA subtypes had distinct TME patterns and responses to ICB therapy.
An mt-rRNA predictor was constructed and validated in four glioma cohorts. The subtype
with high mt-rRNA score, characterized by increased TMB, infiltration of immune cells,
and activation of immunity, suggested an immune-activated phenotype, and was also
linked to greater sensitivity to immunotherapy using anti-programmed cell death protein 1
(PD-1) but resistance to temozolomide.

Conclusions: Regulators of mt-rRNA modification have indispensable roles in the
complexity and diversity of the TME and prognosis. This novel classification based on
org September 2021 | Volume 12 | Article 7224791
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patterns of mt-rRNA modification could provide an effective prognostic predictor and
guide more appropriate immunotherapy/chemotherapy strategies for glioma patients.
Keywords: mt-rRNA, tumor microenvironment, genomic variation, immunotherapy, temozolomide, glioma
INTRODUCTION

Gliomas are the most common primary intracranial tumors of
the central nervous system. Of the subtypes of gliomas,
glioblastomas are the most malignant and deadliest (1–3). The
previous treatment options for gliomas (maximal resection,
adjuvant chemotherapy with temozolomide, and radiotherapy)
have failed to achieve satisfactory results (4). Developments in
epigenetics and immunology have enabled molecular-targeted
therapies and immunotherapies for gliomas. However, most of
these potential new therapies are being tested in clinical trials and
have not been found to significantly lengthen the survival of
patients suffering from glioma (5, 6). Therefore, the exploration
of novel therapeutic strategies on glioma is a long-term and
arduous task.

More than 170 types of RNA modifications have been reported.
These modifications are present in all living organisms and have
indispensable roles in biological activities, with post-transcriptional
modifications of ribosomal RNA accounting for a large proportion
(7). Mammalian mitochondria possess their ribosomes. The latter
consist of two subunits (large and small), which synthesize the 13
key proteins of the oxidative-phosphorylation system (8–10).
Hence, homeostasis of the biogenesis and modification of
mitochondrial ribosomes are essential for cellular metabolism and
mitochondrial translation. Abnormal mitochondrial ribosome
modification can lead to the interruption of mitochondrial
protein synthesis and impedes assembly of the components of the
mitochondrial respiratory chain, which usually leads to metabolic-
related diseases (11, 12). With the development of cryo-electron
microscopy, nine modifications of mt-rRNA have been identified.
All corresponding modifying enzymes have been described to
explore their effects on the biogenesis and function of
mitochondria (9, 10, 12, 13). The prominent modification of
mammalian mt-rRNA involves catalysis by methyltransferases
consisting of TRMT2B (modifies the nucleotide m5U429),
METTL15 (modifies the nucleotide m4C839), NSUN4 (modifies
the nucleotide m5C841), TFB1M (modifies the nucleotide m6

2A936/
7), TRMT61B (modifies the nucleotide m1A947), MRM1 (modifies
the nucleotide Gm1145), MRM2/FTSJ2 (modifies the nucleotide
Um1369), MRM3/RNMTL1 (modifies the nucleotide Gm1370)
and RPUSD4 (modifies the nucleotide Y1397) (11, 12, 14–16).
Deeper understanding of these regulators could aid the
determination of the function and mechanism of mt-rRNA
modification in post-transcriptional regulation. Accumulating
evidence indicates that expression disorders and genetic variations
of mt-rRNA regulators are associated with developmental defects,
apoptosis, cardiomyopathy, metabolic disorders, progression of
malignant tumors, and immunomodulatory abnormalities (17–19).

Immunotherapy is represented by immune-checkpoint
blockade. It has been studied extensively in recent years as novel
org 2
and satisfactory therapy for malignant tumors. Unfortunately,
immunotherapy cannot extend the survival of patients (20, 21).
Numerous studies have revealed that the microenvironment of
tumor cells, rather than the genetic and epigenetic variations of
tumor cells, plays an essential part in the occurrence and malignant
progression of tumors (22). Further study of the tumor
microenvironment (TME) has revealed its important role in
tumor progression, immune escape, and immunotherapy
response. Anti-programmed cell death protein 1 (PD-1) and its
ligand (PD-L1) are the most studied and most efficacious immune-
checkpoint blockers (ICBs). They mainly regulate the immune
response of T cells in the TME so as to avoid anti-tumor immune
reactions, and then attack the tumor (21, 23). Anti-PD-1 has been
used in the treatment of melanoma, non-small-cell lung cancer, and
colon cancer, but its clinical efficacy against glioma is not high.
Several studies have revealed that the relatively high
immunosuppressive microenvironment and low tumor
mutational burden (TMB) may lead to immunotherapy failure
(24–26). Therefore, the selection of suitable immunotherapy for
glioma patients through comprehensive analyses of transcriptional
regulations, genetic variations, and the immune microenvironment
of gliomas may be challenging.

