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In recent studies, NKG2A is revealed to be a key immune checkpoint for both

natural killer (NK) cells and CD8+ T cells. It form heterodimer receptors with

CD94, and targets the peptide-presenting human leukocyte antigen-E (HLA-E)

molecules. Upon crosslinking, NKG2A/CD94 delivers inhibitory signals for NK

cells and CD8+ T cells, while blocking NKG2A can effectively unleash functions

of these cytotoxic lymphocytes. The interaction between NKG2A and HLA-E

contributes to tumor immune escape, and NKG2A-mediated mechanisms are

currently being exploited to develop potential antitumor therapeutic strategies.

In addition, growing evidence shows that NKG2A also plays important roles in

other immune-related diseases including viral infections, autoimmune

diseases, inflammatory diseases, parasite infections and transplant rejection.

Therefore, the current work focuses on describing the effect of NKG2A on

immune regulation and exploring its potential role in immune-

mediated disorders.
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Introduction

NKG2A is a member of C-type lectin superfamily (1, 2). Its gene is localized in the

natural killer (NK) complex on chromosome 12 and consists of seven exons (3). NKG2A

is a single-pass type II integral membrane glycoprotein that contains the cytoplasmic,

transmembrane as well as extracellular lectin-like domains (4). The intracellular portion

has two ITIMs, which are involved in inhibitory signal transduction (5). NKG2A

expression can be detected in cytotoxic lymphocytes, including most NK cells and a

subset of CD8+ T cells (6). It is found to be expressed as a heterodimer with CD94, which

also belongs to the C-type lectin superfamily (7). The ligands of NKG2A/CD94

heterodimeric receptor are non-classical MHC class I molecules, human leukocyte

antigen (HLA)-E in humans and Qa-1 in mice (8). HLA-E is lowly expressed on

almost all cell surfaces and displays limited polymorphism (9). Peptides that presented by

HLA-E are derived from the leader sequences of the classical MHC class I molecules such
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as HLAA, HLAB and HLAC (10). Engagement of NKG2A/

CD94 receptor with peptide-presenting HLA-E results in the

phosphorylation of ITIMs in NKG2A. Phosphorylated ITIMs

are responsible for recruiting and activating intracellular

phosphatase SHP-1 as well as SHP-2, thus suppressing the

activation signals generated by activating receptors such as T

cell receptor (TCR) and NKG2D (11). In contrast to classical

HLA molecules, which are commonly lost (12), the expression of

HLA-E is generally elevated within tumor cells (13). Similar to

other immune checkpoint molecules, NKG2A is exploited by

tumor cells to achieve immune evasion. In addition, disrupting

the interaction of NKG2A with its ligands is shown to be

effective in enhancing antitumor immune responses (6, 14,

15). The overexpression of HLA-E is also observed in viral-

infected cells, and the NKG2A-HLA-E axis is proved to exert a

vital role in viral infection (16). Notably, NKG2A expression is

found to be correlated with disease severity in coronavirus

disease 2019 (COVID-19) patients (17–20). Apart from that,

NKG2A is also involved in the pathological process of other

immune-mediated disorders, such as autoimmune diseases,

inflammatory diseases, parasite infections and transplant

rejection. These findings indicate that NKG2A is a new

therapeutic target for managing a variety of immune-mediated

disorders. Herein, we review the existing knowledge about

NKG2A mediated immune regulation and discuss the

implications of NKG2A-targeted immunotherapeutic strategies.
Effects of NKG2A in immunocytes

NKG2A and NK cells

Approximately half of the human peripheral blood NK cells

display NKG2A expression (21–23). Its expression is mostly

observed in CD56bright immature NK cells and is decreased with

stepwise maturation of the NK cells (24). There exits a negative

correlation between the expression of NKG2A and killer cell

immunoglobulinlike receptors (KIRs), which is implicated in the

differentiation process of NK cells (25, 26). Multiple cytokines

including interleukin (IL)-21, IL-15, IL-12, IL-10 and

transforming growth factor-b (TGF-b) are able to induce the

expression of NKG2A in NK cells (27–30). Upon ligands

binding, NKG2A/CD94 receptors deliver signals that suppress

NK cell functions, while disrupting the interaction of NKG2A/

CD94 with Qa-1 or HLA-E activates the cytotoxic activity of NK

cells (31–33).

