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Abstract

There is evidence that immune-activated macrophages infected with the Human Immunodeficiency Virus (HIV) are
associated with tissue damage and serve as a long-lived viral reservoir during therapy. In this study, we analyzed 780 HIV
genetic sequences generated from 53 tissues displaying normal and abnormal histopathology. We found up to 50% of the
sequences from abnormal lymphoid and macrophage rich non-lymphoid tissues were intra-host viral recombinants. The
presence of extensive recombination, especially in non-lymphoid tissues, implies that HIV-1 infected macrophages may
significantly contribute to the generation of elusive viral genotypes in vivo. Because recombination has been implicated in
immune evasion, the acquisition of drug-resistance mutations, and alterations of viral co-receptor usage, any attempt
towards the successful eradication of HIV-1 requires therapeutic approaches targeting tissue macrophages.
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Introduction

The intra-host evolution of HIV-1 is characterized by the ability

of the virus to generate, on a daily basis, an extensive sequence

diversity due to the high mutation rate of reverse transcriptase

(361025 substitutions per site per generation) [1], rapid viral

turnover (1028 to 1029 virions per day) [2–4], large number of

infected cells (107 to 108 cells) [5], and recombination [6,7].

Recombination plays a significant role in generating genetic

variation in the HIV-1 genome [8] and it has been shown that the

mean recombination rate can be up to 5.5 times greater than the

mean mutation rate [9]. Recombination can occur when cells are

super-infected with different viral strains [10], leading to

exchanged genetic segments in the progeny virus and the rapid

generation of completely novel and elusive genotypes within the

infected individual [9,11–13]. Laser micro-dissection studies have

shown that individual cells are able to harbor up to ten unique

viruses [12]. Recombination is, therefore, one of the most

dramatic means for a virus like HIV to generate diversity and it

has been implicated in immune evasion and escape [11,14], the

potential to generate drug-resistance mutations [15,16], and the

switch of co-receptor usage from CCR5 to CXCR4 [17,18].

However, the extent of viral recombination in different lymphoid

and non-lymphoid tissues infected in vivo by HIV-1, as well as the

relationship between recombination and pathogenesis in AIDS

patients, are currently unknown.

The causes of death for HIV-infected individuals are numerous

and have changed since the introduction of highly-active

antiretroviral therapy (HAART), although several AIDS-defining

illnesses, including non-Hodgkin’s lymphoma, dementia, Pneumo-

cystis carinii infection, atypical mycobacteria infection, and brain

toxoplasmosis, still persist. In the United States, the incidences of

non-AIDS defining diseases, such as HCV infection, non-AIDS-

defining lymphomas, cardiovascular disease, liver dysfunction, and

splenomegaly have also increased along with the life span of HIV-

infected individuals [19]. Although T-cell depletion is character-

istic of AIDS, macrophage infection is also an important

component during the progression of HIV infection to AIDS. In

the case of AIDS dementia, macrophages and microglia are the

primary immune cells causing destruction of neuronal tissues. In

the case of AIDS related lymphomas, it has been hypothesized that

macrophages may be B-cell mitogens, thus contributing to the

development of the disease [20]. In sheep, the Maedi-Visna virus

infection, which targets macrophages and dendritic cells but not

T-lymphocytes, also leads to progressive diseases and death that

resembles the wasting and brain diseases of HIV without the T-cell

immunodeficiency [21]. In HIV-infected humans, tissue-based

abnormalities discovered at autopsy could be linked to long-term
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HIV infection or toxicity associated with the continued use of

antiretroviral drugs; therefore, the characterization of HIV-1

variants infecting tissues with abnormal histopathology may shed

light on the important relationship between viral diversity and

pathogenesis.

In the present study, we examined 780 HIV-1 envelope gp120

sequences amplified from lymphoid and non-lymphoid tissues

displaying different degrees of histopathology from seven patients

who died with a variety of end-stage HIV-associated diseases. Four

of the patients were on HAART therapy near or at the time of

death. The comparison of brain and lymphoma tissues to

lymphoid tissues allowed the evaluation of macrophage-localized

HIV (brain) as compared tissues that may contain a mixed

population of macrophage and T-cell associated HIV tissues

(lymphoid tissue). By using a number of robust statistical tests to

detect intra-host recombination, we identified the presence of

recombinant sequences in different tissues and correlated the

extent of recombination with precise details relating to autopsy

and tissue pathology reports.

Results

Case studies and tissue histopathology
HIV-1 envelope gp120 sequences were amplified successfully

from 53 normal and abnormal tissues collected post mortem from

seven patients who died of AIDS. Two patients (CX and GA) had

progressive HIV-associated dementia (HAD), three died of non-

Hodgkin’s lymphoma (AM, IV, BW), and two of systemic

infections (AZ, DY). Extensive details about each case study are

included in the Supporting Material S1. The autopsies were

performed at various locations in the United States from 1995 to

2003. Although every attempt was made to amplify sequences

from identical tissues from all patients, this was impossible due to

several factors, including the fact that many brain tissues,

especially from those patients without extensive brain disease,

contained no amplifiable HIV.