In this study, we analyzed the expression patterns and
immunological value of the regulators of mt-rRNA modification.
Based on the features of nine mt-rRNA regulators, we identified
two patterns of mt-rRNA modification in glioma patients which
had distinct functional annotations, clinicopathologic
characteristics, and survival outcomes. Subsequently, integrated
analyses revealed significant differences in genomic variation, the
TME, and ICB expression levels between the two subtypes of
patients, and determined the different responses to
immunotherapy. Therefore, we constructed an “mt-rRNA
predictor” that could distinguish the two mt-rRNA subtypes of
glioma patients and verified it in four independent cohorts of
glioma patients. This mt-rRNA predictor could provide a selection
strategy for screening glioma patients who elicit a positive
response to immunotherapy or temozolomide therapy. In this
way, we aimed to provide novel ideas for survival prediction and
better targeted therapy for glioma patients according to the
classification of mt-rRNA modification patterns.
MATERIALS AND METHODS

The flowchart of this work is shown as Figure 1.

Acquisition and Preprocessing of Datasets
From Glioma Patients
Data on RNA-sequencing, somatic mutations, and copy number,
as well as the matched clinical data of glioma patients, were
September 2021 | Volume 12 | Article 722479
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obtained from The Cancer Genome Atlas (TCGA; https://portal.
gdc.cancer.gov/), Chinese Glioma Genome Atlas (CGGA; www.
cgga.org.cn/) and Gene Expression Omnibus (GEO; www.ncbi.
nlm.nih.gov/geo/) databases. After excluding patients with
incomplete clinical information, 1136 glioma samples (TCGA,
n = 602; CGGA, n = 286; microarray data (GSE16011), n = 248)
were gathered for further analyses. Subsequently, transcripts per
kilobase million (TPM) values of RNA-sequencing data, robust
multichip averaging analysis (RMA)-processed values of
microarray data (GSE16011), RNA-sequencing data (RSEM
value), and real-time reverse transcription-quantitative
polymerase chain reaction (RT-qPCR) data (SAHNU cohort)
Frontiers in Immunology | www.frontiersin.org 3
of clinical samples were log2-transformed and normalized to
make the gene-expression profiles of different platforms
comparable. The clinical information of the 1136 public glioma
patients is displayed in Supplementary Table S1. Furthermore,
the somatic-mutation data and frequencies of genes (in mutation
annotation format) were analyzed using “maftools” within R (R
Institute for Statistical Computing, Vienna, Austria; www.r-
project.org/). Amplification or deletion of copy number
variation (CNV) data were identified using the GISTIC
algorithm (27). Moreover, the half-maximal inhibitory
concentration (IC50) of Temozolomide in glioma patients and
matched RNA-sequencing data were downloaded from the
A B
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C

FIGURE 1 | Overview of this study. (A) Data sources and analytic software used in this study. (B) Comprehensive analyses of nine regulators of mt-rRNA modification.
(C) Identification of the patterns of mt-rRNA modification. (D) Comparisons of genomic variations between two patterns of mt-rRNA modification. (E) Correlations
between the patterns of mt-rRNA modification and immunologic elements and immunotherapy. (F) Construction and validation of a mt-rRNA predictor and the
prognostic role of this mt-rRNA predictor in glioma. (G) Role of this mt-rRNA predictor in predicting the response to ICB immunotherapy and temozolomide
chemotherapy. Significance: ns, P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Genomics of Drug Sensitivity in Cancer (GDSC) database (www.
cancerrxgene.org/) (28).

Frozen specimens of glioma used in the present study were
obtained from patients who underwent surgery at The Second
Affiliated Hospital of Nanchang University (SAHNU) from 2015
to 2020. Clinical information was obtained through electronic
medical records. Overall survival (OS) data were not available
because information based on telephone follow-up were missing.
Thirteen samples of high-grade glioma (World Health
Organization (WHO) grade III, IV), 12 samples of low-grade
glioma (WHO grade II), and eight samples of non-neoplastic
brain tissue (NBT; collected from surgery of people with
intractable epilepsy, and which were used as controls) were
employed. The clinical information of these 33 patients is also
displayed in Supplementary Table S1.

Ethical Approval of the Study Protocol
The study protocol was approved by the medical ethics
committee of the Second Affiliated Hospital of Nanchang
University (Nanchang, China) and was undertaken in
accordance with the Helsinki Declaration 1964 and its later
amendments. Written informed consent was acquired from
each glioma patient.

Immunohistochemistry
The immunohistochemistry of pathologic specimens of the nine
regulators of mt-rRNA modification were downloaded from The
Human Protein Atlas (www.proteinatlas.org/). Meanwhile, the
quantity and intensity of Staining as well as the information of
patients were acquired online.

Immunological Features of the TME in
Glioma
The immunological features of the TME in glioma were
evaluated: expression of immunomodulators; abundances of
immune cells and stromal cells; infiltration level of tumor-
infiltrating immune cells (TIICs); ICBs expression level. First,
we obtained the composition of 122 immunomodulators
(immune stimulators, major histocompatibility complex
molecules, chemokines, and receptors) from the research of
Charoentong et al., and collected 28 ICBs with therapeutic
potential from the work of Auslander and colleagues (29, 30).
The ESTIMATE algorithm was utilized to evaluate the
abundance of immune cells and stromal cells, as well as the
tumor purity based on the expression profiles of glioma patients
(31). Four types of scores were generated by the ESTIMATE
algorithm: positively reflecting the abundance of stromal cells
(stromal score), positively reflecting the abundance of immune
cells (immune score), positively reflecting nontumor composites
(ESTIMATE score), and tumor purity. We also calculated the
infiltration level of 22 types of TIICs in the TME based on the
expression profiles of glioma samples using a deconvolution
method according to linear support vector regression
(CIBERSORT) (32). Thereafter, the enrichment score of 29
“immune signatures” (including the types, functions, and
molecular pathways of TIICs and the immune activity of
tumors) were quantified using single-sample gene-set
Frontiers in Immunology | www.frontiersin.org 4
enrichment analysis (ssGSEA) according to the method
described by Xu and colleagues (33).

