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Abstract

The Swiss Alpine environments are poorly described from a microbiological perspective.

Near the Greina plateau in the Camadra valley in Ticino (southern Swiss Alps), a green-tur-

quoise-coloured water spring streams off the mountain cliffs. Geochemical profiling revealed

naturally elevated concentrations of heavy metals such as copper, lithium, zinc and cad-

mium, which are highly unusual for the geomorphology of the region. Of particular interest,

was the presence of a thick biofilm, that was revealed by microscopic analysis to be mainly

composed of Cyanobacteria. A metagenome was further assembled to detail the genes

found in this environment. A multitude of genes for resistance/tolerance to high heavy metal

concentrations were indeed found, such as, various transport systems, and genes involved

in the synthesis of extracellular polymeric substances (EPS). EPS have been evoked as a

central component in photosynthetic environments rich in heavy metals, for their ability to

drive the sequestration of toxic, positively-charged metal ions under high regimes of cyano-

bacteria-driven photosynthesis. The results of this study provide a geochemical and microbi-

ological description of this unusual environment in the southern Swiss Alps, the role of

cyanobacterial photosynthesis in metal resistance, and the potential role of such microbial

community in bioremediation of metal-contaminated environments.

Introduction

Microbial mats are composed of different horizontally stratified biofilms of microorganisms

building a connected network with the ability to endure extreme environments such as hyper-

saline basins, sulphuretums, aquifers and sulfur springs, under prohibitive conditions for the

growth of eukaryotic organisms [1, 2].
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Sedimentary rock finds indicate a worldwide presence of microbial mats throughout the

history of the Earth, as representative of first ecosystems together with stromatolites, and their

role as modifiers of early atmosphere [3].

Modern biomats typically host a high biological diversity that includes bacterial, but also

archaeal and eukaryotic communities [4]. This is partly due to dynamic physicochemical con-

ditions that accommodate the needs of the different communities into interacting ecological

niches [5–7], allowing them to carry out biological processes such as methanogenesis, denitri-

fication, metal and sulfate reduction [8–10], as well as photosynthesis and nitrogen fixation

in which Cyanobacteria play an important role [11]. Cyanobacteria are frequently found in

diverse ecological niches including those harbouring high heavy metal concentrations [12].

Cyanobacteria’s tolerance to such conditions is supposed to derive from their ability to synthe-

size extracellular polymeric substances (EPS). However, it is unclear how the oxidative stress

induced by the combination of heavy metal ions present in polluted environments affects cya-

nobacterial physiology [13, 14]. Secreted EPS, membrane-bound or soluble, surround the cells

in microbial communities through the formation of protective layers against oxidative and

other sources of stress. In particular, their negative charge has been shown to play an impor-

tant role in the protection against heavy metals-mediated oxidative stress, by depleting posi-

tively charged metal ions [15–17].

Therefore, microbial mats are of particular interest for studying microbial communities’

diversity, structure and evolution, which contributes to their adaptation to extreme environ-

ments [18–20], and for their potential applications in bioremediation [4].

While biomats in different environments (for example hypersaline, acid, thermophillic,

psychrophilic, oligotrophic, coastal mats) have been described previously [4, 7, 21–23], bio-

mats in Alpine environments have been poorly studied so far. Here we investigate the micro-

bial and chemical compositions of this biomat adapted to the Swiss Alpine environment (Fig

1). The peculiar chemical compositions of the biomat spring described in this study, princi-

pally composed of copper, cadmium and zinc, is unusual for the Swiss southern Alpine envi-

ronment from a geological perspective [24, 25]. It is therefore of interest to investigate the

formation of this biomat as a microbial adaptation to this unusual environment.

Fig 1. Biomat spring in the Greina region, Camadra di Fuori / Sassina location in the Camadra valley. This spring is well known in the region because of the

green-turquoise colour of the biomat on the rocks [26]. The geographical position of the biomat spring is: CH1903+ / LV95 2’715’235, 1’160’895, at an elevation of

1’726 m asl. A) Overview of the biomat spring (summer 2015). B) Details of the sampling.

https://doi.org/10.1371/journal.pone.0248877.g001
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Materials and methods

Chemical profiling of the spring water

Water samples were taken using 500 ml disposable polypropylene bottles (Carl Roth, Arle-

sheim, Germany), they were kept at 4˚C and transported to the laboratory within 2 h.

The water chemical composition was measured using inductively coupled plasma mass

spectrometry (ICP-MS), after the water samples were acidified using 0.3% HCl and 0.3%

NHO3. The conductivity was determined using a 5-ring conductivity measuring cell with

cell constant c = 0.7 cm−1 with integrated Pt1000 temperature sensor (Metrohm, art.