Tissues were grouped and analyzed according to 1) histopathol-

ogy: 11 normal tissues vs. 39 abnormal tissues (three tissues did not

have an associated histology report) or 2) in terms of the primary

disease of the infected subjects, such as dementia (14 tissues from

subjects CX and GA), lymphoma (26 tissues from subjects IV, AM

and BW), and other complications (8 tissues from subject DY who

died from Mycobacterium avium complex infection and 5 tissues from

subject AZ who had severe cardiovascular disease, including

atherosclerosis in brain tissues and chronic hepatitis C infection).

Figure 1 shows three examples of macrophage-specific CD68

staining in meninges, lymph node and spleen from subjects with

dementia, lymphoma and systemic infection respectively. In

general, most tissues were highly positive for CD68 staining

(tissue macrophages), and moderately positive for p24 staining.

When present, the p24 stained cells were only tissue macro-

phages (data not shown). CD68 staining would be negative in

normal brain tissues. Finding these cells in the brain at the same

frequency as in the spleen and lymph nodes highlights the

importance of the frequency and potential importance of CD68

macrophages in the pathogenesis of brain disease. The p24 co-

localization observed in the brain was only found in the CD68

cell population. This, therefore, provided strong evidence that at

least a subpopulation of the abnormally present macrophages

expressed virus and would be in an activation state. No Mac387

staining was present in pathologic brain and lymphoma tissues

suggesting that the CD68 expressing cells present in those tissues

were relatively long lived.

Variable frequency of HIV-1 intra-host recombination in
different tissues

Recombinants were identified using two methods. The first

method, described in detail in Salemi et. al. [22], was specifically

designed to identify recombinants within highly related sequences.

In brief, for each patient, a split-decomposition graph including

sequences amplified from each tissue was obtained with the

Neighbor Net algorithm [23]. Some graphs showed intricate

networks consistent with the existence of conflicting phylogenetic

signals and extensive intra-host recombination. We tested the

hypothesis of intra-tissue recombination in each graph by using the

pair-wise homoplasy index (PHI-test), which simulations have

shown to provide a robust and reliable statistic to detect

recombination [24]. The PHI statistic quantifies the incompati-

bility between different possible phylogenetic histories underlying

the data. For each alignment of viral sequences from a tissue, we

calculated the observed PHI and a null PHI distribution obtained

from 1000 random alignments simulated under the null hypothesis

of no recombination. An observed PHI value,5% of the values in

the null distribution is evidence of a statistically significant signal

for recombination. In many tissues the PHI test for recombination

was highly significant (p,0.0001). Interestingly, while HIV-1

recombinants were detected in all patients, regardless of pathology

and cause of death, they occurred in highly different proportions,

ranging from 0% to 53% in different tissues (Tables 1–7). The

removal of recombinant sequences significantly changed the

Figure 1. Histopathology. Anti-CD68 staining of A) meninges from patient CX; B) large cell lymphoma from AM; and C) spleen from patient DY.
CD68 positive cells are stained brown.
doi:10.1371/journal.pone.0005065.g001
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calculated distance in only 3 out of the 29 tissue samples

containing recombinants. Although recombinants were often

found in tissue sequence populations with high divergence, they

were also found in sequence populations with a comparatively low

sequence divergence (this is especially apparent in the two

lymphoma cases). Linear regression analysis comparing the

number of recombinants to the diversity in each tissue showed a

significant correlation of the two variables only in subject AZ

(r = 0.96, p = 0.01). Therefore, we could exclude, as previously

shown [22,24], that the PHI test is biased by the extent of

heterogeneity within a given data set or that higher diversity and

recombination values are due to rapid viral replication in disease

Table 1. Patient CX - Dementia.

Tissue # Sequences PHI-test p-value

# Recombinants
Identified (%
recombinant) % Diversity (SE)

% Diversity without
Recombinants (SE)

A-Perivascular LN 23 0.256 0 1.4 (0.1) nc

N-Colon 24 0.900 0 2.0 (0.3) nc

U-Periventricular White 24 0.393 0 0.8 (0.1) nc

A-Choroid Plexus 23 0.076 0 1.6 (0.1) nc

A-Meninges 23 0.0(,10299) 5 (21.7) 3.9 (0.3) 3.1 (0.4)

A-Temporal Lobe 22 0.170 0 1.0 (0.1) nc

A-Basal Ganglia 23 1.198(10213) 5 (21.7) 4.0 (0.4) 3.7 (0.3)