Unsupervised Clustering of mt-rRNA
Regulator-Based Classification of Glioma
Patients
The expression levels of nine regulators of mt-rRNA
modification were extracted from the TCGA dataset for further
classifying (34). Unsupervised clustering analysis based on a
machine-learning algorithm (k-means) was undertaken to
identify distinct patterns of mt-rRNA modification according
to the expression profiles of nine mt-rRNA regulators, and we
classified glioma patients for further evaluation. The number of
clusters and their stability was determined comprehensively by
the steps mentioned above as well as 1000-times repetitions, the
relative change in the area under the cumulative distribution
function (CDF) curve, and the consensus “heatmap” based on
the “ConsensusClusterPlus” package in R (35). We further
explored the correlation between clinicopathologic features and
mt-rRNA subtypes of glioma patients. Survival analyses using
the Kaplan–Meier method were used to investigate the prognosis
of glioma patients with different mt-rRNA subtypes: OS and PFS.

TMB and CNV Between Two mt-rRNA
Subtypes
Maftools and GenVisR were run to analyze and visualize the
mutation types and frequencies of genes between two mt-rRNA
subtypes (36, 37). The TMB is the total number of
nonsynonymous mutations and is an emerging biomarker for
the response to immunotherapy. The TMB was compared
among different subtypes of mt-rRNA-modification patterns.
In addition, significant amplifications and deletions in the
whole genome were identified and visualized further using
“RCircos” within R (38).

Functional Annotation and Gene Set
Variation Analysis
We wished to explore the significantly enriched molecular
pathways of the different subtypes of mt-rRNA-modification
patterns. Hence, we undertook GSVA (a non-parametric and
unsupervised method) using the R package “GSVA “based on the
gene sets of “c2.cp.kegg.v6.2.symbols”, which we downloaded
from the Molecular Signatures Database (MSigDB) database
(www.gsea-msigdb.org/gsea/msigdb/) (39). The KEGG
pathways with an adjusted P < 0.05, |log2 fold change (FC)| >
0.1 and false discovery rate (FDR) < 0.05 were considered
significant between the two mt-rRNA subtypes.

Prediction of ICB Therapy Response
Tumor Immune Dysfunction and Exclusion (TIDE; http://tide.
dfci.harvard.edu/) is an algorithm used to determine the
characteristics of T-cell dysfunction by testing how the
expression of each gene in a tumor interacts with the level of
cytotoxic T lymphocyte (CTL) invasion to affect the survival of
patients and response to immunotherapy (40). We predicted the
clinical response of glioma patients to immunotherapy using the
TIDE algorithm based on the expression profiles in each cohort.
September 2021 | Volume 12 | Article 722479
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Subsequently, the clinical response to ICB therapy was also
predicted with the subclass mapping (https://cloud.genepattern.
org/gp/) method (41). Bonferroni-corrected P < 0.05 was
considered to be a significant response or non-response to
therapy using anti-PD1 or anti-CTLA4 with the cutoff
FDR < 0.05.

Construction and Validation of the
mt-rRNA Predictor
The total of 1136 glioma patients were classified into a training
set (TCGA) and three validation sets (CGGA, GSE16011,
SAHNU). First, in the training set, we undertook univariate
Cox analysis of these mt-rRNA regulators using the R package
“survival”. Subsequently, the least absolute shrinkage and
selector operation (LASSO) algorithm was utilized to select
optimal-candidate differentially expressed mt-rRNA regulators
with the best discriminative capability in the training set. Then,
we constructed an mt-rRNA predictor based on the expression
profiles of mt-rRNA regulators weighted using the multivariate
Cox regression coefficient as follows:

mt − rRNA score =o
n

i=1
(Coefi + Expi)

whereCoefi is the coefficient and Expi is the expression of mt-rRNA-
modification regulators. The coefficient of each regulator was also
obtained to calculate the mt-rRNA score in the validation sets.
Specifically, glioma patients were classified into low-score and high-
score subtypes based on themedianmt-rRNA score. The prognostic
importance of the mt-rRNA predictor was assessed between the two
subtypes using the Kaplan–Meier method, and the prediction
efficiency was tested further with receiver operating characteristic
(ROC) curves. Moreover, univariate and multivariate Cox
regression analyses were carried out to explore the prognostic
value of the mt-rRNA predictor with multiple clinical and
molecular pathologic characteristics. Similar methods were used
to verify the predictive performance of mt-rRNA predictor in the
validation sets.

Chemotherapeutic Response to TMZ
Temozolomide is first-line chemotherapy for glioma patients.
We obtained the IC50 of temozolomide in glioma specimens and
RNA-sequencing data from the largest publicly available
pharmacogenomics database (GDSC) and normalized them by
log2-transformation for further analyses. Glioma specimens
treated with temozolomide were divided into two groups
according to the median mt-rRNA score.