The inhibitory NK receptors for HLA act a pivotal part in the

education of NK cells, thereby greatly affecting mature NK cell

responsiveness (34). At least one inhibitory NK receptors

specific for “self” HLA-I haplotype need to be expressed on

mature NK cells for recognizing target cells as well as preventing

the activation of NK cells against autologous cells (35). The lack

of inhibitory NK receptors for HLA renders NK cells
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these receptors show higher responsiveness (37). Several studies

have shown that NKG2A is required for the education of NK

cells (38–40). NKG2A-educated human NK cells were more

effective at killing target cells and showed a more dynamic

migration behavior (41). NKG2A-educated mouse uterine NK

cells were found to be more functionally competent in response

to NK1.1 crosslinking (42). Highton et al. reported that NKG2A-

educated human NK cells displayed improved responsiveness

and metabolic resilience compared to KIRs-educated

counterparts (43).

NK cells must maintain an appropriate level of NKG2A

expression on the cell surface so as not to destroy normal

autologous cells (44). NKG2A can be reused through a

relatively rapid recycling process, enabling continuous

availability of NKG2A on the cell surface. This recycling

process requires energy and the cytoskeleton, but does not

require functional ITIMs (44). The interaction of NKG2A/

CD94 receptor with its ligands does not affect this recycling

process and the expression of NKG2A/CD94 within NK cells

(25). According to the fluorescent recovery after photobleaching

(FRAP) analysis, most NKG2A/CD94 molecules on the plasma

membrane exist in a free-moving form. NKG2A/CD94 is

enriched at the contact site after crosslinking, and this

enrichment is achieved through lateral diffusion in plasma

membrane rather than synthesis of new proteins (45).
NKG2A and T cells

NKG2A is also expressed in T cells, especially CD8+ T cells.

NKG2A expression in CD8+ T cells is found to be highly

regulated, differing from its expression pattern in NK cells.

NKG2A is barely expressed in CD8+ T cells of healthy

individuals, but upregulated in tumor lesions and during

chronic viral infection (46, 47). The expression of NKG2A in

CD8+ T cells can be modulated a number of cytokines such as

IL-23, IL-21, IL-15, IL-10, IL-6, IL-4, IL-2 and TGF-b (48–51).

In addition, NKG2A expression can be induced by TCR

engagement, and is acquired after antigen encounter.

Cytotoxic T lymphocyte (CTL) clones sharing the same

antigen specificity have the same NKG2A expression pattern,

indicating that TCR antigenic specificity dictates the expression

of NKG2A (52). NKG2A marks a special CD8+ T cells subset

harboring tissue-resident and terminally exhausted features (6,

53–55). Similar to its function in NK cells, NKG2A/CD94

receptor engagement delivers inhibitory signals to CD8+ T

cells, thus inhibiting the cytotoxic activity (55). Besides,

NKG2A has also been found to be expressed in human CD4+

T cells. The expression of NKG2A/CD94 was observed in anti-

CD3 monoclonal antibody (mAb) activated CD4+ T cells under

TGF-b and IL-10 treatment. Moreover, NKG2A/CD94 was

functional in CD4+ T cells and could inhibit TCR mediated
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tumor necrosis factor-a (TNF-a) and interferon-g (IFN-g)
secretion (56).
The functions of NKG2A in
immunopathological settings

NKG2A and tumors

Overexpression of HLA-E is observed in various types of

tumors, including solid tumors as well as hematological

malignancies (57–63). Meanwhile, HLA-E overexpression

predicts a poor prognostic outcome in patients with ovarian,

liver, gynecologic, glioblastoma, colorectal, breast, gastric,

kidney, esophageal, pancreatic, lung, and head and neck

cancer (64–72). HLA-E overexpression may be caused by the

interaction of tumor cells with tumor microenvironment (TME),

and there was evidence that IFN-g produced by tumor-reactive

immunocytes contributed to the upregulation of HLA-E within

tumor cells (73, 74). However, the underlying mechanism is not

completely clear so far. Since overexpressed HLA-E functions to

inhibit the cytotoxicity of cytotoxic lymphocytes, the blockade of

NKG2A-HLA-E axis may possibly enhance the cell-based

immunotherapeutic efficacy. In addition, according to multiple

studies, NKG2A is also overexpressed in tumor-infiltrating

cytotoxic lymphocytes in many types of tumors (55, 66, 75).