6.0915.100). The quantity of the anions (sulfate, fluoride, nitrate, chloride, nitrite and

bromide) and cations (potassium and sodium) was measured using ion chromatography

(IC, Metrohm, 850 Professional IC). Phosphate concentration was determined using

UV-Vis colorimetric analysis (method SOP MSDA 628.1 [27]). Calcium and magnesium

concentrations were measured using a calcium-selective electrode with polymer membrane

(Metrohm, art. 6.0508.110). Strontium and zinc concentrations were measured with an

inductively coupled plasma optical emission spectrometer (ICP-OES VISTA MPX Axial,

Varian). Before analysis the samples were acidified with 1% NHO3. All the other metal

concentrations were measured using an inductively coupled plasma mass spectrometry

(ICP-MS, iCAP-Q, ThermoScientific). Before analysis the samples were acidified with 0.3%

HCl and 0.3% NHO3.

Microscopy

Fluorescence microscopy. The biofilm probes were examined by microscopy with a Zeiss

Axiolab microscope in bright field and epifluorescence, using the F41 filter sets (AHF Analy-

sentechnik HQ535/50, Q565LP and HQ610/75) for detection of phycoerythrin-containing

autofluorescent cells [28].

X-ray & scanning electron microscopy. The rock samples were mounted on aluminum

supports. They were covered with an ultra-thin coating of gold (10 nm) by low vacuum sput-

ter, prior to imaging with a scanning electron microscope JEOL JSM 70001 FA (department of

Earth Sciences, University of Geneva, Switzerland). Scanning electron microscope energy dis-

persive X-ray spectroscopy analyses (EDXS) were lead with a JEOL EX-94300S4L1Q detector.

These analyses were acquired with an accelerating voltage of 15 kV, a beam current of 3.5 nA

(acquisition times of 30 s). Gold (Au) is not taken into account in the semiquantitative quanti-

fication of the elements, as it is not part of the sample. Although not labelled, the characteristic

energy peak of Au is visible on the spectrum at 2.12 KeV (S1 File).

Sample collection and DNA extraction

The green-turquoise mucilage was collected during summer 2015 from the stream located in

the Greina region, Camadra di Fuori / Sassina location in the Camadra valley (CH1903+ /

LV95 2’715’235, 1’160’895, 1’726 m asl) using a falcon tube and stored at -20˚C. DNA was

extracted from 10 g of mucilage using the DNeasy PowerMax Soil Kit (Qiagen) following the

manufacturer protocol. After extraction, DNA was precipitated with ethanol and NaCl follow-

ing the procedure suggested by the manufacturer. Finally, DNA was eluted in 50 μl of molecu-

lar grade H2O. Quality and quantity of DNA was assessed spectrophotometrically using

Nanodrop as well as the Quant-iT™ PicoGreen™ dsDNA Assay Kit (Invitrogen) combined with

a TD700 Fluorometer (Turner Design) and the Qbit4 instrument (Thermofisher). In addition,

the integrity of the DNA was checked by agarose gel electrophoresis.
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MinION sequencing

The metagenome of the green-turquoise mat was sequenced using a 1D ligation sequencing

kit (SQK-LSK108). Sequencing was performed using an Oxford Nanopore Technologies

(ONT) MinION flow cell R9.4 containing an initial number of 1’553 active nanopores for a

duration run of 48 hours, using the MinKNOW software (v18.01.6). The ONT Guppy basecal-

ler (v2.3.7) was further used to assign base names on the resulting chromatogram.

Metagenome assembly and annotation

The fastq reads obtained by MinION sequencing were used to perform taxonomic classifica-

tion using MetaMaps (v0.1) [29] against its “miniSeq+H” database (updated March 12th 2020)

with BLAST NCBI taxonomy from Krona Tools (v2.7.1) [30]. The reads were also used to run

Canu (v1.9) for assembling a metagenome with the following parameters: genomeSize = 5m,

corOutCoverage = 10000, corMhapSensitivity = high, corMinCoverage = 0, correctedError-

Rate = 0.105, redMemory = 32, oeaMemory = 32, batMemory = 200, maxMemory = 230G,

nanopore-raw. Prokka (v13.1) was subsequently used to annotate the 3’421 contigs resulting

from Canu assembly in conjunction with the NCBI BLAST’s nt database (v2.10.0+). In addi-

tion, metagenomic binning was applied using the fastq reads and the assembled contigs longer

than 10’000 nucleotides, using CONCOCT (v1.1.0) [31] with the “composition_file” option.

Prokka was then used to annotate the contigs of the bins separately and CheckM (v1.1.2)

[32] used to assess the completeness of the corresponding metagenome-assembled genomes

(MAGs).

Results and discussion

Hydrochemical and geochemical analyses

The biomat spring is located at the contact between the migmatitic mica-alkali feldspar-plagio-

clase gneiss to the north and the biotite-muscovite-alkali feldspar gneiss to the south. These

two units are the basement of Mels-, Röti- and Quarten-Formations (autochthonous cover of

the Gotthard Massif deposited during the Triassic Period) composed by dolomitic/calcitic

marble and cellular dolostone [24]. Just above the spring, a deposit of industrial minerals is

inventoried in the Georesources information system of Switzerland [33]. This deposit belongs

to the Triassic dolomitic marbles and contains, as elements, barium, fluorine, zinc, iron and

copper, and, as minerals, barite, sphalerite, pyrite, chalcopyrite and fluorite, of hydrothermal

origin [34].