Quantitative Real-Time Polymerase Chain
Reaction of the SAHNU Cohort
We used methods we described previously to measure mRNA
expression of regulators of mt-rRNA modification in glioma
specimens (42). Briefly, total RNA was extracted from brain
tissue and reverse-transcribed into complimentary-DNA. Next,
relative mRNA expression of genes was normalized to that of
GAPDH, and we evaluated the fold change using the 2−DDCT

method. The primer sequences used for RT-qPCR were obtained
Frontiers in Immunology | www.frontiersin.org 5
from RiboBio (Guangzhou, China) and were as follows: MRM2
forward 5’-GTGATTCTGAGCGACATGGC-3’, reverse 5’-
ATGACTCTTTCCTGCTGGCT-3’; TRMT2B forward 5′-
TCAAGAGTCCTAAATGCACAACC-3′, reverse 5′-CCAG
GAGTCATCTCTACAATGC −3′.

Statistical Analyses
Correlations between variables were assessed using Spearman or
Pearson correlation analyses. Variables with a normal
distribution were analyzed by the unpaired Student’s t-test.
Variables with a non-normal distribution were analyzed by the
Mann–Whitney U-test. For comparisons of categorical variables,
the Kruskal–Wallis test and one-way ANOVA were used for
non-parametric and parametric methods, respectively. The
Kaplan–Meier method was employed to calculate the survival
curve of categorical variables, whereas the log-rank test was used
to estimate significance. According to the method of Hoshida
and colleagues, the Bonferroni correction was applied to correct
nominal P-values in the subgroup analysis of ICB
immunotherapy. Statistical analyses were carried out using R
3.6.5, and P < 0.05 (two-sided) was considered significant.
RESULTS

The Value of Nine mt-rRNA Modification
Regulators in Gliomas
Considering the possible biological functions of mt-rRNA-
modification enzymes in gl iomas, we conducted a
comprehensive study on these regulators in TCGA cohort. As
shown in a heatmap, the expression of most regulators of mt-
rRNA modification was associated significantly with the WHO
grade (Supplementary Figure S1A). Measurement of expression
of each dysregulated mt-rRNA-modification regulator showed
MRM1, TRMT2B, TFB1M, MRM3, NSUN4, TRMT61B, and
MRM3 to be correlated significantly with each WHO grade
(Figure 2B). Moreover, we observed protein expression of
MRM1, MRM3, TRMT2B, and NSUN4 to be significantly
different between low- and high-grade gliomas, whereas other
regulators could not be obtained due to lack of data
(Supplementary Figures S1B–D). Afterwards, we undertook
survival analyses (OS and PFS) using the GEPIA2 website.
Glioma patients were stratified into low- and high-expression
groups based on the median expression of each regulator of mt-
rRNA modification, respectively. Survival analyses using the
Kaplan–Meier method indicated that these regulators of mt-
rRNA modification were prognostic biomarkers in OS and PFS
(P < 0.01 for all) (Supplementary Figure S2A), except for
METTL15 (Supplementary Figure S2B). Furthermore, we
observed that the genomic alterations (somatic mutations and
CNVs) of the nine regulators of mt-rRNA modification were
very rare (≤1.2% for all) (Supplementary Figure S3A) in gliomas
using the “cBioPortal” of TCGA. All these results suggested that
the aberrant expression of mt-rRNA regulators has the potential
to be a prognostic biomarker, which is not generated by
genetic mutations.
September 2021 | Volume 12 | Article 722479
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Correlation analyses aimed at exploring the immunological
value of regulators of mt-rRNA modification are critical in
determining the potential of immunotherapy. Our findings
revealed that MRM2, NSUN4, TFB1M, and TRMT2B were
correlated significantly with most immunomodulators in
glioma, whereas MRM1 and RPUSD4 were correlated
negatively (Figure 2A). Enrichment of immune signatures in
the TME of glioma was also estimated using the ssGSEA
algorithm, and the appearance of most of the regulators of mt-
rRNA modification was correlated with levels of TIIC infiltration
(Figure 2C). Furthermore, expression of regulators of mt-rRNA
modification was associated with major moieties associated with
immune checkpoints in glioma, especially PD-L1, PD-1, CD80,
CD274, TIM3, and IDO1 (Supplementary Figure S3B).
Frontiers in Immunology | www.frontiersin.org 6
In summary, the above results suggested that the aberrant
expression of mt-rRNA regulators in gliomas was TME-
specific, which indicates the potential value of mt-rRNA
regulators as targets for tumor immunotherapy.

Identification of Two Subtypes With
Distinct Functional Annotations,
Clinicopathological Features, and
Clinical Outcomes
Glioma patients were classified into qualitatively different
patterns of mt-rRNA modification based on the expression levels
of nine regulators of mt-rRNA modification using the
ConsensusClusterPlus algorithm. According to the relative change
in the area under the CDF curve and the consensus heatmap, k = 2
A B