The increase in the number of NKG2A+ tumor infiltrating

lymphocytes (TILs) is correlated with a poor prognosis in

patients undergoing colorectal, ovary and liver cancer (65, 72).

Moreover, there is a growing body of evidence that NKG2A-

HLA-E axis contributes to tumor immune escape. Sheu BC et al.

found human cervical cancer cells could upregulate NKG2A

expression in CD8+ T cells through an IL-15-dependent

mechanism, thus abrogating the antitumor cytotoxicity of TILs

(76). The cytotoxic effects of human NK cells and CD8+ T cells

on HLA-E expressing B-lymphoblastoid cells were enhanced

through RNAi-mediated inhibition of NKG2A expression (77).

Kamiya and colleagues knocked out NKG2A protein expression

in human peripheral blood NK cells achieved by retroviral

transduction of NKG2A blocker, thus generating NKG2Anull

NK cells. They further found NKG2Anull NK cells showed higher

cytotoxic activity against HLA-E expressing tumor cells in

immunodeficient mice (31). According to the results of the in

vitro experiment, blocking NKG2A in human NK cells by the

humanized anti-NKG2A antibody monalizumab was sufficient

for improving the dysfunction of NK cells in chronic

lymphocytic leukemia (CLL) (78). Salomé et al. showed that

NKG2A was highly expressed in type 1 innate lymphoid cells

(ILC1s) of acute myeloid leukemia (AML) patients. Moreover,

the cytotoxicity of NKG2A+ ILC1s was impaired when

encountering HLA-E-expressing leukemic targets (79).

Collectively, the above results indicate that it is worthwhile to
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cancer patients. However, clinical and preclinical studies

showed that blocking NKG2A alone did not appear to be

effective for tumor therapy. Monalizumab monotherapy

showed very little clinical activity in patients with gynecologic

cancers (80). Consistently, data from pre-clinical research

suggested that anti-NKG2A mAb alone showed no effect on

subcutaneous tumor xenografts in mice (14, 55). Regardless of

the above drawbacks, monalizumab is still useful in combination

with other immunotherapies. As demonstrated by preliminary

data in microsatellite stable colorectal cancer (CRC) patients

who typically do not respond to programmed death-ligand 1

(PD-L1)/programmed cell death-1 (PD-1)-based therapy, the

combination of monalizumab and durvalumab (an anti-PD-L1

mAb) showed clinical efficacy and safety (81). Andre´ et al. also

showed that combined blockade of PD-L1/PD-1 and NKG2A

enhanced anticancer immunity in mouse lymphoma tumor

models (14). According to the phase II trials interim results,

the objective response rate (ORR) in head and neck squamous

cell carcinoma (HNSCC) patients receiving monalizumab and

cetuximab (an anti-EGFR blocking mAb) combination therapy

was 31%, which was superior to previous data obtained from

cetuximab monotherapy. The action of the above combinational

therapy is probably mediated via NKG2A+ NK cells, rather than

NKG2A+ CD8+ T cells (14). Additionally, according to van

Hall’s group study based on four mouse models of solid tumors,

the antitumor activity of CD8+ T cells responding to peptide

vaccination was restored through blocking NKG2A-Qa-1 axis

using blocking antibodies or genetic knockout (55). In addition,

there are a number of ongoing clinical trials with monalizumab

for the treatment of tumors, as shown in Table 1.
NKG2A and viral infections

Altering MHC molecules expression on the infected cell

surface is one of the mechanisms that mediate viral immune

escape. HLA-E and Qa-1 usually show overexpression on the

virus infected cell surfaces and are able to bind peptides derived

from viral proteins. HLA-E overexpression was observed in

hepatic antigen-presenting cells (APCs) of hepatitis C virus

(HCV) infected patients. HLA-E could bind to the viral

peptide HCV core aa35–44 and present it on the cell surface,

where it interacted with NKG2A/CD94 heterodimers, thereby

resulting in immunosuppression (82). HCV infection induced

Qa-1 expression in mouse hepatocytes. Abrogation of either

NKG2A or Qa-1 signaling was shown to enhance NK function

and promote NK cell-dependent HCV clearance (33). Similar

findings were obtained during human cytomegalovirus (HCMV)

