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Studies implicate that gut dysbiosis is related with many neurological diseases. However,
the potential role of gut dysbiosis in cryptogenic stroke (CS) has not been elucidated yet.
In this study, a high prevalence of gastrointestinal (GI) dysfunction and gut inflammation
with increased intestinal permeability have been found in CS patients compared with
normal controls (NCs). The systemic inflammation in CS patients was also identified by
measuring the levels of plasma C-reactive protein (CRP), lipopolysaccharide (LPS), LPS-
binding protein (LBP), and white blood cells (WBC) count. Using 16S rRNA sequencing,
we found increased alpha diversity, accompanied by a higher abundance of
Enterobacteriaceae, Streptococcaceae, and Lactobacillaceae at the family level and
Escherichia–Shigella, Streptococcus, Lactobacillus, and Klebsilla at the genus level in
the intestinal microbiota of CS patients compared to NCs. Our results showed that the
abundance of Klebsilla was positively correlated with the systemic inflammation, the
National Institutes of Health Stroke Scale (NIHSS) scores, and the infarct volumes. In
conclusion, gut dysbiosis in CS patients was associated with the severity of CS and the
systemic inflammation. Maintaining the intestinal homeostasis may be a potential strategy
for the treatment of CS.
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INTRODUCTION

Despite extensive clinical examination, a considerableproportionof
ischemic strokes were classified as having an undetermined cause
and were identified as cryptogenic stroke (CS) (1, 2). Compared to
strokes of identified cause, CS results in less severe symptoms and
lower mortality. It has been reported the proportion of CS in all
ischemic strokes ranges from 23% to 40% (1, 3, 4). Despite the high
incidence of CS, it has scarcely been studied.

It is increasingly recognized that intestinal pathological
changes are correlated to neurological diseases, such as
cavernous angioma (CA) (5), Parkinson’s disease (PD) (6), and
Alzheimer’s disease (AD) (7). The gastrointestinal (GI) tract is
functionally connected with the brain through the gut–brain axis
(GBA) (8). Several studies indicated that patients are susceptible
to GI complications after stroke, including dysphagia,
constipation, and bleeding (9, 10). Besides the disturbance of
GI function, alteration of gut microbiota after stroke has also
been paid attention to. Disturbances within the GBA (11),
especially the gut microbiota dysbiosis, have been reported in
patients with ischemic stroke (12). Moreover, alteration of cecal
microbiota was presumed to play roles in the onsets and
development of ischemic stroke in an animal study (13).

Recently, researchers have found that gut dysbiosis and systemic
inflammation may have an intimate connection in animal models
(14, 15). Shifts in the makeup of gut microbiota could induce
increased intestinal permeability and systemic inflammation (15–
17). Inflammation has been reported to play an important role in
the pathogenesis of ischemic stroke (18, 19) and also emerging as a
predisposing factor for stroke (20). Animal studies showed that
systemic inflammation could increase the risk of stroke and are
associated with less favorable clinical outcomes (21, 22). However,
little attention has been paid to the role of gut microbiota changes
and systemic inflammation in the process of ischemic stroke in
patients, let alone in CS patients.

In the present study, we sought to investigate whether and how
gut dysbiosis and systemic inflammation are developed in CS
patients and, if so, to further identify the linkwith the severity ofCS.
MATERIALS AND METHODS

Subjects
CS patients diagnosed and treated in the Department of
Neurology at the First Affiliated Hospital of Zhengzhou
University from February 2021 to September 2021 were
enrolled. Patients aged 18–45 years and with first-ever acute
ischemic stroke diagnosed by two neurologists were initially
recruited. Patients routinely underwent brain MRI, magnetic
resonance angiography (MRA), carotid duplex ultrasonography,
12-lead ECG, and laboratory blood test (i.e., full blood count,
white blood cells (WBC) count, clotting, C-reactive protein
(CRP), erythrocyte sedimentation rate, liver function, renal
function, thyroid function, electrolytes, and lipid profile) after
the event. The cause of the stroke was classified according to the
modified Trial of Org 10172 in Acute Stroke Treatment
(TOAST) criteria (23). We classified patients as cryptogenic if
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the diagnostic workup included at least brain imaging, ECG, and
extracranial imaging and if no clear cause was found. Exclusion
criteria were as follows: i) stoke with determined cause, ii)
lacunar brain infarction, iii) history of ischemic stroke or
transient ischemic attack (TIA), iv) other neurological diseases
(such as PD and AD), v) recent (within 3 months) infection, vi)
recent use of antibiotics or probiotics, vii) history of GI
operation, viii) history of inflammatory bowel disease, and ix)
pregnancy. Stroke severity at admission was assessed by a
certified neurologist using the National Institutes of Health
Stroke Scale (NIHSS) (0–42; the higher the score, the more
serious the disease). Gastrointestinal Symptom Rating Scale
(GSRS) was used to assess the severity of GI dysfunction.