C

FIGURE 2 | Value of regulators of mt-rRNA modification in gliomas. (A) Correlation between nine regulators of mt-rRNA modification and 122 immunomodulators.
(B) Expression of each dysregulated mt-rRNA-modification regulator. (C) Correlation between nine mt-rRNA-modification regulators and 29 immune signatures.
Significance: ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
September 2021 | Volume 12 | Article 722479
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seemed to be an adequate selection (Figure 3A and Supplementary
Figures S3C, D). Hence, two distinct subtypes were identified: mt-
rRNA modification 1 (RM1, n = 377, 62.6%) and mt-rRNA
modification 2 (RM2, n = 225, 37.4%). Prognostic analysis for the
two subtypes revealed that RM1 had a particularly significant
survival advantage over RM2 in OS and PFS (Figures 3B, C).
Subsequently, the clinicopathologic features of glioma patients with
the two subtypes were compared (Figure 3D and Supplementary
Table S2). The proportion of surviving patients (83%), younger in
age at the diagnosis (53%), and 1p19q-codeletion status (38%) in
RM1 were significantly higher than that for RM2 (surviving
patients, 33%; younger in age at the diagnosis, 16%; 1p19q-
codeletion status, 4%). Moreover, patients with the RM2 subtype
had a higher WHO grade (P < 0.0001). However, there was no
difference in gender between the two subtypes (Figure 3E).
Frontiers in Immunology | www.frontiersin.org 7
GSVA was conducted to explore the molecular pathways and
potential mechanisms related to the two subtypes of mt-rRNA
modification of glioma patients. We identified 135 differentially
enriched molecular pathways: 36 pathways enriched in RM1 and
99 pathways enriched in RM2 (Supplementary Table S3). RM1-
subtype tumors were correlated mainly with the tumor metabolism-
related mechanisms (e.g., PROPANOATE_METABOLISM and
BUTANOATE_METABOLISM) and pathway (e .g . ,
“MTOR_SIGNALING_PATHWAY”). RM2-subtype tumors were
correlated mainly with the genesis and development of tumors
(e.g., “focal adhesion and apoptosis”), cancer-related signaling
pathways (e.g., “P53 signaling pathway”, “cell cycle and chemokine
signaling pathway”), and immune responses (e.g., “T and B cell
receptor signaling pathway”, “antigen processing and presentation”,
and “natural killer cell-mediated cytotoxicity”) (Figure 4A).
A B

D

E

C

FIGURE 3 | Comparisons of clinicopathologic features between two subtypes of mt-rRNA modification in TCGA cohort. (A) Consensus clustering matrix for the
optimal number, k = 3. (B, C) Kaplan–Meier analyses for patients with the two subtypes of mt-rRNA modification. (D) Correlation between subtypes of mt-rRNA
modification and clinicopathologic features. (E) Comparisons of OS status, gender, WHO grade, 1p19q codeletion, and age between two types of mt-rRNA
modification. Significance: ***P < 0.001.
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Differences in Genomic Variation Between
the Two Subtypes
Considering the indispensable role of genomic variation in the
infiltration pattern of immune cells and regulation of tumor
immunity, we undertook analyses of CNV and somatic mutation
to explore the distinct genomic alterations in the different
subtypes of mt-rRNA modification. The frequency of CNV,
both amplification (P < 0.001) and deletion (P < 0.001), in
patients with RM2, was significantly higher than that in patients
with RM1 (Figure 4B). Afterwards, a “waterfall”map of somatic
mutations showed that each subtype of mt-rRNA modification
Frontiers in Immunology | www.frontiersin.org 8
had specific mutated genes (Figures 4C, D). The proportion of
RM2-subtype patients with mutations of IDH1 (20%), ATRX
(7%), EGFR (21%), and PTEN (17%) was significantly different
from those with the RM1 subtype (P < 0.01 for all), whereas
there was no significant difference in the mutation frequency
of TP53 (Figure 4F). Moreover, patients tended to bear a
higher TMB in the RM2 subtype than that in the RM1 subtype
(P < 0.0001) (Figure 4E). Taken together, these findings
suggested that glioma patients with a different subtype of
mt-rRNA modification could have differences in response
to immunotherapy.
A

B

D

E F

C

FIGURE 4 | Functional annotation and genomic variations of two subtypes of mt-rRNA modification. (A) Heatmap of the top-20 differentially enriched molecular
pathways between two types of mt-rRNA modification (yellow = high score and purple = low score). (B) Left: Circos plots illustrating the amplification and deletion of
two subtypes. Right: Significant difference in CNV frequencies between two subtypes. (C, D) The waterfall plots illustrate the top-10 somatic mutations in tumors for
two subtypes. (E) The different TMB between the two subtypes. (F) Comparisons of IDH, TP53, EGFR, PTEN, and ATRX mutations between two subtypes.
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Distinct Immunological Characteristics
and Immunotherapy of the Two mt-rRNA
Modification Subtypes
To investigate the immunologic characteristics of glioma
patients, we first used the ESTIMATE algorithm to reveal the
TME compositions of the two subtypes of mt-rRNA
modification. Compared with patients with the RM1 subtype,
patients with the RM2 subtype possessed higher stromal,
immune, and ESTIMATE scores, accompanied by lower tumor
purity (P < 0.0001 for all) (Figure 5A). Afterwards, the
CIBESORT algorithm was used to quantify the TIIC
abundance of glioma patients. Most subsets of CD4+T cells
and macrophages as well as neutrophils infiltrated in the RM2
subtype, whereas activated natural killer (NK) cells, mast cells,
monocytes, and eosinophils infiltrated in the RM1 subtype
(Figure 5B). These analyses suggested that the RM2 subtype was
associated with higher levels of TIIC infiltration and lower tumor
purity, which could have implications for immunotherapy.