infection. Glycoprotein UL40 encoded by HCMV could bind to

HLA-E and interact with NKG2A/CD94 receptors, thereby

inhibiting human NK cell activity and leading to immune
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evasion (83–85). HLA-E expression was enhanced in

lymphocytes of human immunodeficiency virus (HIV) infected

patients, and viral peptide HIV p24 aa14-22-loaded HLA-E

could inhibit NK cell cytotoxic activity by binding to NKG2A

(86). However, according to van Stigt Thans et al., HIV-1

downregulated the expression of HLA-E on the surface of

infected primary human CD4+ T cells (87). During human

papillomavirus (HPV) infection, the decreased expression of

classical HLA class I molecules and overexpression of HLA-E

were observed. In addition, HLA-E overexpression was

associated with the decreased cytotoxicity of NK cells, which

was most likely achieved through the interaction with NKG2A/

CD94 receptors (88). Interestingly, a recent study showed that

not all peptides presented by HLA-E could bind to NKG2A and

thus exert inhibitory effects. As discovered by Mbiribindi B and

colleagues, human NKG2A+ NK cells was able to recognize and

respond to Epstein-Barr virus (EBV) infected autologous B cells.

Further studies showed that EBV latent cycle protein-derived

peptides impaired the recognition of NKG2A, despite being

presented by HLA-E, thereby leading to the absence of

inhibition (89).
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The expression of NKG2A in NK cells is also generally

increased during viral infection. The dysfunction of NK cells and

T cells was observed in chronic hepatitis B (CHB) patients, along

with the overexpression of inhibitory receptors including PD-1

and NKG2A (90). Hepatitis B e-antigen (HBeAg) was able to

induce IL-10 secretion within regulatory T cells (Tregs), thus

upregulating NKG2A expression in NK cells of CHB patients

(91). The overexpressed NKG2A severely impaired the

cytotoxicity of NK cells during HBV infection, which could be

restored through the blockade of NKG2A-HLA-E axis (90, 91).

Among the EBV reactivation and EBV-chronic graft-versus-host

disease (GvHD) patients after hematopoietic stem cell

transplantation (HSCT), the frequency of NKG2A+CD56dim

NK cells was significantly increased in peripheral blood (92).

According to Hendricks et a l . , the coinfect ion of

cytomegalovirus (CMV) and EBV led to NKG2A+CD56dim

NK cell expansion (93). Interestingly, there was a study reveal

an innovative viral immune evasion mechanism. According to

Wang et al., rodent herpesvirus Peru could counteract mouse

NK cell activation by encoding a Qa-1 like protein via RNA

splicing (94).
TABLE 1 Ongoing clinical trials with monalizumab for the treatment of tumors.

Clinical trial Phase Drug Disease Participants Status First Posted

NCT05414032 II Monalizumab
Cetuximab

Locoregionally advanced HNSCC 200 Not yet recruiting June 10, 2022

NCT05221840 III Monalizumab
Durvalumab
Oleclumab
Placebo

Non-small cell lung cancer (NSCLC) 999 Recruiting February 3, 2022

NCT05061550 II Monalizumab
Durvalumab
Oleclumab

NSCLC 140 Recruiting September 29, 2021

NCT04590963 III Monalizumab
Cetuximab

HNSCC 624 Recruiting October 19, 2020

NCT04307329 II Monalizumab
Trastuzumab

Breast cancer 38 Recruiting March 13, 2020

NCT03833440 II Monalizumab
Durvalumab
Oleclumab
Ceralasertib
Docetaxel

NSCLC 120 Recruiting February 7, 2019

NCT03822351 II Monalizumab
Durvalumab
Oleclumab

Stage III NSCLC 188 Active, not recruiting January 30, 2019

NCT03088059 II Monalizumab
Afatinib
Palbociclib
Durvalumab
Niraparib
INCAGN01876
standard of care

Recurrent or metastatic HNSCC 340 Recruiting March 23, 2017

NCT02921685 I Monalizumab Hematologic malignancies 18 Unknown October 3, 2016

NCT02643550 I/II Monalizumab
Cetuximab
Anti-PD(L)1

Recurrent or metastatic HNSCC 143 Active, not recruiting December 31, 2015
frontiersin.org

https://doi.org/10.3389/fimmu.2022.960852
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.960852
In addition to NK cells, NKG2A also has an impact on CD8+

T cell-mediated antiviral immunity. During polyoma virus

infection in mice, NKG2A expression was enhanced in

antiviral CD8+ T cells, thereby leading to the decrease of

antigen-specific cytotoxicity in the process of virus-mediated

oncogenesis and viral clearance (95). During ectromelia virus

infection, NKG2A functioned intrinsically within mouse virus-

specific CD8+ T cells for limiting excessive activation (96).