Despite streaming through an area characterized by gneissic rocks with different mineral-

ogical compositions, the hydrochemistry of the spring showed a calcium-sulfate type water

strongly influenced by the presence of gypsum and carbonates in the Triassic rocks surround-

ing the area [24, 35]. In addition, the chemical profiling of the spring water indicated high

concentrations of heavy metals such as aluminium (*1.25-fold higher than expected from

granitic gneiss), barium (*2.6-fold higher than expected from dolomitic and calcitic marble

and cellular dolostone) as well as lithium, manganese and strontium as expected from rocks of

dolomitic origin, but also, surprisingly, it showed unusually high concentrations of copper

(>60-fold), cadmium (>100-fold) and zinc (>650-fold) compared to the typical concentration

range found in Alps (Table 1). The enrichment in the latter metals might be due to the pres-

ence of the hydrothermal veins previously mentioned, which contain minerals such as

chalcopyrite and sphalerite [33, 35], and represents a significant difference with respect to

concentrations found in typical Alpine environments, however being *100-fold lower than

extreme acidophiles found in heavy-metal laden acid mine drainage waters [36, 37]. The
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presence of a metarhyolite vein to the north of the study site could potentially explain the

observed enrichment primarily of copper and zinc, but also of barium, cadmium, manganese

and nickel.

The geochemical composition of the green-turquoise deposit collected at the spring was

also investigated with the scanning electron microscopy analysis, and similar results were

obtained (see S1 File). The analysis showed in fact typical elements contained in the crystal lat-

tice of silicates of the gneissic rocks and elements as copper, zinc, iron and sulfur forming the

minerals of hydrothermal origin.

MinION metagenomics sequencing analysis

The sequencing generated a total of 5’874’348 reads with a mean length of 1’010 bp and a

mean read quality of 9.7, which were further processed with the ONT Guppy basecaller result-

ing in 5’085’754 (86.6%) reads of quality score Q> 7. Taxonomic classification against the

“miniSeq+H” index database (updated March 12th 2020) was used for evaluating biological

diversity (Fig 2). The metagenome assembled contigs were annotated with Prokka before (S2

File) and after metagenomic binning (S3 File) in order to build different MAGs, further

assessed for completeness, contamination and strain heterogeneity using CheckM (S4 File).

These constituted the metagenomic data used to search for relevant genes and components

involved in the biological functions described below.

Overall bacterial diversity. Proteobacteria were the most diverse group of bacteria pres-

ent in the environment with a proportion of 58% (Fig 2). Among them, Polaromonas spp. of

the Betaproteobacteria is known for being tolerant to elevated metal concentrations thanks to

the metal-resistance genes for mercury, arsenate, chromate, and other heavy metals [38], and

its role in pollutant degradation [39], as well as Rhizobiales (Alphaproteobacteria) such as

Table 1. Chemical analysis of the spring water.

Chemical parameter Measured value Chemical parameter Measured value

Conductivity at 20˚C (μS/cm) 539 Phosphate (mg/L) <0.01

pH 7.73 Nitrite (mg/L) <0.01

Alcalinity at pH 4.3 (mmol/L) 0.98 Bromide (mg/L) <0.01

Sulfate (mg/L) 254.5 Molybdenum (μg/L) 9.92

Calcium (mg/L) 116.4 Uranium (μg/L) 4.77

Magnesium (mg/L) 8 Boron (μg/L) 3.09

Fluoride (mg/L) 3.65 Lead (μg/L) 1.4

Zinc (mg/L) 3.39 Selenium (μg/L) 1.38

Potassium (mg/L) 2.8 Antimony (μg/L) 0.53

Sodium (mg/L) 1.2 Cesium (μg/L) 0.46

Nitrate (mg/L) 0.7 Arsenic (μg/L) 0.46

Strontium (μg/L) 574 Cobalt (μg/L) 0.34

Copper (μg/L) 305.14 Tin (μg/L) <0.20

Chloride (mg/L) 0.1 Mercury (μg/L) <0.20

Ammonium (mg/L) <0.1 Bismuth (μg/L) <0.20

Aluminum (μg/L) 40.19 Vanadium (μg/L) <0.1

Manganese (μg/L) 35.62 Thallium (μg/L) <0.1

Cadmium (μg/L) 30.86 Silver (μg/L) <0.1

Barium (μg/L) 25.32 Iron (μg/L) <0.1

Nickel (μg/L) 14.29 Chromium (μg/L) <0.1

Lithium (μg/L) 12.87 Beryllium (μg/L) <0.1

https://doi.org/10.1371/journal.pone.0248877.t001
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Rhodopseudomonas palustris also involved in the removal of environmental pollutants by

degrading chlorinated compounds [40].

Cytophaga, Bacteroidia, and Flavobacteriia are classes of the Bacteroidetes phylum that rep-

resented about 15% of the bacterial species and have been previously found in hypersaline

mats [41] having a role in scavenging of Cyanobacteria biomass [42].