Most immune-checkpoint molecules were significantly different
between the two subtypes, among which expression of PD1, CTLA,
and their ligands (PD-L1, PD-L2, CD80 and CD86, P < 0.0001 for
all) was significantly higher in the RM2 subtype (Figure 5C).
Moreover, we also investigated the correlation between the
marker of M2-type (MRC1/CD206 and CSF1R/CD115) and
different mt-rRNA subtypes. It revealed that the expression of
MRC1 was significantly lower in the RM2 subtype, while CSF1R
represented no difference (Figure 5D). The results indicated that
macrophages were mainly polarization toward the M1-type state
(whichmarkers are CD80 and CD86) in the RM2 subtype. Based on
these results, we used the TIDE algorithm to predict the potential
response to immunotherapy in glioma patients. The number of
immunotherapy responders with the RM2 subtype was nearly twice
that of immunotherapy responders with the RM1 subtype (61% vs.
32%, P < 0.01) (Figure 5E). Then, subclass mapping was utilized to
predict the response of the two subtypes of mt-rRNA modification
to ICB therapy (anti-PD1 and anti-CTLA4). Patients with the RM2
subtype were more sensitive to anti-PD1 treatment (Bonferroni P =
0.0096) (Figure 5F).

Identification and Validation of a mt-rRNA
Regulator Predictor
We used bulk RNA-sequencing data from four independent
glioma cohorts (TCGA, CGGA, GSE16011, and SAHNU
databases) to explore the value of these mt-rRNA regulators
for clinical application. First, in the training set, we found eight
mt-rRNA regulators to be correlated significantly with OS (P <
0.01), which was consistent with our predictions using the
GEPIA2 website (Figure 6A). Among these genes, MRM2,
MRM3, NUSN4, TFB1M, TRMT2B, and TRMT61B acted as
protective factors, whereas MRM1 and RPUSD4 acted as risk
factors. Hence, the LASSO Cox regression algorithm was
employed to the relevant patterns of mt-rRNA modification
via expression of the most critical eight regulators in the
TCGA cohort, which acted as the training set (Supplementary
Figures S3E, F). Two regulators of mt-rRNA modification
(MRM2 and TRMT2B) were selected to construct the model of
Frontiers in Immunology | www.frontiersin.org 9
risk prediction. The formula used for calculation of the mt-rRNA
score was: mt-rRNA score = 0.108 × (MRM2 expression) + 0.125 ×
(TRMT2B expression). According to the median mt-rRNA score,
glioma patients were divided into a low-risk subtype and a high-risk
subtype in TCGA, CGGA, GSE16011, and SAHNU cohorts.
Afterwards, we explored the association and demographic features
between the mt-rRNA score and each clinicopathologic feature
(Figure 6B and Supplementary Table S4). The mt-rRNA score was
significantly different between glioma patients stratified by OS
status, WHO grade, 1p19q codeletion, and IDH status, but not by
gender in the training set (Figure 6C). Similar results were observed
in the validation sets, CGGA cohort, and GSE16011 cohort
(Supplementary Figures 4A, B). In addition, we explored relative
mRNA expression of MRM2 and TRMT2B using RT-qPCR.
Results revealed that MRM2 and TRMT2B were differentially
expressed between NBTs, low-grade glioma tissues, and high-
grade glioma tissues (Supplementary Figure 5B). We also found
the mt-rRNA score to be correlated significantly with WHO grade
(P = 0.004) and age (P = 0.008) in the SAHNU cohort
(Supplementary Figure 5A, C).

Moreover, glioma patients with the low-risk subtype
presented significantly better OS (P < 0.0001) (Figure 6D) and
PFS (P < 0.0001; Supplementary Figure 5D) in the training set.
ROC analyses revealed the predictive efficiency at 1, 3, 5, and 7
years (area under the ROC curve (AUC >0.75 for all) for
distinguishing the low-risk subtype and high-risk subtype in
the training set (Figure 6G and Supplementary Figure S5E).
Consistently, the mt-rRNA predictor had excellent performance
in discriminating the outcomes (Figures 6E, F) for glioma
patients as evaluated in the two validation sets, with powerful
predictive efficiency (AUC >0.7 for both) (Figures 6H, I). We
also explored the prognostic value of the mt-rRNA predictor for
different WHO grades. Survival analyses using the Kaplan–Meier
method demonstrated that patients with lower-grade glioma and
glioblastoma (GBM) patients with low-risk scores presented
significantly better OS in the CGGA and GSE16011 cohorts
(Supplementary Figures S6C, D), data which were consistent
with the results in TCGA cohort (Supplementary Figure S6A).
However, there was no difference in PFS between glioblastoma
patients stratified by the mt-rRNA score in the TCGA cohort
(Supplementary Figure S6B). Univariate and multivariate Cox
regression analyses for the three cohorts revealed significant
associations between the mt-rRNA predictor and OS/PFS in
TCGA, CGGA, and GSE16011 cohorts (P < 0.05 for all)
(Supplementary Figure S7A–D), which indicated that the mt-
rRNA predictor was an independent prognostic indicator. Taken
together, these results indicated that the mt-rRNA predictor
calculated using the mt-rRNA score could predict the prognosis
and clinicopathologic features of glioma patients accurately.