Normal controls (NCs) were recruited from the Physical
Examination Department of the First Affiliated Hospital of
Zhengzhou University. They had undergone a series of tests
including a physical exam and laboratory testing, such as blood
and urine routine, clotting, CRP, erythrocyte sedimentation rate,
blood glucose and lipids, thyroid function, liver and kidney function,
MRI, and MRA scan. All control subjects were confirmed to be free
of neurological and GI disorders, as determined by two attending
neurologists and a gastroenterologist. Finally, age, sex, and stroke risk
factor frequency-matched subjects were enrolled as controls in
this study.

This study was authorized by the Institutional Ethics
Committees of The First Affiliated Hospital of Zhengzhou
University, and informed consent was obtained from all
participants (number: 2021-KY-0387-002).

Imaging Analysis
The infarct volumes on diffusion-weighted imaging (DWI) were
measured by an experienced neurologist unaware of the clinical
and laboratory results. The infarct volume was calculated by
using the formula 0.5 × a × b × c (where a is the maximal
longitudinal diameter, b is the maximal transverse diameter
perpendicular to a, and c is the number of 10-mm slices
containing infarct) according to the DWI sequences.

Sample Collection
Plasma samples were obtained on admissionwithin 72 h from each
subject via venipuncture. Samples were collected in endotoxin-free
K2 EDTA 10-ml tubes. Each sample was centrifuged at 2,000×g for
10 min, plasma aliquoted, and stored at −80°C. Extreme care was
taken to keep all samples sterile and endotoxin/lipopolysaccharide
(LPS) free, and all processing was performed using sterile, LPS-free
reagents and plastic ware.

Each participant was asked to collect a stool sample of
approximately 5 g within 48 h after admission using fecal
collection containers. Then containers were transferred on ice
and stored at −80°C before processing. Before measuring, stool
samples were preliminarily processed to get the supernatant.
Specifically, fecal samples were weighed and then homogenized
in phosphate-buffered solution (PBS) (pH = 7.4) (tissue weight
(g): PBS (ml) volume = 1:9) with a glass homogenizer on ice. To
further break down the cells, the suspension was sonicated with
an ultrasonic cell disrupter. The homogenates were then
centrifuged for 10 min at 5,000×g to get the supernatant.
May 2022 | Volume 13 | Article 836820
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Intestinal biopsy specimens were taken in the colon during a
colonoscopy for 25 NCs and 26 CS patients. Samples were then
fixed in 4% paraformaldehyde and embedded by paraffin for
immunofluorescence experiments or directly stored at −80°C for
Western blotting analysis.

Detection of Biomarkers
After species were collected, the quantitative evaluations of
biomarkers in plasma and feces were performed by ELISA tests as
per the manufacturer’s instructions: Human Lipopolysaccharide/
Endotoxin (LPS/ET) ELISA Kit, Human LPS-binding protein
(LBP) ELISA Kit, Human Lactoferrin ELISA Kit, Human
Calprotectin ELISA Kit, Human Alpha 1-Antitrypsin ELISA Kit
and Human Zonulin ELISA Kit. All operations follow the
manufacturer’s protocol.