Fig 2. Bacterial taxonomy based on MinION metagenomics sequencing, only reads representing more than 1% occurrence are represented (an interactive

diagram is available in S5 File).

https://doi.org/10.1371/journal.pone.0248877.g002
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Terrabacteria represented 24% of the bacterial diversity, including Actinobacteria, Firmi-

cutes, Tenericutes and Deinococci, known to be part of aquatic microbial biomat communities

at low temperatures [43], aside of the most diverse group, i.e., Cyanobacteria.

Cyanobacteria diversity. Fluorescence microscopy of the biofilm indicated the presence

of Cyanobacteria (Fig 3) highlighted by the fluorescence emission range of the Cyanobacteria

characteristic pigments.

Cyanobacteria diversity could be assessed based on MetaMaps analysis (Fig 4). Synechococ-

cales were the most represented (42%), known to be involved in metal cycling in oceans’ photic

zone [44], followed by Oscillatoriophycideae (26%), such as Gloeocapsa and Gloeothece spp.,

and Nostocales (25%), that are both considered as primary producers of phototrophic mats

[4].

In addition, functional prediction of the genes based on the assembled metagenome indi-

cated the presence of several genes involved in cyanobacterial metabolic activities. Cyanobacte-

ria activity was suggested by cyanophycinase and cyanophycin synthetase genes, involved in

the degradation and polymerization of Cyanobacteria-specific cyanophycin, respectively [45].

Diverse phycocyanobilin lyase subunits (CpcE,F,T,S) as well as phycocyanobilin:ferredoxin

oxidoreductase (PcyA) and a putative phycocyanobilin lyase (CpcS) were also predicted by

the metagenome annotation. The latter are involved in the light harvesting complexes [46],

together with other photosynthetic antenna proteins (ApcA-E; CpcA,B,D,E-I,S,T; PetA-H,J,M;

PsaA-F,I-M; PsbA-E,F,H-J,K,M,N,O,U,V,X,Y,Z), proteins involved in cyanobacterial oxidative

phosphorylation (CyoE; NdhA-E; NdhH-N; Ppa; Ppk; SdhA,B,E) [47].

Genes for nitrogen fixation. Genes involved in nitrogen fixation were also found, such as

the Nif-specific regulatory protein (NifA and NifS) and the nitrogen fixation protein (VnfA)

found in Cyanobacteria (Anabaena genus) [48], as well as in bacteria, such as Azotobacter
(Pseudomonadales) [49, 50], Rhizobiales [51, 52] and Azospirillum (Alphaproteobacteria) [53,

54], together with associated regulator proteins, such as a nitrogen regulatory protein P-II

(GlnB) and a global nitrogen regulator (NtcA) commonly found in (cyano)bacteria, archaea

and plants [55].

Fig 3. Microscopy of biomat samples. A) Biomat sample under 200x light microscopy magnification (grid side length = 635μm). B) Fluorescence microscopy at 552

nm of biomat’s Cyanobacteria.

https://doi.org/10.1371/journal.pone.0248877.g003
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Genes for microbial metal resistance. Several genes involved in conferring tolerance/

resistance to high metal concentrations were found in the annotated metagenome (S2 and S3

Files).

In particular, resistance against arsenic was represented by Acr3 and ArsA,C,H,M resis-

tance effectors, which detect and stimulate the cellular response to arsenic [56, 57]. The genes

Fig 4. Cyanobacterial taxonomy based on MinION metagenomics sequencing, only reads representing more than 1% occurrence are represented (an interactive

diagram is available in S5 File).

https://doi.org/10.1371/journal.pone.0248877.g004
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CzcA and B, CnrA and R, and CopA and B, were found in the annotated metagenome repre-

senting resistance mechanisms against elevated concentrations of cobalt, zinc, cadmium,

nickel and copper [58–62], all of which were present in the sampled environment according to

the chemical analysis (Table 1).

Further, genes coding for permeases related to the transport of iron were found (FeoB;

FecA,E) described previously with the role of regulators of intracellular iron concentration

[63–65], as well as PhnE,D and PstA,C for the uptake of phosphate at low extracellular concen-

trations [66] and for sulfate (CysT,W) [67], and sodium-translocating NADH-quinone reduc-

tase (subunits A,B,F).

Several components of other transport systems related to metals or chemical species mea-

sured in the environmental chemical analysis were found in the metagenomic data. Trans-

porting ATPases for copper (ActP) [68], silver (SilP) [69, 70], cadmium/zinc/cobalt (CadA)

[71, 72], zinc (ZiaA) [73, 74], calcium (PacL, YloB) [75, 76], magnesium (MgtA and MgtB)

[77] and potassium (KdpA-C) [78], as well as other transporters were found for iron (FieF)

[63, 79], ammonium (NrgA) [80, 81], magnesium (MgtE) [82], manganese (MntB,H,R) [83],

nitrate/nitrite (NrtA and NrtP) [84], sodium (SdcS) [85], Zinc (ZitB) [86], cobalt/magnesium

(CorA) [87, 88]. Import systems were found for phosphate (PstB, PhnD) [66, 89] and an anti-

porter for cadmium/cobalt/zinc vs. proton/potassium (CzcD) [62, 90, 91], as well as for

sodium (NhaA,C,D, GerN, NhaS3) [92], molybdenum (ModA,B), nickel (LarO) or potas-

sium (NhaP2) [93]vs. protons. Finally, genes coding for transcriptional regulators involved

in sensing and uptake of phosphate (PhoB and PhoR) [94, 95] and zinc (Zur) [86] were

identified.