However, NKG2A does not appear to affect CD8+ T cell-

mediated antiviral immunity in all types of viral infections.

Miller et al. found NKG2A/CD94 heterodimers showed no

inhibitory effect on CD8+ T cell activity during lymphocytic

choriomeningitis virus (LCMV) infection in mice (97).

Significantly, recent studies have highlighted a key role of

NKG2A in the infection with severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2). The expression of NKG2A was

enhanced in peripheral NK cells and CD8+ T cells of COVID-19

patients and was correlated with disease severity (17–20).

Interestingly, the NKG2A+ cytotoxic lymphocytes proportion

was reduced among recovered patients (17). Further research

has shown that the NKG2A expression is found to be regulated

by SARS-CoV-2 spike 1 protein (SP1). The results of in vitro

experiments showed that coculture with SP1-transfected lung

epithelial cells led to NKG2A overexpression and reduced

degranulation in NK cells (98). In addition, NKG2A was also

overexpressed in NK cells isolated from bronchoalveolar lavage

fluid (BALF) of COVID-19 patients with acute respiratory

distress syndrome (ARDS), and the expression level was even

higher than that in blood cells (19). In general, the NKG2A-

HLA-E axis can be exploited by viruses to limit the activity of

cytotoxic lymphocytes, thereby contributing to viral immune

escape (Table 2).
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NKG2A and autoimmune diseases

NK cells are able to eliminate autoreactive T cells,

while NKG2A expressed within NK cells functions to prevent

this process (99–101). Hence the blockade of NKG2A-ligand

interaction is an efficient approach to treat autoimmune diseases.

NKG2A/CD94 receptor has been found to exert a critical

influence on experimental autoimmune encephalomyelitis

(EAE) by modulating T cell activity. Typically, the interaction

of NKG2A with its ligands was essential for immunologic

memory development and clonal expansion of autoreactive T

cells, as well as contributed to the protection of activated CD4+ T

cells from lysis by NKG2A+ NK cell. The blockade of NKG2A-

Qa-1 axis could effectively promote the elimination of

autoreactive T cells mediated by NK cells, thereby alleviating

EAE in mice (102, 103). Consistently, in comparison with CD4+

T cells obtained from Qa-1 wild type mice, NK cells showed

higher cytotoxic activity against activated CD4+ T cells isolated

from Qa-1 deficient mice (102). As observed from the

rheumatoid arthritis (RA) mouse model, blocking NKG2A

accelerated NK cell mediated elimination of pathogenic T

helper 17 (Th17) cells as well as follicular helper T (Tfh) cells,

thus arresting disease progression (104).

The expression profile of NKG2A within NK cells varies

among different autoimmune diseases. Compared with NK cells

from healthy individuals, NK cells from systemic lupus

erythematosus (SLE) patients showed lower cytotoxicity with

enhanced NKG2A expression (105, 106). On the contrary, a

decrease in NKG2A expression was observed in NK cells of

Graves’ disease (57) and new-onset psoriasis (107) patients.

There were reports that the expression of NKG2A in T cells

was decreased in SLE patients (108) and rheumatoid arthritis
TABLE 2 Roles of NKG2A-HLA-E axis in viral infections.

Condition Roles of NKG2A-HLA-E axis

HCV HCV Core aa35-44 could bind to HLA-E and stabilize its membrane expression, thus inhibiting NK cell cytotoxicity by the interaction with NKG2A (82).
HCV infection induced Qa-1 expression in mouse hepatocytes. Blocking NKG2A-Qa-1 axis was able to restore the function of NK cells and promote
virus clearance (33).

HCMV HCMV-encoded glycoprotein UL40 could bind to HLA-E and interact with NKG2A/CD94 receptors, thereby inhibiting NK cell activation (83–85).