Analysis of Gut Microbiota
16S rRNA genes of region 16S V3–V4 were amplified using a
specific primer (341F-806R) with the barcode. Sequencing libraries
were generatedusingTruSeq®DNAPCR-Free SamplePreparation
Kit (Illumina, San Diego, CA, USA) following the manufacturer’s
recommendations, and index codes were added. Paired-end read
assembly and quality control were respectively performed by
FLASH (V1.2.7) (24) and QIIME (V1.9.1) (25) quality-controlled
process. Sequence analyses were performed by Uparse software
(Uparse v7.0.1001) (26). Sequences with ≥97% similarity were
assigned to the same operational taxonomic units (OTUs). OTU
abundance information was normalized using a standard sequence
number corresponding to the sample with the least sequences.
Alpha diversity indices were calculated withQIIME (Version 1.7.0)
and displayed with R software (Version 2.15.3). Beta diversity
analysis was QIIME (Version 1.9.1) and displayed with R
software (Version 2.15.3).

Histopathological Study
Colon serial sections (4 mm in thickness) mounted on probe-on
slides were deparaffinized in xylene and rehydrated in a series of
gradedethanol solutions.Thensectionswere stainedwithH&E.For
each sample, the microscopic damage score investigated was
assessed blindly by two investigators by light microscopy. Colon
sections were assessed for quantitative analysis of intestinal
inflammation, according to a microscopic damage scoring system
previously described. In brief, criteria include submucosal edema,
epithelial hyperplasia, epithelial integrity, neutrophil, and
mononuclear cell infiltration (27, 28). A 5-point scale was given
on each itemas follows: 0, no sign of inflammation; 1,mild damage;
2, moderate damage; 3, severe damage; and 4, maximal damage.

Immunofluorescence Analysis
Serial sections (4mminthickness)mountedonprobe-onslideswere
deparaffinized inxylene and rehydrated ina series of gradedethanol
solutions. The sections were then rinsed in PBS and washed with
0.3% Triton X-100 for 20 min, followed by incubation in PBS
containing 0.5% bovine serum albumin (BSA) for 0.5 h at room
temperature. This blocking step was followed by incubation with
appropriate dilutions of primary antibodies against E-cadherin
(1:50, ProteinTech, Chicago, IL, USA), b-catenin (1:50, Cell
Frontiers in Immunology | www.frontiersin.org 3
Signaling, Danvers, MA, USA), and ZO-1 (1:200, Thermo Fisher
Scientific, Waltham, MA, USA) overnight at 4°C. Sections were
then washed 3 times for 5 min at room temperature followed by
incubation with the fluorochrome-conjugated secondary
antibodies for 3 h at room temperature. After being incubated for
7 min with 1:1,000 Hoechst33258 in PBS, the tissue was washed 3
times for 5 min with PBS at room temperature and mounted with
glycerol and glass coverslips. Preparations were stored at −20°C
until images were acquired using the BX43 Upright Microscope
(Olympus, Tokyo, Japan) with the DP74 camera (Olympus) or
Zeiss LSM 880.

Western Blotting Analysis
Total protein of the intestinal tissueswas extracted fromeach group
using ice-cold radioimmunoprecipitation assay (RIPA) buffer
(Beyotime Biotechnology, Shanghai, China), with added protease
and phosphatase inhibitors (Thermo Fisher Scientific, USA). After
ultracentrifugation at 120,000×g at 4°C for 30min, the supernatant
proteins were collected and stored at a −80°C refrigerator. After
being boiled for 10 min, the protein was electrophoresed on 8%
polyacrylamide gel and transferred to polyvinylidene fluoride
membranes (Millipore, Darmstadt, Germany). After incubation
with 5%non-fat milk in TBST (TBSwith 0.1%Tween-20) for 2 h at
room temperature, the membranes were incubated with primary
antibodies (ZO-1, 1:500, Thermo Fisher; E-cadherin, 1:1,000,
ProteinTech; and b-catenin, 1:1,000, Cell Signaling) overnight at
4°C. The membranes were washed in TBST several times, then
incubated with horseradish peroxidase-conjugated secondary
antibodies for 2 h at room temperature, and visualized with
enhanced chemiluminescence (Thermo Fisher Scientific, USA).
Proteins were normalized to GAPDH.