Genes involved in EPS synthesis. The metagenome analysis revealed several genes pre-

dicted to be involved in EPS synthesis, which have been studied in various contexts from bio-

synthesis to biotechnological applications in bioremediation, for their capacity of heavy metal

sorption [15, 16, 96–98]. Putative glycosyl-/acetyltransferases (EpsL, EpsM) and components

of the Type II secretion system protein (EpsE, EpsF) were found in the annotated metagenome

[99]. Also genes coding for glucans were found, such as 1,4-alpha-glucan branching enzyme

(GlgB) [100], the 1,4-beta-D-glucan glucohydrolase (GghA) [101], 4-alpha-glucanotransferase

(MalQ) [102], alpha-1,4-glucan:maltose-1-phosphate maltosyltransferase (GlgE) [103, 104],

beta-glucanase (BglA) [105, 106], glucan synthase (NdvB) [107] and the Endoglucanase (Egl)

[108]. Osmoregulated periplasmic glucans are part of EPS and have been found to play a role

in bacteria that respond to harsh conditions such as osmotic [109] and heavy-metal stresses

[110, 111]. The role of EPS in photosynthetic environments rich in metal has been demon-

strated [17, 112–114] as the negative charge assumed in high pH, i.e., during high photosyn-

thetic regimes, might sequestrate toxic, positively charged metal ions.

Potential and limitations

The metagenomics analysis approach benefits of modern sequencing tools, that encompass

the sequencing itself made easier by user-friendly hardware such as the MinION sequencer,

together with the accompanying nucleic acid extraction kits, as well as software for data analy-

sis such as MetaMaps that take advantage of long reads for optimizing information retrieval

from public databases. A limitation of metagenomic studies is that they rely on the genomic

DNA and therefore only allow to infer the genetic composition of the organisms living in a

studied environment, without providing evidence for actual activity of the genes that are iden-

tified, for which further analysis would be required for the assessment of gene expression, such

as metatranscriptomics. However, the validity of our metagenome-based approach is sup-

ported by our findings that revealed a multitude of genes conferring tolerance to the chemicals
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we detected by chemical profiling the environment, as they were likely retained through natu-

ral selection.

Conclusions

In this study we described an environment in the southern Swiss Alps which is atypical for the

region from its peculiar chemical composition. We characterized this environment from a geo-

chemical and microbiological perspective.

Geochemical analysis revealed a complex rock composition due to the merging of different

geological units during rock formation of the surrounding area. This determines the unusual

chemical composition of the outflowing water, characterized by high concentrations of heavy

metals. Interestingly, microbiological analyses based on microscopy and metagenomics

revealed an ecosystem adapted to these conditions. The ecosystems appeared as a green-tur-

quoise biomat mainly composed of Proteobacteria, Bacteroidetes, and Cyanobacteria, along

with other taxonomic groups. In particular, the substantial presence of Cyanobacteria in the

biomat underlines its photosynthetic activity, where Cyanobacteria play a crucial role of pri-

mary producers and nitrogen fixators, thereby providing the underlying building blocks for

the complex nutrient flow network involving the other microorganisms composing the bio-

mat. The photosynthetic activity in such environments was suggested to improve tolerance to

high heavy metal concentrations, by an increased pH that drives metal cations sequestration

by EPS. Indeed, genes for synthesis of EPS were found in the assembled biomat metagenome,

along with several other genes involved in diverse mechanisms of metal resistance. Altogether,

this study allowed the first characterization of this unusual Swiss Alpine ecosystem from a

geochemical and microbiological perspective. Several open questions remain, for example

regarding the ecosystem’s seasonal dynamics, as well as potential applications to adapt such

microbial community for bioremediation of anthropogenically contaminated environments

rich in heavy metals.

Supporting information

S1 File. Scanning electron microscopy analysis.

(TXT)

S2 File. Annotated metagenome.

(TXT)

S3 File. Annotated MAGs.

(TXT)

S4 File. CheckM evaluation of MAGs.

(TXT)

S5 File. Interactive Krona taxonomic representation diagram.

(TXT)

S1 Raw data. SRA/BioProject accession number: PRJNA689378.

(TXT)

Author Contributions

Conceptualization: Cristian Scapozza, Mauro Tonolla.

Data curation: Antoine Buetti-Dinh.