A-Occipital Junction 23 5.871(10211) 8 (34.8) 4.3 (0.4) 4.2 (0.4)

A-Occipital White Matter 24 2.014 (10213) 9 (37.5) 2.1 (0.2) 1.8 (0.2)

Recombination in and between tissues. The subjects in the study are listed in Tables 1–7. Each table lists the tissues sampled, the number of sequences obtained
from each tissue, the p-value for the PHI-test computed with Splitstree and the number and percent of recombinants found in the data set. The percent diversity in each
tissue sequence dataset is shown with a standard error. For comparison, the percent diversity was also calculated without recombinants sequences included. Numbers
highlighted in grey indicate significant p-values for recombination in the data set or a greater than 1% change in the % diversity of the sample set when the
recombinant sequences were removed. Letter designations before the tissue names refer to pathology reports, A = abnormal, N = normal and U = unknown (no support
for tissue pathology is written in the autopsy report). nc = No change in diversity calculation.
Recombination tests. The number of recombinant sequences for all tissues in each patient is shown for the PHI-test and the RDP recombinant detection methods in
Table 8.
doi:10.1371/journal.pone.0005065.t001

Table 2. Patient GA - Dementia.

Tissue # Sequences PHI-test p-value
# Recombinants
Identified (% recombinant) % Diversity (SE)

% Diversity without
Recombinants (SE)

A-Meninges 23 7.438(10215) 7 (30.4) 2.7 (0.3) 2.7 (0.3)

A-Frontal Lobe White 31 3.492(10214) 13 (41.9) 6.2 (0.5) 2.2 (0.2)

A-Temporal Cortex 21 0.002 2 (9.5) 5.8 (0.5) 1.5 (0.2)

N-Lymph Node 28 0.0(,10299) 9 (32.1) 4.7 (0.4) 4.7 (0.3)

A-Spleen 29 0.0(,10299) 4 (13.8) 3.4 (0.3) 3.4 (0.3)

doi:10.1371/journal.pone.0005065.t002

Table 3. Patient DY – Systemic Infection (including encephalitis).

Tissue # Sequences PHI-test p-value
# Recombinants
Identified (% recombinant) % Diversity (SE)

% Diversity without
Recombinants (SE)

N-Meninges 18 0.0(,10299) 4 (22.2) 2.8 (0.3) 2.2 (0.3)

N-Basal Ganglia 20 0.003 1 (5.0) 2.3 (0.3) 0.7 (0.1)

N-Temporal Cortex 23 1.0 0 0.3 (0.1) nc

N-Frontal Lobe Grey 22 2.101(1024) 1 (4.5) 2.7 (0.3) 2.7 (0.3)

N-Frontal Lobe White 24 0.188 0 0.8 (0.1) nc

U-Liver 17 0.120 0 0.9 (0.2) nc

A-Lymph Node 21 1.737(1027) 5 (23.8) 3.3 (0.3) 3.0 (0.3)

A-Spleen 21 2.320(1024) 2 (9.5) 3.0 (0.3) 2.6 (0.3)

doi:10.1371/journal.pone.0005065.t003
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tissues. A high frequency of intra-host recombinant sequences

was usually found in abnormal tissues associated with disease

processes, including meninges, spleen and lymph nodes. No

relationship between a patient’s HAART history and the

number of recombinants found in damaged or normal tissues

was observed.

The RDP program was also used to detect the number of

recombinants in each tissue and produced similar results [25].

RDP is a useful software package for the rapid and automatic

identification of recombination signals. The default setting uses

seven different recombination detection methods. These are, 1) the

original RDP method, 2) the Bootscan/RECSCAN method

[25,26], 3) the method applied in the program GENECONV

[27,28], 4) the MaxChi method [29,30], 5) the Chimaera method

[29], 6) the SiScan method [31] and 7) the 3SEQ method [32].

The numbers of recombinants for each subject’s tissues were

combined and are shown in Table 8 along with the results from

the Salemi et al method. In all but one subject (AM), the RDP

Table 4. Patient AZ – CVD and Systemic Infection.

Tissue # Sequences PHI-test p-value
# Recombinants Identified
(% recombinant) % Diversity (SE)

% Diversity without
Recombinants (SE)

N-Meninges 13 0.126 0 0.9 (0.2) nc

N-Frontal Cortex 22 1.0 0 0.4 (0.1) nc

A-Liver 17 1.0 0 0.6 (0.1) nc

N-Lymph Node 16 2.172(1024) 1 (6.3) 4.0 (0.3) 3.6 (0.3)

A-Spleen 19 9.135(1029) 2 (10.5) 4.7 (0.4) 4.8 (0.4)

doi:10.1371/journal.pone.0005065.t004

Table 5. Patient AM - Lymphoma.