Statistical Analysis
GraphPad Prism 9.0.0 software (GraphPad Software Inc., San
Diego, CA, USA) was carried out to perform the statistical
analyses. Age was described as mean ± SDs and compared by
unpaired t-test, for the statistics that passed the normality test
(D’Agostino–Pearson normality test). Numbers and percentages
were used to present the frequency of gender and the difference
between groups compared by Fisher’s exact test. Continuous
variables were described as mean and/or median and
interquartile range, depending on the outcome of a D’Agootino–
Pearson normality test, and compared by Student’s t-test or the
Mann–Whitney test, respectively. Receiver operating characteristic
(ROC) analysis was performed to determine the cutoff values of the
score of GSRS. Spearman’s correlation analysis was used to
determine the correlations between the levels of the different
analytes. A p-value < 0.05 was considered statistically significant.
RESULTS

Gut Dysfunction and Gut Inflammation in
Cryptogenic Stroke Patients
The patients’ demographic and clinical information in the two
groups were summarized in Table 1. In the study, GSRS was used
May 2022 | Volume 13 | Article 836820
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to assess the severity of GI dysfunction in CS patients, which is a
validated questionnaire based on the occurrence and intensity of
GI symptoms experienced during the past week. We found that
total GSRS scores were significantly higher in the CS group
compared with NCs (17.33 vs. 12.70, p = 0.0028). GI dysfunction
was found in 40% of CS patients, with the cutoff value of GSRS
score of 19.50. H&E staining of the colonic mucosa showed the
inflammatory-related morphological changes (including the
accumulation of leucocytes and damaged intestinal
epitheliums) that occurred in the colon mucosa in 16/24 CS
patients but none of the NCs, despite that cryptitis was not found
in all of the subjects (Figure 1A).

Meanwhile, two fecal markers of intestinal inflammation (fecal
calprotectin (FC) and fecal lactoferrin (FL)) and two fecal
biomarkers of intestinal permeability (fecal zonulin (FZ) and fecal
alpha-1-antitrypsin (Fa1-AT)) in fecal samples of all participants
were tested (Figures 1Ba–d). Compared to NCs, the fecal samples
showed significantly elevated FC concentrations (µg/g) in CS
patients: 40.31 (13.22–84.51) vs. 29.97 (10.86–49.21), p < 0.05. FL
levels (mg/g) were also significantly higher in CS patients: 46.53
(16.32–98.02) vs. 23.32 (13.53–33.30), p < 0.0001. FZ levels (ng/ml)
were found a significant elevation in CS patients compared with
NCs: 1.74 (0.61–3.12) vs. 1.33 (0.44–2.36), p < 0.05. The level of
Fa1-AT, albeit not a statistically significant difference, shows a
trend towards elevated concentrations in CS patients compared to
NCs: 730.32 (41.56–2,549.84) vs. 546.74 (16.81–2,015.63), p > 0.05.

The integrity of the intestinal epithelial barrier (IEB) was also
investigated, which serves as the first boundary of defense
between blood circulation and the luminal environment. Thus,
the expression of E-cadherin, b-catenin, and ZO-1, major
components of adherens junctions (AJs) and tight junctions
(TJs), were investigated in colonic epithelium by fluorescence
analysis (Figure 1C). Colonic samples from 22 NCs and 24 CS
subjects were finally analyzed because samples from 3 of the
controls and 2 of the patients were excluded, as the mucosa was
too small or too damaged to allow a reliable analysis. A normal
expression of E-cadherin was observed in the colonic samples of
all of NCs and only 6/24 CS patients, while a loss of E-cadherin
Frontiers in Immunology | www.frontiersin.org 4
was found in the mucosa of 18 out of 24 CS patients. Similar
results were observed in b-catenin staining. Moreover, ZO-1
morphology was disrupted in the mucosa of 3 out of 22 controls
and 17/24 CS patients. Downregulated expressions of E-
cadherin, b-catenin, and ZO-1 were also observed by Western
blotting analysis (Figure 1D), which further confirmed the
increased permeability of colonic epithelium in CS patients.