PLOS ONE Geochemical and metagenomics study of a metal-rich, green-turquoise-coloured stream in the southern Swiss Alps

PLOS ONE | https://doi.org/10.1371/journal.pone.0248877 March 30, 2021 10 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0248877.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0248877.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0248877.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0248877.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0248877.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0248877.s006
https://doi.org/10.1371/journal.pone.0248877


Formal analysis: Antoine Buetti-Dinh, Michela Ruinelli, Dorota Czerski, Cristian Scapozza,

Agathe Martignier, Samuele Roman, Annapaola Caminada.

Methodology: Antoine Buetti-Dinh, Michela Ruinelli.

Project administration: Mauro Tonolla.

Software: Antoine Buetti-Dinh.

Validation: Antoine Buetti-Dinh.

Visualization: Antoine Buetti-Dinh.

Writing – original draft: Antoine Buetti-Dinh, Michela Ruinelli, Cristian Scapozza, Mauro

Tonolla.

Writing – review & editing: Antoine Buetti-Dinh, Mauro Tonolla.

References
1. Joseph Seckbach and Aharon Oren. Microbial Mats: Modern and Ancient Microorganisms in Stratified

Systems. 01 2010.

2. Dudeja Suman, Bhattacherjee Aranya, and J. Chela-Flores. Cellular origin, life in extreme habitats and

astrobiology. 09 2012.

3. Hoehler Tori M., Bebout Brad M., and Des Marais David J. The role of microbial mats in the production

of reduced gases on the early Earth. Nature, 412(6844):324–327, July 2001. https://doi.org/10.1038/

35085554 PMID: 11460161

4. Prieto-Barajas Cristina M., Eduardo Valencia-Cantero, and Santoyo Gustavo. Microbial mat ecosys-

tems: Structure types, functional diversity, and biotechnological application. Electronic Journal of Bio-

technology, 31:48—56, 2018. https://doi.org/10.1016/j.ejbt.2017.11.001

5. van Gemerden Hans. Microbial mats: A joint venture. Marine Geology, 113(1):3—25, 1993. Marine

Sediments, Burial, Pore Water Chemistry, Microbiology and Diagenesis. https://doi.org/10.1016/0025-

3227(93)90146-M

6. Ley Ruth E., J. Kirk Harris, Wilcox Joshua, Spear John R., Miller Scott R., Bebout Brad M., et al. Unex-

pected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Applied and Environ-

mental Microbiology, 72(5):3685–3695, 2006. https://doi.org/10.1128/AEM.72.5.3685-3695.2006

PMID: 16672518

7. Bolhuis Henk, Cretoiu Mariana Silvia, and Stal Lucas J. Molecular ecology of microbial mats. FEMS

Microbiology Ecology, 90(2):335–350, 11 2014. PMID: 25109247

8. Paerl H. W. and Pinckney J. L. A mini-review of microbial consortia: Their roles in aquatic production

and biogeochemical cycling. Microbial Ecology, 31(3), 1996. https://doi.org/10.1007/BF00171569

PMID: 8661534
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70. Sütterlin S., Dahlö M., Tellgren-Roth C., Schaal W., and Å. Melhus. High frequency of silver resistance

genes in invasive isolates of Enterobacter and Klebsiella species. Journal of Hospital Infection, 96

(3):256–261, July 2017. https://doi.org/10.1016/j.jhin.2017.04.017 PMID: 28506673

PLOS ONE Geochemical and metagenomics study of a metal-rich, green-turquoise-coloured stream in the southern Swiss Alps

PLOS ONE | https://doi.org/10.1371/journal.pone.0248877 March 30, 2021 14 / 17

https://doi.org/10.1271/bbb.61.768
https://doi.org/10.1271/bbb.61.768
http://www.ncbi.nlm.nih.gov/pubmed/9178550
https://doi.org/10.1128/jb.176.21.6545-6549.1994
https://doi.org/10.1128/jb.176.21.6545-6549.1994
http://www.ncbi.nlm.nih.gov/pubmed/7961405
https://doi.org/10.1111/j.1574-6976.2012.00351.x
https://doi.org/10.1111/j.1574-6976.2012.00351.x
http://www.ncbi.nlm.nih.gov/pubmed/22861350
https://doi.org/10.1074/jbc.M109.011882
http://www.ncbi.nlm.nih.gov/pubmed/19494117
https://doi.org/10.3389/fmicb.2018.02473
https://doi.org/10.1128/JB.181.8.2385-2393.1999
https://doi.org/10.1128/JB.181.8.2385-2393.1999
https://doi.org/10.3390/ijms160817005
http://www.ncbi.nlm.nih.gov/pubmed/26225958
https://doi.org/10.1128/jb.182.5.1390-1398.2000
http://www.ncbi.nlm.nih.gov/pubmed/10671463
https://doi.org/10.1128/JB.00384-09
https://doi.org/10.1128/JB.00384-09
http://www.ncbi.nlm.nih.gov/pubmed/19502402
https://doi.org/10.1186/1471-2164-10-78
https://doi.org/10.1186/1471-2164-10-78
http://www.ncbi.nlm.nih.gov/pubmed/19208259
https://doi.org/10.1039/c7mt00112f
http://www.ncbi.nlm.nih.gov/pubmed/28604884
https://doi.org/10.1093/femsre/fuv049
http://www.ncbi.nlm.nih.gov/pubmed/26684538
https://doi.org/10.1007/s002030050600
http://www.ncbi.nlm.nih.gov/pubmed/9575233
https://doi.org/10.1099/mic.0.29201-0
http://www.ncbi.nlm.nih.gov/pubmed/17074913
https://doi.org/10.1128/jb.177.14.4134-4136.1995
http://www.ncbi.nlm.nih.gov/pubmed/7608089
https://doi.org/10.1046/j.1365-2958.2002.02791.x
https://doi.org/10.1046/j.1365-2958.2002.02791.x
http://www.ncbi.nlm.nih.gov/pubmed/11936079
https://doi.org/10.1038/5545
http://www.ncbi.nlm.nih.gov/pubmed/9930866
https://doi.org/10.1016/j.jhin.2017.04.017
http://www.ncbi.nlm.nih.gov/pubmed/28506673
https://doi.org/10.1371/journal.pone.0248877