The High-Risk Subtype Exhibited Greater
Sensitivity to Immunotherapy but Was
Resistant to Temozolomide
First, TME patterns were also estimated in the CGGA and
GSE16011 cohorts using the same method. Similar to the
results of TCGA (Figure 7A), the stromal, immune, and
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ESTIMATE scores were significantly higher and the tumor
purity was lower in the high-risk subtype (P < 0.05 for all),
which indicated the high abundance of stromal cells and immune
cells and low tumor purity in the high-risk subtype
(Supplementary Figures S8A, C). CIBERSORT analyses
further revealed that memory resting T cell CD4, resting NK
cells, and most macrophage subsets were infiltrated significantly
in the high-risk subtype, whereas activated NK cells and mast
cells were abundant in the low-risk subtype. (Figure 7B and
Supplementary Figures S8B, D). Subsequently, we also
investigated the relationship between the expression of
immune-checkpoint molecules and mt-rRNA score in the
three cohorts. We found most of the immune-checkpoint
molecules were associated with the mt-rRNA score
(Supplementary Figures S7A–C). For the well-known ICBs,
the expression of PD1 and its ligands PD-L1 and PD-L2 was
correlated significantly with the mt-rRNA score, but the
correlation between CTLA4 and the mt-rRNA score was poor
(Figure 7C). These ICBs were also expressed differently between
the two subtypes in the validation sets (Supplementary Figures
Frontiers in Immunology | www.frontiersin.org 10
S9D, E), with the exception of the ligands of CTLA4 in the
GSE16011 cohort (Supplementary Figure S9E). Moreover,
patients tended to bear a higher TMB in the high-risk subtype
than that in the low-risk subtype (P < 0.0001, Figure 7D).

On the basis of the above findings, the TIDE algorithm was
employed to predict the response to ICB therapy of glioma
patients in the three cohorts. The mt-rRNA score of
responders and non-responders was significantly different (P <
0.0001 for all) (Figure 7F and Supplementary Figures S10A, D).
Moreover, the proportion of responders to ICB therapy who had
the high-risk subtype was significantly higher than the
proportion of responders to ICB therapy who had the low-risk
subtype (P < 0.0001 for all) (Figure 7G and Supplementary
Figures S10B, E). Subclass mapping demonstrated that glioma
patients with the high-risk subtype were more sensitive to anti-
PD1 therapy in the TCGA, CGGA, GSE16011 cohort, with
Bonferroni P = 0.007, 0.032, and 0.046, respectively
(Figure 7H and Supplementary Figures S10C, F).

Considering that temozolomide chemotherapy is the first-line
treatment for glioma, we explored the response of patients with
A B

D E F

C

FIGURE 5 | Different TME characteristics and response to immunotherapy of two subtypes in TCGA cohort. (A) Comparisons of immune score, stromal score,
tumor purity, and ESTIMATE score between two subtypes. (B) Difference in the abundance of TIICs between two subtypes. (C, D) Different levels of ICBs between
two subtypes. (E) Different proportions of responders and non-responders to immunotherapy between two subtypes. (F) Prediction of response to ICBs (PD1 and
CTLA4) therapy in different subtypes. Significance: ns P > 0.05, < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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the two subtypes of mt-rRNA risk to temozolomide therapy
based on the GDSC database. The log-IC50 of temozolomide in
patients with the low-risk subtype was significantly lower than
that of cases with the high-risk subtype. Hence, glioma patients
with the high-risk subtype were more resistant to temozolomide
than those with the low-risk subtype (Figure 7E).
DISCUSSION

In this study, we conducted comprehensive analyses of the
correlation between the patterns of mt-rRNA modification and
efficacy of immunotherapy and chemotherapy in glioma,
Frontiers in Immunology | www.frontiersin.org 11
proposed a predictor to distinguish subtypes based on the mt-
rRNA regulator, and verified this predictor with available RNA-
sequencing data and related clinical information from four
independent cohorts. First, we integrated the expression of 122
immunomodulators, 29 immune signatures calculated with the
ssGSEA, clinical outcomes, clinicopathologic characteristics,
genomic variations, and the nine mt-rRNA regulators of
glioma patients in the TCGA database, and studied the
relationship between them. Then, the TME and composition of
TIICs were evaluated by ESTIMATE and CIBERSORT
algorithms, respectively. We divided glioma patients into two
subtypes of mt-rRNA-modification patterns based on the
expression profiles of nine mt-rRNA regulators and clarified
A B
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FIGURE 6 | Prognostic value of a mt-rRNA predictor in gliomas. (A) Prognostic value of nine regulators of mt-rRNA modification in TCGA cohort. (B) Correlation
between the mt-rRNA predictor and clinicopathologic features. (C) Comparisons of OS, WHO grade, 1p19q codeletion, IDH mutation, and gender between two risk
subtypes of mt-rRNA. (D–F) Kaplan–Meier analyses of the mt-rRNA predictor with OS in TCGA, CGGA, and GSE16011 cohorts. (G–I) AUC of ROC curves for
predicting 1-, 3-, 5-, and 7-year OS in TCGA, CGGA, and GSE16011 cohorts, respectively. Significance: ns P > 0.05, ***P < 0.001.
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the association between the two subtypes and clinicopathologic
parameters. Glioma patients with RM2 could achieve better
therapeutic effects through immunotherapy (especially anti-
PD-1 therapy) as predicted by the TIDE algorithm. In
addition, patients in this group had longer OS and PFS. To
make the method more clinically practical for glioma patients,
the two most critical prognostic genes for mt-rRNA regulation
were identified and defined as mt-rRNA predictors to distinguish
different mt-rRNA subtypes by using the LASSO algorithm. The
Frontiers in Immunology | www.frontiersin.org 12
forecasted effect of this predictor was verified further in the
CGGA, GSE16011, and SAHNC cohorts.