Enhanced Systemic Inflammatory Response
Is AssociatedWith Gut Inflammation in
Cryptogenic Stroke Patients
From the analysis of the clinical data, it was found that the
subjects from the CS group had higher levels of plasma CRP and
WBC counts (Table 1 and Figures 2Aa, b). This indicated that
there was a systemic inflammatory response after CS. Given that
high-frequency GI dysfunction and gut inflammation with
increased permeability happened in CS patients, we then test
the plasma level of bacterial LPS, another direct biomarker of
systemic inflammation that is secreted from Gram-negative
bacteria. Plasma LBP was also quantified to allow a reliable
analysis, as the LBP measurements are not subject to
contamination. Plasma levels of bacterial LPS and LBP were
not only higher in CS patients compared to the controls
(Figures 2Ac, d) but also positively related to each other.
Plasma LPS and LBP levels were both positively correlated
with CRP levels (r = 0.3811, p = 0.0377, and r = 0.5813, p =
0.0008, respectively) (Figures 2Ba, b). Meanwhile, the levels of
plasma CRP, LPS, and LBP levels andWBC counts were found to
have a significantly positive correlation with the levels of fecal
markers, including FC, FL, FZ, and Fa1- AT (Figure 2Bc).

Differential Gut Microbiota Between
Cryptogenic Stroke Patients and Normal
Controls
To investigate if the gut microbiota altered in CS patients, we
compared the composition and diversity of fecal microbiomes
between CS patients and NCs by pyrosequencing the bacterial
TABLE 1 | Characteristics of the study participants.

NCs (n = 33) CS patients (n = 30) p-Value

Mean age (years ± SD) 41.33 ± 8.07 40.93 ± 8.57 0.8494
Male sex (n, %) 20, 60.61 17, 56.67 0.8017
BMI (mean, SD) 24.34, 2.31 24.55, 2.02 0.7820
Hypertension (n, %) 6, 18.18 9, 30.00 0.3763
Hyperlipidemia (n, %) 5, 15.15 8, 26.67 0.3627
Diabetes mellitus (n, %) 3, 9.10 5, 20.00 0.4616
Smoking status
Present (n, %) 9, 30.00 11, 36.67 0.5921
Past (n, %) 12, 36.36 14, 46.67 0.6073

CRP (mean, SD) 0.80, 0.38 1.64, 0.87 <0.0001
WBC count (mean, SD) 6117.58, 859.92 6828.67, 1350.89 0.0498
GSRS (mean, SD) 12.70, 4.90 17.33, 6.39 0.0028
NIHSS (mean, SD) – 12.37, 5.93 –

Infarct volume (mean, SD; n = 23) – 7.39, 3.45 –
May 2022 | Volume 13 | Article
BMI, body mass index; CRP, C-reactive protein; WBC count, white blood cell count; GSRS, Gastrointestinal Symptom Rating Scale; NIHSS, the National Institutes of Health Stroke Scale;
NCs, normal controls; CS, cryptogenic stroke.
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A

B

D

C

FIGURE 1 | Gut inflammation with increased intestinal permeability developed in CS patients. (A) Representative images of H&E staining of the colon tissue (a).
Microscopic damage score calculated after microscopic analyses of the colon sample from two groups (b). Scale bar: 20 mm. (B) Comparison of fecal biomarker
levels [calprotectin (a), lactoferrin (b), zonulin (c), and a1-antitrypsin (d)] in CS patients and the controls. (C) Representative image and quantification of E-
cadherin (a, d), b-catenin (b, e), and ZO-1 (c, f) in immunofluorescence staining. Scale bar: 20 mm. (D) Representative immunoblot images of E-cadherin, b-
catenin, and ZO-1 in the colonic epithelium of subject (a) and quantifications (b–d). The loading controls (GAPDH) were run on different gels in the same
experiment. n = 10; p < 0.05 indicates statistical significance (*p < 0.05, **p < 0.01, ****p < 0.0001), and ns means p ≥ 0.05. Results are expressed as median
and quartile. CS, cryptogenic stroke.
Frontiers in Immunology | www.frontiersin.org May 2022 | Volume 13 | Article 8368205
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16S ribosomal RNA gene. According to strict inclusion and
exclusion criteria, 27 CS patients and 27 NCs were enrolled
and completed the analysis. The alpha diversity indices,
including Observed_species, Chao1, Shannon, and ACE, were
found to be significantly higher in CS patients than NCs
(Figure 3A), while there was no difference in the Simpson
index. These results suggest that the richness and diversity of
the gut microbiotas were significantly higher in CS patients.
Principal component analysis (PCA) also showed a significant
difference between the two groups (Figure 3B). Linear
discriminant analysis effect size (LEfSe) analysis was performed
to identify the differences of abundant bacterial taxa between two
groups (Figures 3C, D). At the family level, a significantly higher
abundance of Enterobacteriaceae, Streptococcaceae, and
Lactobacillaceae and a lower abundance of Veillonellaceae were
observed in the CS group compared to the NCs (Figures 3Ea–d).
At the genus level (Figures 3Ee–h), there was an increased
abundance of Escherichia–Shigella, Streptococcus, Lactobacillus,
and Klebsiel la in the CS group with a decrease in
Faecalibacterium, Dialister, and Roseburia.