71. Cécile Oger, Mahillon Jacques, and Petit Fabienne. Distribution and diversity of a cadmium resistance

(cada) determinant and occurrence of IS257 insertion sequences in Staphylococcal bacteria isolated

from a contaminated estuary (Seine, France). FEMS microbiology ecology, 43:173–83, 04 2003.

https://doi.org/10.1111/j.1574-6941.2003.tb01056.x

72. Tsai K J, P K Yoon, and Lynn A R. ATP-dependent cadmium transport by the cadA cadmium resis-

tance determinant in everted membrane vesicles of Bacillus subtilis. Journal of Bacteriology, 174

(1):116–121, 1992. https://doi.org/10.1128/jb.174.1.116-121.1992 PMID: 1530844

73. Thelwell C., Robinson N. J., and Turner-Cavet J. S. An SmtB-like repressor from Synechocystis PCC

6803 regulates a zinc exporter. Proceedings of the National Academy of Sciences, 95(18):10728–

10733, September 1998.

74. Banci Lucia, Bertini Ivano, Simone Ciofi-Baffoni, Poggi Luisa, Vanarotti Murugendra, Tottey Stephen,

et al. NMR structural analysis of the soluble domain of ZiaA-ATPase and the basis of selective interac-

tions with copper metallochaperone Atx1. JBIC Journal of Biological Inorganic Chemistry, 15(1):87–

98, July 2009. https://doi.org/10.1007/s00775-009-0568-7 PMID: 19609573

75. Berkelman T, Garret-Engele P, and Hoffman N E. The PacL gene of Synechococcus sp. strain PCC

7942 encodes a Ca2+-transporting ATPase. Journal of Bacteriology, 176(14):4430–4436, 1994.

https://doi.org/10.1128/jb.176.14.4430-4436.1994

76. Raeymaekers L, Wuytack E.Y, Willems I, Michiels C.W, and Wuytack F. Expression of a P-type Ca2

+-transport ATPase in Bacillus subtilis during sporulation. Cell Calcium, 32(2):93–103, August 2002.

https://doi.org/10.1016/S0143-4160(02)00125-2 PMID: 12161109

77. Smith Ronald L. and Maguire Michael E. Microbial magnesium transport: unusual transporters search-

ing for identity. Molecular Microbiology, 28(2):217–226, April 1998. https://doi.org/10.1046/j.1365-

2958.1998.00810.x PMID: 9622348

78. Michael Gaßel, Siebers Annette, Epstein Wolfgang, and Altendorf Karlheinz. Assembly of the Kdp com-

plex, the multi-subunit K+-transport ATPase of Escherichia coli. Biochimica et Biophysica Acta (BBA)—

Biomembranes, 1415(1):77–84, December 1998. https://doi.org/10.1016/S0005-2736(98)00179-5

79. Grass Gregor, Otto Markus, Fricke Beate, Haney Christopher J., Rensing Christopher, Nies Dietrich

H., et al. FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and

relieves iron stress. Arch Microbiol., 183(1):9–18, January 2005. https://doi.org/10.1007/s00203-004-

0739-4 PMID: 15549269

80. Ardin Arifah Chieko, Fujita Kazuyo, Nagayama Kayoko, Takashima Yukiko, Nomura Ryota, Nakano

Kazuhiko, et al. Identification and functional analysis of an ammonium transporter in Streptococcus

mutans. PLoS ONE, 9(9):e107569, September 2014. https://doi.org/10.1371/journal.pone.0107569

PMID: 25229891

81. Detsch Christian and Jörg Stülke. Ammonium utilization in Bacillus subtilis: transport and regulatory

functions of NrgA and NrgB. Microbiology, 149(11):3289–3297, November 2003. https://doi.org/10.