Tissues # Sequences PHI-test p-value

# Recombinants
Identified (%
recombinant) % Diversity (SE)

% Diversity without
Recombinants (SE)

A-Left Axillary LN 22 0.336 0 0.9 (0.1) nc

N-Diaphragm 20 0.992 0 5.8 (0.4) nc

U-Prostate 16 1.0 0 2.3 (0.3) nc

A-Kidney 21 1.0 0 1.2 (0.2) nc

A-Liver 1 Biopsy 20 0.022 1 (5.0) 1.6 (0.2) 1.5 (0.2)

A-Liver 2 Biopsy 37 6.378(1028) 3 (8.1) 1.1 (0.2) 1.0 (0.2)

A-Liver 3 Biopsy 20 0.001 2 (10.0) 1.9 (0.2) 1.5 (0.2)

A-Right Axillary LN 18 3.344(1024) 2 (11.0) 1.6 (0.2) 1.5 (0.2)

A-Spleen 24 5.072(1028) 7 (29.2) 2.4 (0.3) 2.2 (0.3)

A-Stomach Lymphoma 27 7.409(10210) 4 (14.8) 1.3 (0.1) 0.3 (0.1)

doi:10.1371/journal.pone.0005065.t005

Table 6. Patient IV - Lymphoma.

Tissues # Sequences PHI-test p-value
# Recombinants Identified
(% recombinant) % Diversity (SE)

% Diversity without
Recombinants (SE)

A-Diaphragm 16 0.003 1 (6.3) 1.7 (0.2) 1.7 (0.2)

A-GI Tract 18 1.0 0 2.9 (0.3) nc

A-Kidney 19 0.353 0 0.6 (0.1) nc

A-Left Axillary LN 13 2.912(1025) 4 (30.8) 2.4 (0.3) 2.4 (0.3)

A-Lung LN 22 1.637(10213) 11 (50.0) 2.7 (0.3) 2.7 (0.3)

A-Periaortic LN 20 4.722(1029) 3 (15.0) 2.5 (0.3) 2.5 (0.3)

A-Right Axillary LN 16 2.432(1026) 4 (25.0) 2.4 (0.3) 2.3 (0.3)

A-Spleen 19 3.624(1025) 2 (10.5) 1.9 (0.2) 1.9 (0.2)

A-Stomach 22 1.0 0 0.3 (0.1) nc

A-Omental LN 16 0.762 0 1.8 (0.2) nc

doi:10.1371/journal.pone.0005065.t006
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program identified more recombinants; therefore, it appears that

the Salemi et al. method, at least in the case of intra-patient tissue

recombination detection, is more conservative. This is probably

because 1) some of the methods in RDP are molecular model-

dependant, 2) the number of sequences within each analysis can

impact results, and 3) variation within each population may alter

the number of recombinants identified [33]. The significant

finding from both analyses is that recombination occurred

frequently, in various places along the gp120, and at various

frequencies in the many tissues examined.

Tissue histopathology and recombination
Both normal and abnormal tissues were sampled from five (CX,

GA, DY, AZ, AM) out of seven patients. For two patients, IV and

BW, all tissues sampled were identified as abnormal. Figure 2A

shows for each subject the percentage of normal and abnormal

tissues harboring recombinants. In general, the proportion of

tissues harboring recombinant sequences was significantly higher

among tissues with abnormal histopathology than in normal

tissues (chi-square test for categorical data p,0.001), with the

exception of one subject (GA). Statistical analysis also showed that

a significantly higher proportion of recombinant sequences was

detected within these abnormal tissues (chi-square test for

categorical data p,0.001) as compared to normal tissues, with

the exception, again, of subject GA (Figure 2B). Although a higher

frequency of recombinant sequences was more likely to be found

in tissues displaying abnormal histopathology, no significant

difference was found in the extent of recombination by comparing

patients with different AIDS-associated illnesses. The box-plot in

Figure 3 shows that the range of recombinant sequences detected

within patients grouped according to their diagnosis was largely

overlapping.

Patient GA contained a relatively equal number of recombi-

nants in one normal tissue: an axillary lymph node. This tissue also

had the second highest diversity rate of all 53 tissues examined;

therefore, this may be a single case where the number of

recombinants was due to high viral turnover in this particular

tissue at the time of death or due to other unknown factors.

Further evaluation of other normal tissues from patient GA may

provide evidence to establish whether the association between

recombination in this case was tissue-specific or due to an overall

different pattern of sequence evolution within the patient.

Identification of recombination breakpoints
While the detection of recombinant sequences is readily

achievable, the detection of the precise location of a breakpoint

is nearly impossible, especially in the case of highly related

sequences. Still, recombination breakpoints were assessed in order

to identify if potential hotspots or non-specific recombination

events had occurred. The analysis was conducted using the split-

decomposition networks in conjunction with visual examination of

bootscans produced with Simplot [34]. As suggested by Zhang et

al. [35], we used a small moving step (20 nt) for breakpoint

detection; however, by varying the sliding window from 1 to 20 nt,

we found that putative breakpoints could map within a genomic

region of approximately 20 to 100 nucleic acids; therefore, it is

important to emphasize that the breakpoints are not precise but

merely provide a graphical overview of our findings. An example

of our method (patient CX meninges) is given in Figure 4.