Gut Dysbiosis Was Related to Systemic
Inflammation and the Stroke Severity and
the Infarct Volumes
The stroke severity of patients was measured by NIHSS at
admission, and the mean NIHSS score of patients was 12.37 (SD:
± 5.93). Another marker of stroke severity was shown as the size of
infarct volumes, which was measured on DWI (Figure 4A) and was
available in 23 CS patients (76.6%) in this study. The mean infarct
volumes of the patients were 7.39 ml (SD: ± 3.45). We found a
Frontiers in Immunology | www.frontiersin.org 6
positive correlation between NIHSS scores and infarct volumes in
CS patients (r = 0.6758, p = 0.0006) (Figure 4B). We also found that
patients with a more severe admission NIHSS and larger infarct
volumes had higher systemic inflammatory markers (including
CRP, WBC, LPS, and LBP) (Figure 4C). Spearman’s correlation
analysis was carried out to evaluate the potential relationship
between the gut microbiome and systemic inflammatory markers
and the severity of stroke (Figure 4D). The results indicated that as
the abundance of Klebsiella, Escherichia–Shigella, and Bacteroides of
the patients increased, so did the plasma levels of their systemic
inflammatory markers. Meanwhile, the abundance of Klebsiella was
significantly positive correlated with NIHSS scores (r = 0.3853, p =
0.0471) and infarct volumes (r = 0.5079, p = 0.0222). However, no
significant correlation was found between Escherichia–Shigella or
Bacteroides and stroke severity (neither NIHSS scores nor infarct
volumes). These results suggest that the expansion of Klebsiella is
correlated to the severity of stroke and the enhanced the
inflammatory response.
DISCUSSION

In this study, we found that the gut microbiome of CS patients
was disordered as compared to NCs. Moreover, CS patients had
increased systemic inflammatory response and imbalanced gut
homeostasis. Importantly, we reveal that higher abundance of
Klebsiella is positively correlated to systemic inflammation and
stroke severity of CS patients. These results suggest that gut
microbiota is associated with the severity of CS and the gut and
systemic inflammatory response.
A

B

FIGURE 2 | Systemic inflammatory in CS patients. (A) Comparison of systemic inflammatory biomarker levels (CRP, WBC count, LPS, and LBP) in CS patients
and the controls. Results are expressed as median and quartile. (B) Spearman’s correlation analysis between plasma LPS and LBP levels and plasma CRP
levels (a, b). Heatmap of Spearman’s correlation analysis between systemic inflammatory indices (LPS, LBP, CRP, and WBC count) and fecal inflammatory
biomarkers (FC, FL, and FZ, and Fa1-AT) (c). p < 0.05 indicates statistical significance (*p < 0.05, **p < 0.01, ****p < 0.0001). CS, cryptogenic stroke; CRP, C-
reactive protein; WBC, white blood cells; LPS, lipopolysaccharide; LBP, lipopolysaccharide-binding protein; FC, fecal calprotectin; FL, fecal lactoferrin; FZ, fecal
zonulin; Fa1-AT, fecal alpha-1-antitrypsin.
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The high prevalence of GI symptoms in patients with ischemic
stroke has been reported in several studies (9, 10). By comparing the
scores ofGSRS,we foundmore severeGIdysfunction inCSpatients
compared to the NCs. To seek the cause of GI dysfunction,
Frontiers in Immunology | www.frontiersin.org 7
histological staining of the colon mucosa and fecal biomarkers
testing was performed in the study. We found gut inflammation in
CS patients with inflammatory cells accumulated in the colon
mucosa and the increasing levels of fecal biomarkers. Fecal
A B