1099/mic.0.26512-0 PMID: 14600241

82. Chakravarty Shubham, Melton Cameron N., Bailin Adam, Yahr Timothy L., and Anderson Gregory G.

Pseudomonas aeruginosa magnesium transporter MgtE inhibits type III secretion system gene

expression by stimulating rsmYZ transcription. Journal of Bacteriology, 199(23), August 2017. https://

doi.org/10.1128/JB.00268-17 PMID: 28847924

83. Bartsevich Victor V. and Pakrasi Himadri B. Membrane topology of MntB, the transmembrane protein

component of an ABC transporter system for manganese in the cyanobacterium Synechocystis sp.

strain pcc 6803. Journal of Bacteriology, 181(11):3591–3593, 1999. https://doi.org/10.1128/JB.181.

11.3591-3593.1999 PMID: 10348875

84. Frı́as J E, Flores E, and Herrero A. Nitrate assimilation gene cluster from the heterocyst-forming cya-

nobacterium Anabaena sp. strain PCC 7120. Journal of bacteriology, 179(2):477–486, 1997. https://

doi.org/10.1128/jb.179.2.477-486.1997 PMID: 8990301

85. Hall J. A. and Pajor A. M. Functional characterization of a Na+-coupled dicarboxylate carrier protein

from Staphylococcus aureus. Journal of Bacteriology, 187(15):5189–5194, July 2005. https://doi.org/

10.1128/JB.187.15.5189-5194.2005 PMID: 16030212

86. Choi Seung-Hwan, Lee Kang-Lok, Shin Jung-Ho, Cho Yoo-Bok, Cha Sun-Shin, and Roe Jung-Hye.

Zinc-dependent regulation of zinc import and export genes by Zur. Nature Communications, 8(1),

June 2017. https://doi.org/10.1038/ncomms15812 PMID: 28598435

87. Kehres D. G., Lawyer C. H., and Maguire M. E. The CorA magnesium transporter gene family. Micro-

bial & Comparative Genomics, 3(3):151–169, January 1998. https://doi.org/10.1089/omi.1.1998.3.

151 PMID: 9775386

88. Lunin Vladimir V., Dobrovetsky Elena, Khutoreskaya Galina, Zhang Rongguang, Joachimiak Andrzej,

Doyle Declan A., et al. Crystal structure of the CorA Mg2+ transporter. Nature, 440(7085):833–837,

April 2006. https://doi.org/10.1038/nature04642 PMID: 16598263

PLOS ONE Geochemical and metagenomics study of a metal-rich, green-turquoise-coloured stream in the southern Swiss Alps

PLOS ONE | https://doi.org/10.1371/journal.pone.0248877 March 30, 2021 15 / 17

https://doi.org/10.1111/j.1574-6941.2003.tb01056.x
https://doi.org/10.1128/jb.174.1.116-121.1992
http://www.ncbi.nlm.nih.gov/pubmed/1530844
https://doi.org/10.1007/s00775-009-0568-7
http://www.ncbi.nlm.nih.gov/pubmed/19609573
https://doi.org/10.1128/jb.176.14.4430-4436.1994
https://doi.org/10.1016/S0143-4160(02)00125-2
http://www.ncbi.nlm.nih.gov/pubmed/12161109
https://doi.org/10.1046/j.1365-2958.1998.00810.x
https://doi.org/10.1046/j.1365-2958.1998.00810.x
http://www.ncbi.nlm.nih.gov/pubmed/9622348
https://doi.org/10.1016/S0005-2736(98)00179-5
https://doi.org/10.1007/s00203-004-0739-4
https://doi.org/10.1007/s00203-004-0739-4
http://www.ncbi.nlm.nih.gov/pubmed/15549269
https://doi.org/10.1371/journal.pone.0107569
http://www.ncbi.nlm.nih.gov/pubmed/25229891
https://doi.org/10.1099/mic.0.26512-0
https://doi.org/10.1099/mic.0.26512-0
http://www.ncbi.nlm.nih.gov/pubmed/14600241
https://doi.org/10.1128/JB.00268-17
https://doi.org/10.1128/JB.00268-17
http://www.ncbi.nlm.nih.gov/pubmed/28847924
https://doi.org/10.1128/JB.181.11.3591-3593.1999
https://doi.org/10.1128/JB.181.11.3591-3593.1999
http://www.ncbi.nlm.nih.gov/pubmed/10348875
https://doi.org/10.1128/jb.179.2.477-486.1997
https://doi.org/10.1128/jb.179.2.477-486.1997
http://www.ncbi.nlm.nih.gov/pubmed/8990301
https://doi.org/10.1128/JB.187.15.5189-5194.2005
https://doi.org/10.1128/JB.187.15.5189-5194.2005
http://www.ncbi.nlm.nih.gov/pubmed/16030212
https://doi.org/10.1038/ncomms15812
http://www.ncbi.nlm.nih.gov/pubmed/28598435
https://doi.org/10.1089/omi.1.1998.3.151
https://doi.org/10.1089/omi.1.1998.3.151
http://www.ncbi.nlm.nih.gov/pubmed/9775386
https://doi.org/10.1038/nature04642
http://www.ncbi.nlm.nih.gov/pubmed/16598263
https://doi.org/10.1371/journal.pone.0248877


89. Hudek L., Premachandra D. W., Webster A. J., and Bräu L. Role of phosphate transport system com-
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