Figure 4A shows the Neighbor-Net inferred tree using viral

sequences from the meninges of subject CX. Putative recombinant

sequences, usually located at the vertices of large splits in such

networks, are highlighted within a solid circle, while broken circles

indicate monophyletic groups of putative parental sequences. The

bootscanning analysis shown in Figure 4B shows how putative

breakpoints appear in the plot as a switch in a high bootscan value

from one sequence to another related sequence. This analysis was

performed for all 127 identified recombinant sequences (data

available as supplemental material).

Figure 5 displays a map of the putative breakpoints for all

recombinant sequences in each patient. The breakpoints are color-

coded by tissue. Many of the sequences contained multiple

breakpoints so that the number of breakpoints on each graph is

typically larger than the number of recombinant sequences listed

in Tables 1–7. In most patients putative breakpoints along the

gp120 appeared somewhat randomly distributed in both con-

served and variable gp120 domains. However, in some cases

similar breakpoints clustered to specific regions along the genome,

suggesting the possibility of recombination hotspots or selective

outgrowth of particular viral variants. As an example, subject GA

Table 7. Patient BW – Lymphoma (including leptomeningeal lymphoma).

Tissue # Sequences PHI-test p-value

# Recombinants
Identified (%
recombinant) % Diversity (SE)

% Diversity without
Recombinants (SE)

A-Meninges 22 2.508(1029) 5(22.7) 2.5 (0.3) 2.1 (0.2)

A-Basal Ganglia 23 0.175 0 0.9 (0.1) nc

A-Temporal Cortex 17 1.000 0 0.3 (0.1) nc

A-Frontal Lobe Gray 21 0.091 0 0.3 (0.1) nc

A-Frontal Lobe White 20 0.276 0 0.9 (0.2) nc

A-Spleen 18 0.074 0 1.7 (0.2) nc

doi:10.1371/journal.pone.0005065.t007

Table 8. Recombination tests.

Patient PHI-test method RDP method

CX 27 35

GA 35 40

DY 13 21

AZ 3 4

AM 19 10

IV 25 33

BW 5 16

doi:10.1371/journal.pone.0005065.t008
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has a large number of recombinants mapping to a similar region in

the V3 domain. Subjects CX, GA and IV all have clusters of

recombinant breakpoints occurring around the end of V2 domain.

Alternatively, the apparent random distribution of breakpoints

could be due solely to the inability to identify the precise location

of breakpoints; however, with the analysis of 127 total recombi-

nant sequences, it is unlikely that bootscanning would be so

imprecise as to provide such diverse results over a region of 1200

nucleic acids.

Both dementia patients contained numerous intra-tissue recom-

binants with many sequences containing multiple breakpoints

along gp120. These patients had putative breakpoints mapping

within the first four hypervariable domains. In contrast, patients in

the ‘‘systemic’’ disease classification contained fewer recombinant

breakpoints overall. Although no brain sequences were available

for the lymphoma patients AM and IV, their breakpoint results

looked somewhat similar to the dementia patients. This may be

due to the fact that both dementia and lymphoma are

macrophage-mediated diseases. Interestingly, none of the subjects

showed any recombination occurring in either the far 59 or 39 end

of the genome, including the V5 domain.

Figure 2. Frequency of recombination. In panel A the graph shows for each subject (x-axis), the percentage of tissues harboring recombinants
(y-axis). In panel B the graph shows the percent of recombinant sequences found in normal and abnormal tissues for each subject. Tissues with
normal and abnormal histopathology are indicated in yellow and purple respectively. * Only tissues with abnormal histopathology were collected
from patient IV and BW.
doi:10.1371/journal.pone.0005065.g002

Figure 3. Distribution of HIV-1 recombinant sequences in
subjects with different primary diseases. Each box plot shows the
median, the 95-percentile distribution of the proportion of recombi-
nants detected in tissues (y-axis) sampled from patients with different
primary diseases (x-axis) and associated standard errors.
doi:10.1371/journal.pone.0005065.g003
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Discussion

Recombination plays a major role in HIV-1 evolution and

represents a powerful mechanism to produce genetic diversity during

the viral lifecycle. Although recombination in HIV-1 viruses has

been well documented, especially between different subtypes within

an individual or in the context of circulating recombinant forms in a

population of infected subjects, it has been less studied in the context

of its occurrence within individuals. The present study represents the

most extensive investigation of HIV-1 intra-host recombination

within different tissues performed to date. Seven hundred eighty

gp120 sequences amplified from 53 tissues with either normal or

abnormal histopathology were collected from seven patients who

died of different AIDS-associated illnesses.