D

E

C

FIGURE 3 | Comparison of the representative taxonomic abundance between CS patients and NCs. (A) Alpha diversity of gut microbiota between CS patients and
NCs. The Observed_species, Chao1, Shannon, and ACE index values. (B) PCA scores based on the relative abundances of OTUs (at the 97% similarity level). (C)
Histogram of the linear discriminant analysis (LDA) scores for differentially abundant bacterial taxa between two groups (LDA score threshold: ≥4.0). (D) Cladogram of
the LEfSe analysis of the gut microbiota in NC group (green) and CS group (red). Rings from the inside out represent taxonomic levels from phylum to genus, and
sizes of the circles indicate the relative abundance levels of the taxa. (E) Relative abundance of intestinal microbiota at the family level (a–d) and genus level (g–h).
p < 0.05 indicates statistical significance (*p < 0.05, **p < 0.01, ****p < 0.0001). CS, cryptogenic stroke; NCs, normal controls; PCA, principal component analysis;
OTUs, operational taxonomic units; LEfSe, linear discriminant analysis effect size.
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biomarkers are a useful non-invasive way of identifying intestinal
inflammation, including FC and FL (29–31). Both FC and FL could
be reliablymeasured because they can remain stable in stool by their
character (30). Calprotectin, a protein evenly distributed through
the feces, is in proportion to the degree of inflammation (32) and
resistant to intestinal bacterial degradation (33). Lactoferrin is a
primary factor in the acute inflammatory response (34, 35). FL
levels quickly increase with the influx of neutrophils during
intestinal inflammation and have antibacterial activity. These
results suggested that gut inflammation occurred in CS patients.

Several studies have attributed intestinal inflammation to a
loss of AJs and TJs (36–38). As the major component of IEB, AJ
and TJ proteins with integrality and normal distribution control
the passage of various substances through the intestinal
epithelium (39). E-cadherin and b-catenin are both important
components for the maintenance of AJs (37), and ZO-1 presents
the key component of tight junction (40). In the present study,
we found that both AJs and TJs including E-cadherin, b-catenin,
and ZO-1 were downregulated in CS patients, which indicated
that increased intestinal permeability with IEB damage happened
in CS patients. The finding is in line with findings from stroke
mouse models that reported the gut inflammation with
downregulation and broken TJs of the intestinal mucosa (41)
and negative changes in intestinal structure and function that
happened after stroke (42).

By analyzing the clinical data, we found a significantly higher
level of plasma CRP and WBC count in CS patients, which
suggests that there might be a systemic inflammatory response in
Frontiers in Immunology | www.frontiersin.org 8
CS patients. Higher plasma LPS and LBP levels supported this
finding because they were reported associated with systemic
inflammation (43, 44). Similar results have been reported in
other studies (45, 46); however, the subjects included other types
of strokes except the cryptogenic. Therefore, we provide evidence
that systemic inflammation happened after brain infarction in
CS patients. LPS, the endotoxin portion of the Gram-negative
bacterial outer membrane, has a short half-life of just a few hours
in plasma. Thus, the finding of increased plasma LPS levels
suggests a systemic inflammatory response with a continuous
release of LPS into the blood in CS patients. Taking into account
that the loss of IEB integrity could promote LPS translocation
from the intestinal lumen into the circulatory system (47), we
speculate that the source of LPS in plasma might be the gut. The
enhanced levels of plasma LBP also support this. LBP has been
reported to correlate with colonic permeability, and the
enhancing plasma LBP levels possibly reflect the impact of
systemic inflammation from gut leakiness (44). To confirm our
speculation, we performed the analysis of gut microbiota and
found a disturbance in the gut microbiome with an increasing
level of several Gram-negative bacteria in this study, especially in
the Enterobacteriaceae family with increasing abundances of
Escherichia–Shigella and Klebsiella. Escherichia–Shigella has
high pathogenicity and infectivity and can produce strong
endotoxins, increase intestinal permeability, exacerbate colitis,
and cause endotoxemia. Klebsiella is one of the most important
pathogenic bacteria that cause pneumonia, respiratory
infections, peritonitis, diarrhea, and septicemia. Findings from
A B