HIV HIV p24 aa14-22-loaded HLA-E impaired NK cell function by binding to NKG2A (86).

HPV HLA-E overexpression was observed in cervical biopsies of women infected with HPV and was associated with the inhibition of NK cell cytotoxicity (88).

EBV EBV latent cycle protein-derived peptides could bind to HLA-E, but impair the recognition of NKG2A expressed by NK cells, thereby leading to the
absence of inhibition (89). In EBV reactivation and EBV-chronic GvHD patients after HSCT, the frequency of NKG2A+CD56dim NK cell population was
increased in peripheral blood (92).

HBV NKG2A overexpression was observed in NK cells of CHB patients and severely impaired the cytotoxicity of NK cells during HBV infection (90, 91).

Polyoma
virus

NKG2A overexpression impaired the cytotoxicity of antiviral CD8+ T cells in mice (95).

Ectromelia
virus

NKG2A functioned intrinsically within mouse virus-specific CD8+ T cells to limit excessive activation (96).

LCMV NKG2A/CD94 heterodimers showed no inhibitory effect on CD8+ T cell activity in mice (97).

SARS-CoV-2 NKG2A expression was increased in peripheral cytotoxic lymphocytes of COVID-19 patients and was correlated with the severity of disease (17–20).
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(RA) patients who flared (109), indicating that lack of inhibitory

signals might lead to T cell hyperactivation and the

immunological disorders. However, this conclusion is not

applicable for CD8+ Tregs. CD8+ Tregs function to suppress

self-reactive CD4+ T cells activity, thereby alleviating EAE. Upon

Binding to Qa-1, NKG2A/CD94 receptor functioned to inhibit

CD8+ Tregs activity. Disrupting the interaction of NKG2A/

CD94 with Qa-1 unleashed CD8+ Tregs activity and abolished

EAE progression in mice (110). Besides, the overexpressed

NKG2A in CD8+ Tregs of patients with relapsing multiple

sclerosis (MS) may function to limit CD8+ Tregs activity and

contribute to disease progression (111).
NKG2A and other immune-related
diseases

In addition to tumors, viral infections and autoimmune

diseases, NKG2A is also involved in the pathological process of

other immune-related diseases including inflammatory diseases,

parasite infections and transplant rejection. NKG2A generally

exerts immunosuppressive effects in inflammation. As reported

by Hall and colleagues, NK cells inhibited the pro-inflammatory

function of activated neutrophils through NKG2A-dependent

mechanism in a DSS-induced colitis mouse model. Therefore,

NKG2A played a protective role by inhibiting inflammation,

while blocking NKG2A aggravated neutrophil-induced

inflammation and tissue damage (112). In line with this, Zou and

colleagues showed that the overexpressed NKG2A in NK cells

exerted a vital function in suppressing neutrophil activation, thus

alleviating DSS-induced colitis in mice (113). In celiac disease (CD)

patients, CD-associated inflammation was marked by a decreased

frequency of NKG2A+ natural killer T cells (NKT) and NKG2A+

NK cells, which might be involved in CD-associated tissue damage

mediated by cytotoxic lymphocytes (114). Synovial NK cells from

arthritis patients exhibited an activated phenotype and were capable

of producing TNF-a and IFN-g. Further, the secretion of these pro-
inflammatory cytokines was increased under NKG2A blocking

antibody treatment and decreased when NK cells encountered

HLA-E expressed target cells, suggesting NKG2A can take part in

the regulation of inflammatory response by controlling cytokines

secretion in NK cells (115).

The immunosuppressive function of NKG2A has also been

demonstrated in parasitic infection studies. In mice with alveolar

echinococcosis (AE), which was caused by the infection of

Echinococcus multilocularis, the overexpression of NKG2A was

observed in NK cells and further led to reduced cytotoxicity by

inhibiting IFN-g secretion (116). Human cystic echinococcosis is

caused by the larval stage of Echinococcus granulosus sensu lato.