One characteristic of end-stage AIDS is the presence of HIV

p24 expressing macrophages along with T-cell depletion. At end-

stage disease, Mack et. al. [36], found that in a large variety of

autopsy tissues classified as diseased tissues, including lymph

nodes, spleen and brain, with amplifiable amounts of DNA, p24

antigen staining was predominantly localized to macrophages

interspersed in a background of p24-negative lymphocytes. This

type of staining was not seen in non-diseased tissues in HIV

positive patients [36]. We found a similar staining pattern in the

tissues used for this study. The higher frequency of recombinant

sequences consistently found in tissues with abnormal histopathol-

ogy is likely explained by the fact that such tissues display

increased macrophage proliferation due to an inflammatory

response. HAART therapy, which was given to four of the seven

patients prior to death, appeared to have little effect on overall

recombination rates. This is not unexpected, since macrophages

are one of the most important cellular reservoirs sustaining virus

replication during HAART [37]. In fact, several studies have

implicated HAART therapy in the development of metabolic lipid

dysfunction and other disorders that can lead to tissue abnormal-

ities [38–40]. The results strongly implicate macrophages as the

primary producers of recombinants in damaged tissues. Tissue

samples taken over time from an animal model would confirm if a

similar association between recombination and abnormal tissues

are typical in early and mid-stage, rather than only at end-stage

disease.

HIV integration within host cell genomic DNA is a required

step of the viral infection cycle. HIV integration site mapping and

laser capture micro dissection analysis of infected macrophages

have shown that viral integration usually occurs within introns of

genes related to or near cellular activation loci [36]. It is interesting

to note that the brain specimens used to map insertion sites in

Mack et al. [36] were also analyzed in the current study (patient

CX), demonstrating that high recombination rates occur within

brain macrophages that contain inserted forms of HIV. Sequences

from patient CX were also analyzed using a phylodynamic

approach [41]. This study showed that activated macrophages

migrate between HIV infected brain tissues and especially to areas

of the brain where there is an abundance of tissue damage.

Persistent macrophage activation is associated with an inhibition of

Figure 4. Recombination analysis of HIV-1 gp120 sequences from the meninges of subject CX. A. Neighbor-Net (NNet) obtained with the
split-decomposition method and uncorrected p-distances for HIV-1 gp120 sequences amplified from meninges. Solid and broken circles highlight
putative recombinant and parental sequences, respectively. A colored box indicates a monophyletic group of putative parental sequences to be
tested in the bootscanning analysis B. Bootscanning plots of three recombinant sequences. Each bootscanning was carried out on an alignment that
included a query sequence (the putative recombinant), and a set of putative parental sequences (indicated by different colors corresponding to the
colored boxes in panel A. The query sequence (within the solid circles in panel A) is given at the top of each bootscanning plot. The x-axis represents
the nucleotide position along the alignment; the y-axis represents the % bootstrap support for the clustering of the query sequences with one of the
monophyletic groups in panel A. The crossing point between two lines of different color, indicated by a vertical solid line, specifies the assumed
position of a recombination breakpoint.
doi:10.1371/journal.pone.0005065.g004
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apoptotic signals, giving end-stage HIV-infected macrophages a

survival advantage, the ability to act as a continuous source of HIV

and to serve as a long-term reservoirs/sites of viral recombination

[42]. Furthermore, tissue macrophages co-infected with opportu-

nistic pathogens such as Mycobacterium Avian Complex (MAC) or

Pneumocystis carinii dramatically increase viral production and the

likelihood of macrophage-mediated tissue destruction [43].

The occurrence of HIV-1 recombination in vivo can be

explained by the ability of the nascent viral strand to switch

RNA templates during reverse transcription [44], and it

necessitates super-infection of the target cell with two or more

viruses, each carrying a different HIV-1 genome. Certain cell-

types may be more prone to multiple infections than others. For

example, cells that live longer or tissue sites of continual feeding of

Figure 5. Summary of breakpoints in intra-tissue sequence populations. As noted along the bottom, the x-axis represents the 1200+
nucleotides incorporating the gp120 domain in HIV-1. The large transparent blue boxes represent the variable domains V1, V2, V3, V4 and V5
respectively. The variation in placement of the variable domains is due to natural genetic length variation between the patient’s data sets and to
deviation between sequencing reactions. Each plot displays the estimated location of break points found in every sequence for each patient (noted
on the upper left of the plot). A colored box indicates the estimated location of a breakpoint identified in an individual sequence using bootscanning
analysis. Each putative breakpoint is color-coded for a different tissue as shown in the figure.
doi:10.1371/journal.pone.0005065.g005
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new viral populations would be more likely to be super-infected.