D C

FIGURE 4 | Gut microbiota is associated with systemic inflammatory response levels and the severity of stroke. (A) Representative DWI image of the NCs (left) and
CS patients (right). (B) The NIHSS scores positively related to the infarct volumes. (C) Heatmap of Spearman’s correlation analysis between systemic inflammatory
factors and the severity of stroke. (D) Heatmap of Spearman’s correlation analysis between the abundance of gut microbiota and systemic inflammatory factors and
the severity of stroke. p < 0.05 indicates statistical significance (*p < 0.05, **p < 0.01). DWI, diffusion-weighted imaging; CS, cryptogenic stroke; NCs, normal
controls; NIHSS, National Institutes of Health Stroke Scale.
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a study are similar to ours and indicated that the resource of LPS
in stroke patients might be gut bacteria, with the LPS identified
being from Escherichia coliO111:B4 (46). Therefore, the systemic
inflammatory response is associated with gut dysbiosis and gut
inflammation with increased intestinal permeability.

Animal studies indicated that intestinal microbiota disturbance
plays a vital role in the severity of ischemic stroke (48). Studies have
found that depletion of gut microbiota via antibiotic administration
decreased the survival rate of stroke in a mouse model (49).
Moreover, in the middle cerebral artery occlusion model, Benakis
et al. found that gut dysbiosis would affect the outcome of ischemic
stroke (50). Though dysregulation of the microbiota has been
identified (51–53), few studies paid attention to the effect of gut
dysbiosis on the severity of stroke in patients, let alone CS patients.
In this study, we found the genus Escherichia–Shigella and Klebsiella
were significantly positively correlated with NIHSS scores and
infarct volumes in CS patients, respectively. No significant
correlation was found between Streptococcus abundance and
NIHSS scores or infarct volumes, although it is shown that with
Streptococcus increased, the NIHSS scores or infarct volumes were
also increased. Overall, our results suggest that symptom severity of
CS is associated with gut microbiota disturbance and enhancing gut
and systemic inflammatory reaction.

From the above findings, we gain a more comprehensive
understanding of the role of the gut microbiota in the
pathological process of CS. There is a wide link between gut
dysbiosis and central nervous system (CNS) diseases; thus, many
therapies of adjusting gut microbiota have been developed,
including manipulation of the diet, ingestion of prebiotics and
probiotics, and fecal microbiota transplantation, to modulate the
gut microbiota and associated metabolites. In the future, we will
try to adjust the microbial compositions to confirm whether it
could improve the prognosis of CS.

Growing amounts of evidence support that the alterations of gut
microbiota have been linked to the pathology of CNS diseases (54–
56). Recent evidence suggests that cross-talk between the gut
microbiome and the immune system is important for gut–brain
communication in neuropsychiatric and neurodegenerative
disorders (57) and systemic inflammation may have a
contribution to the outcome or progression of neurodegenerative
disease (58, 59). However, few studies focus on the communication
between gut microbiota and systemic inflammation and their roles
in cerebrovascular diseases. In the present study, we found their role
in CS patients by exploring the correlation between gut microbiota,
systemic inflammatory factors, and the severity of stroke.

However, there were certain limitations in this study. First,
the participants of this study were from a single center with a
small sample size. Large-sample and multicenter studies are still
needed to confirm the results in the future. Another drawback is
Frontiers in Immunology | www.frontiersin.org 9
that our research was not involved in the effect of gut microbiota
on the prognosis of CS because no further follow-up was
performed. Third, although the samples were collected before
treatment of stroke, the gut microbiome could have been
influenced by other confounders such as diet, exercise, and
risks of stroke (such as hypertension and diabetes) (60, 61).
Although this study has some limitations, it is a beneficial
exploration of CS, which may provide a foundation for
subsequent studies.
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