In recent years, immunotherapy for tumors has been studied
extensively using ICBs, tumor-cell immunotherapy, and
antitumor vaccines. However, the immunotherapy effect in
phase-III clinical trials for glioblastoma has not been
satisfactory (24, 43). Several factors can determine the efficacy
of immunotherapy in glioma patients. Taking anti-PD-1/PD-L1
treatment as an example, the TMB, mismatch repair, expression
A B

D E
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C

FIGURE 7 | Different TME characteristics, immunotherapy, and response to temozolomide therapy of two risk subtypes of mt-rRNA in TCGA cohort. (A) Comparisons of
immune score, stromal score, tumor purity, and ESTIMATE score between high-risk and low-risk subtypes. (B) Different abundance of TIICs between high-risk and low-risk
subtypes. (C) Correlation analyses between the mt-rRNA score and ICBs. (D) Comparison of the TMB between high-risk and low-risk subtypes. (E) Different IC50 of
temozolomide between two subtypes in the GDSC database. (F) Comparison of the mt-rRNA score between the responder group and non-responder group. (G) Different
proportions of responders and non-responders to immunotherapy between two subtypes. (H) Prediction of response to ICBs (PD1 and CTLA4) therapy in high-risk and
low-risk subtypes. Significance: ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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of PD-L1 (CD274), and TICC composition can affect efficacy
(25, 44, 45). When investigating immunotherapy in phase-III
clinical trials for glioblastoma, patients are not screened for these
parameters, and such undifferentiated treatment may be the
reason for the poor efficacy of immunotherapy. Hence,
comprehensive analyses of the role of these factors will help to
enhance understanding of the immune response to gliomas and
guide more efficacious immunotherapy strategies.

Increasing evidence has demonstrated that RNA
modifications have indispensable roles in inflammation, innate
immunity, and anti-tumor activities, among which the most
extensive and in-depth research has been on m6A. Bo Zhang and
colleagues demonstrated that modification of m6A methylation
is involved in the regulation of the microenvironment of gastric
cancer, and has a guiding role in immunotherapy (46). Jianyang
Du and coworkers revealed that m6A regulators had different
modification patterns and characteristics of immunity in low-
grade glioma (47). Most studies have focused on m6A
modification, the overall TME characterization mediated by
mt-rRNA modification and its regulators is not recognized.

In this work, based on nine mt-rRNA regulators, we revealed
two distinct subtypes of mt-rRNAmodification with significantly
different TME characterization. RM2 was characterized by the
activation of immunity and related enriched pathways, which
corresponded to an immune-activated phenotype. RM1 was
characterized by infi ltration of innate immune cells
(eosinophils, NK cells, and mast cells), which corresponded to
an immune-excluded phenotype (48, 49). Meanwhile, patients
with this pattern of mt-rRNA modification showed a matching
survival advantage. Recent studies have suggested that tumors
with immune-excluded phenotype also show infiltration of
immune cells because the latter remain in the matrix around
the tumor cell “nests” rather than penetrating the parenchyma of
tumor cells (50, 51). Moreover, we revealed a significant
correlation between the subtypes and TMB, including several
common somatic mutations (TP53, PTEN, and EGFR) in
gliomas (52). mt-rRNA modification played an important part
in formation of the “immune landscape” of the TME, which
suggests that mt-rRNA modification may affect the therapeutic
efficacy of ICBs. Glioma patients with the RM2 subtype had a
significantly better response to anti-PD-1 immunotherapy. We
created an mt-rRNA predictor that could be used to characterize
cell infiltration in the TME, TMB, and clinicopathologic features
of glioma patients. This mt-rRNA predictor could act as an
independent prognostic biomarker for predicting clinical
outcomes as well as the efficacy of PD-1 immunotherapy and
temozolomide chemotherapy through the mt-rRNA score.

However, our study still had two main limitations. First, we
obtained only 33 glioma specimens with pathologic data, but no
clinical outcomes, to verify the results of our study. We need to
collect more glioma samples and obtain the corresponding clinical
outcomes from our center in the future. Second, our conclusions
are based only on the analysis and prediction of transcriptome
data in publicly available databases, the relationship between mt-
rRNA modification and immunotherapy responsiveness needs to
be tested in the future immunotherapy cohort.
Frontiers in Immunology | www.frontiersin.org 13
CONCLUSIONS

In conclusion, according to patterns of mt-rRNA modification,
glioma patients can be divided into two distinct subtypes which
have a notably different prognosis and response to
immunotherapy. Our study provides a potential strategy for
“individualized” tumor immunotherapy in the future. We
constructed a mt-rRNA predictor which made subgrouping
based on mt-rRNA regulators and precision immunotherapy
clinically feasible.
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