The continuous recruitment of macrophages at infection sites and

their long lifespan makes them the perfect target for super-

infection. While the turnover of HIV-infected activated T-cells is

2–3 days, infected macrophages survive considerably longer, as

discussed above, which increases both the probability of super-

infection and the probability of recombination once super-

infection has occurred. Our finding of a large number of

recombination breakpoints distributed across the gp120 envelope

protein in abnormal tissues with high levels of replication-

competent macrophages is consistent with in vitro studies, which

showed that while a single round of viral replication in T-

lymphocytes in culture generated an average of nine recombina-

tion events, the infection of macrophages led to approximately 30

crossover events per cycle [11].

Other studies have identified macrophages as a source of the

production of recombinant viruses [11,45,46], but their role as a

major contributor to this process remains a subject of debate. The

combined results from our study demonstrate an increase in the

potential for macrophage-mediated immune evasion during HIV

disease because: 1) abnormal or damaged tissues commonly occur

during prolonged HIV disease, 2) damaged tissues recruit macro-

phages that are clearly a replication site for HIV, whereas normal

tissues do not, 3) as activated macrophages accumulate within

abnormal tissues, they may become super-infected, thus increasing in

the potential for the generation of recombinants, 4) any HIV-

associated disease process or HAART-associated side effect that

generates tissue damage has the potential to increase the production

of recombinants, 5) the degree of recombinants produced within an

individual may increase during HIV- or HAART-associated tissue

damage within an individual. Importantly, if macrophages are a

continued reservoir for the generation of HIV-1 intra-patient

recombinant sequences in vivo, then they are also source of continued

viral evolution and diversification over time. The current study

provides additional evidence that successful eradication of HIV-1 is

unlikely to be achieved unless new therapeutic approaches

specifically targeting tissue macrophages are developed.

Materials and Methods

Biomaterial
Frozen autopsy tissues from patients and accompanying pathology

records were obtained from the University of California at San

Francisco AIDS and Cancer Resource (ACSR) (url: http://acsr.ucsf.

edu). The ACSR is a National Cancer Institute Funded tissue

banking program that obtains tissues from patients after appropriate

consent and the application of a de-identification procedure before

sending the tissues out to ACSR approved investigators. Clinical

histories are similarly handled in a de-identified manner. The patient

designations used throughout this study do not relate to the patients,

but were randomly generated as shorthand used by technicians who

perform the studies. The ACSR is recognized by the Office of

Biorepositories and Biospecimen Research at the National Institutes

of Health as being HIPAA compliant. Additionally, all material was

obtained under approval from the UCSF committee on human

research. Although every attempt was made to utilize similar tissues

across the subjects in the study, this was often difficult. Two subjects,

patients AM and IV, who died due to AIDS-related lymphoma,

contained no amplifiable DNA within several brain tissues

examined.

Characterization of patient specimens
All frozen tissues had parallel fixed tissues available for

hematoxylin and Eosin staining as well as immunohistochemical

staining. Tissues were stained with the tissue macrophage specific

antibody, anti-CD68, with recent tissue migrant macrophage

specific antibody, anti-MAC387 and with anti-HIVp24. All

antibodies were obtained from DAKO and were used as suggested

in the accompanying product insert and as previously described

[36].

HIV PCR, cloning and sequencing
Genomic DNA was extracted from 10–30 mg of each tissue

using the QIAmp DNA Mini Kit from Qiagen according to the

manufacturer’s instructions. A 3.3 kb HIV fragment, extending

from env to the 39LTR was amplified by PCR using the primers

EnvF1 (AAC ATG TGG AAA AAT AAC ATG GT) and NefR1

(ACT TDA AGC ACT CAA GGC AA) under the following

conditions: an initial denaturation step of 94uC for 5 min followed

by 35 cycles of 94uC for 30 sec, 55uC for 30 sec, 68uC for 3 min

20 sec, and a final extension at 68uC for 8 min, in 50 ml volume

using 600 ng of template DNA, 10 ml of 106 buffer (Invitrogen),

10 mM deoxynucleoside triphosphates (Invitrogen) 60 mM of each

primer, and 2.5 units of Invitrogen Platinum-Taq polymerase.

Products were cloned into the pCR2.1-TOPO vector according to

the manufacturer’s instructions and the resultant colonies were

screened for the proper insert using an identical PCR protocol.

Sequencing was performed on approximately 20–40 clones

derived from each tissue by ELIM Biopharmaceuticals, Hayward,

CA.

Data screening and management
Because of the large amount of sequence data produced for the

study and the risk of sequence contamination or PCR over-

representation at the many levels of experimentation, a compu-

tational pipeline for screening the entire data base of sequences

was developed. The algorithm involved a feedback method from

the examination of 3.3 kb alignments and phylogenetic analysis.