The expression of NKG2A and HLA-E was significantly

increased within the hepatic cystic echinococcosis lesion,

suggesting an inhibitory microenvironment (117). High
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expression of NKG2A was observed in human malaria-

responsive NK cells (118) and gd-T cells (119), which

provided a homeostatic regulation mechanism for avoiding

persistent activation. In addition, the expression of NKG2A

was also found to be increased in human NK cells during

Toxoplasma gondii (120) and Gnathostoma spinigerum

infections (121). In contrast, during Schistosoma japonicum

infection, NKG2A expression was significantly decreased in

mouse NK cells (122) and NKT cells (123), which might serve

as an activation mechanism.

GvHD is one of the major complications and causes of death

in HSCT recipients and NKG2A is reportedly involved in GvHD

pathogenesis. The percentage of NKG2A+ NK cells was

significantly reduced in the peripheral blood of GvHD patients

after HSCT in comparison with control subsets. Further, these

cells were increased in completely recovered GvHD patients

compared with partially recovered or active-stage GvHD

patients. Therefore, monitoring the frequency of NKG2A+ NK

cells provides clues for GvHD intervention and treatment. In

addition, coculture with NKG2A+ NK cells led to decreased

IFN-g secretion as well as proliferation in T cells, indicating that

the reduction in NKG2A+ NK cells is most likely the cause,

rather than the result, of GvHD. The above evidence highlights

the importance of NKG2A+ NK cells in limiting GvHD by

suppressing activated self-reactive T cells (124). In line with

this, Kordelas et al. also found a reduction of NKG2A+ NK cells

in the peripheral blood of GvHD patients after HSCT (125).
Perspectives

A large number of studies have highlighted the critical role

of NKG2A in tumors as well as viral infections. It is worth

noting that NKG2A is involved in the pathological process of

COVID-19 (17–20). The antiviral activity of circulating NK

cells and CD8+ T cells is markedly decreased during SARS-

CoV-2 infection, which leads to severe impairment of the host

immune function (126–128). In COVID-19 patients, NKG2A

expression is found to be correlated with the severity of disease

(17–20). Therefore, anti-NKG2A mAb monalizumab could

represent a possible solution for treating COVID-19 patients.

Immune checkpoint blockade is one of the most promising

ways to activate antitumor immunity. Unlike other known

checkpoint molecules such as cytotoxic T lymphocyte-

associated antigen-4 (CTLA-4) and PD-1, NKG2A shows

selective expression in cytotoxic lymphocytes including NK

cells and CD8+ T cells. This suggests that the NKG2A-HLA-E

axis does not appear to affect the initiation or regulation of

anti-tumor immunity, but primarily functions in the final

stages of tumor killing. Compared with HLA-E, NKG2A is

more suitable as the blockade target of NKG2A-HLA-E axis.

Apart from NKG2A, HLA-E also binds to NKG2C. NKG2C is
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expressed in both NK cells and T cells (129–132), and functions

as an activating receptor by associating with the DNAX

activation protein of 12 kDa (DAP12) signaling adapter (133)

(Figure 1). NKG2C and NKG2A recognize mostly overlapping,

but partially distinct epitopes on HLA-E (134). Although both

NKG2A and NKG2C target HLA-E, the activating receptor

shows a much lower affinity for its ligand. Compared with

NKG2A, there are some amino acid differences in NKG2C

protein, resulting in a 6-fold lower affinity for HLA-E (135,

136). Further, unlike HLA-E, which is expressed on almost all

cell surfaces, NKG2A is mainly expressed in tumor lesions.

Therefore, blocking NKG2A is more specific. Though NKG2A

blockade shows limited effects as a stand-alone therapy, the

NKG2A blocking antibody has synergistic effects with other

tumor immunotherapies. A central paradigm in current tumor

immunotherapy is “combination”, and NKG2A, a modulator

of both adaptive and innate immunity, could be an

important candidate.
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FIGURE 1

NKG2A/CD94 and NKG2C/CD94 signalings in NK cells and T cells. HLA-E can bind to both NKG2A/CD94 and NKG2C/CD94 receptors. The
interaction of NKG2A/CD94 receptor with peptide-presenting HLAE results in the phosphorylation of ITIMs. Phosphorylated ITIMs are
responsible for recruiting and activating intracellular phosphatase SHP-1/2, thus delivering negative signals. CD94/NKG2C heterodimers
associates with DAP12 containing immune receptor tyrosine activating motifs (ITAMs), thus activating zeta-chain-associated protein kinase 70
kDa (ZAP70) and delivering activating signals.
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