The method progressed with an initial set of approximately 20

sequences from a single tissue. Any 3.3 kb sequences with 100%

identity were removed from the sample set in order to avoid over-

representation of a single variant by the polymerase chain

reaction. Sequences that contained unusual base substitution rates

or large amounts of ambiguous sites were also discarded. Next, in

order to identify potential inter-tissue contamination, a maximum-

likelihood phylogenetic tree was generated from different tissues

from the same patient. When sequence tissue populations were

non-compartmentalized, 15 additional HIV DNA clones were

generated for each non-compartmentalized tissue from the

original DNA sample. A second generation of independent clones

was sequenced and the distribution of sequences among the first

generation clones was compared to that of the second generation.

If the case arose where the second round varied significantly from

the first, a third set of sequences was obtained and to determine if

the results were reliable. The examination of multiple PCR

reactions for specific tissues enabled the confirmation of sequence

integrity in the database. Screening for inter-patient contamina-

tion was also accomplished using standard phylogenetic methods.

The protocol was designed to reduce the possibility that the data

set contained unreliable sequences due to over-amplification of

specific viral variants, problematic sequences due to PCR

contamination, sample mislabeling, inter-subject contamination,

intra-subject contamination or sequences that clustered with

significant variance over independent samplings in a phylogenetic

tree. An automated version of the phylogenetic clustering program

is available at www.bioinfoexperts.com/icarus. The cautious

selection of very high quality data is necessary in a study such as

this where final analysis is contingent upon sequence integrity.
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PCR limiting dilution assays, as suggested by Rodrigo et al. [47]

are not feasible for the development of a sequence data base of this

size.

The gp120 domain was identified and retrieved from the 3.3 kb

fragment using HIVbase software (http://www.hivbase.com) [48].

The CLUSTAL algorithm [49] was used to generate multiple

sequence alignments. For final gp120 alignments, a slightly

modified protocol developed by Lamers et al. [50] using

glycosylation motifs as anchors in the alignment process was used

to maximize positional homology in gap-rich regions [50].

Sequence data were deposited in Genbank.

Analysis for intra-tissue recombination
Several algorithms were combined to analyze data sets and

individual sequences for recombination [22]. Our first goal was to

identify putative recombinants within each tissue. Aligned

sequences were imported into Splitstree, (www.splitstree.org) [24]

and a preliminary network using the Neighbor Net algorithm [23]

was obtained. Splitstree currently contains one of the more robust

methods for determining the likelihood of recombination in a set

of aligned sequences [24], called a PHI-test. A PHI score with a p-

value,0.05 shows with significance that recombination occurs in

the data set. When a set of sequences produced a complex

network, along with a p-value less than 0.05, putative recombi-

nants were identified by filtering them from the data set and

recalculating the PHI-test to check whether the removal of such

sequences significantly increased the p-value. The removal of all

recombinants from the data set eventually increased the PHI-test

p-value to a level of no significance. Once the p-value for the Phi-

test was .0.05, each sequence that was removed was reinserted

individually into the Neighbor Net to make sure that it

significantly impacted the results of the PHI-test.

The program RDP was also used to identify the number of

recombinants in each tissue using the same sequence alignments as

in the previous analysis [51]. All recombinants identified for each

subject were combined and are shown in Table 8. Default settings

in the program were used for the analysis.

To identify individual putative breakpoints in each recombinant

sequence we used a sliding-window, bootscanning approach,

which computes a bootstrapped maximum-likelihood phylogenetic

tree for overlapping segments of the alignment (in our case, each

20 nucleotides) [52]. As each segment is calculated, the percent

bootstrap value with its closest relative sequence remains high until

a breakpoint is found in the compared data set. The putative

breakpoints appear in the plot as a switch in a high bootscan value

from one sequence to another related sequence. The intersection

of the bootscan plots estimates the location of the breakpoint.

Simplot software (ver3.5.1)[34] was used for the bootscanning

analysis (Figure 1). Simplot bootscans for all recombinants are

available as supplemental material. Putative breakpoints for all

recombinants were mapped as in Figure 5. These breakpoints

were not always precise; in-depth analysis showed that boot-

scanning could sometimes map breakpoints into regions,10 nt

long, whereas other times the putative breakpoint could have

occurred anywhere in a region over 200 nucleotides in length.

Statistical analysis
We used a Chi-squared test for categorical data to test whether

viral recombination across patients tended to occur with a

significantly greater frequency in normal or abnormal tissues (test

1), and whether the frequency of recombinant sequences was

significantly higher in tissues with abnormal histopathology than in

normal tissues (test 2). The Chi-squared test was performed in

SigmaStat 3.0 with and without the Yate’s Correction Factor.

Supporting Information

Supporting Materials S1

Found at: doi:10.1371/journal.pone.0005065.s001 (0.03 MB

DOC)
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