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Abstract: Coenzyme Q10 (CoQ10 or ubiquinone) is a mobile proton and electron carrier of the
mitochondrial respiratory chain with antioxidant properties widely used as an antiaging health
supplement and to relieve the symptoms of many pathological conditions associated with mito-
chondrial dysfunction. Even though the hegemony of CoQ10 in the context of antioxidant-based
treatments is undeniable, the future primacy of this quinone is hindered by the promising features
of its numerous analogues. Despite the unimpeachable performance of CoQ10 therapies, problems
associated with their administration and intraorganismal delivery has led clinicians and scientists
to search for alternative derivative molecules. Over the past few years, a wide variety of CoQ10

analogues with improved properties have been developed. These analogues conserve the antioxi-
dant features of CoQ10 but present upgraded characteristics such as water solubility or enhanced
mitochondrial accumulation. Moreover, recent studies have proven that some of these analogues
might even outperform CoQ10 in the treatment of certain specific diseases. The aim of this review is
to provide detailed information about these Coenzyme Q10 analogues, as well as their functionality
and medical applications.

Keywords: coenzyme Q10; analogues; medical applications; antioxidant; therapies

1. Introduction

In aerobic organisms, oxygen is an essential molecule for energy production. This
process, even though fundamental for cell survival, can paradoxically be highly detrimental.
Excessive cellular metabolism and oxygen consumption leads irrevocably to the production
of reactive oxygen species (ROS). ROS are reactive molecules that represent the main source
of cellular oxidative stress due to their ability to oxidize DNA, proteins and lipids [1]. At
physiological levels, ROS are also important signaling molecules but when extreme levels of
ROS are reached, the consequences can be highly disruptive to cell homeostasis [2]. Several
diseases have been directly linked with ROS or the failure of its clearing mechanisms.
Among them, neurodegenerative diseases [3], cancer [4], diabetes [5] or inflammatory
bowel disease [6] are worth highlighting. Antioxidants, owing to their ability to counteract
free radicals and neutralize oxidants, have traditionally been used to treat or palliate the
symptoms of ROS-related diseases [7]. One of the best-known antioxidants is Coenzyme
Q10 (CoQ10). This ubiquitous quinone acts as an electron carrier in the mitochondrial
electron transport chain, mediating the transport of electrons from complex I or II to
complex III. Its reduced form, ubiquinol, also acts as an antioxidant and mostly elicits its
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function in cell and organelle membranes [8]. Coenzyme Q10 has extensively been used in
the medical field, ranging its therapeutic applications from neurodegenerative diseases
such as multiple system atrophy (MSA) to conditions such as Barth syndrome, heart failure,
fibromyalgia or insulin resistance [9].

In spite of the exceptional outcomes of CoQ10 therapies, the clinical use of this potent
antioxidant is hindered by its low bioavailability [10]. The oral bioavailability of CoQ10 is
compromised by the prominent hydrophobicity of its ten unit-long isoprenoid tail [11] as
well as its instability to light and thermolability [12]. In the aim to improve the intestinal
absorption of CoQ10, a wide variety of formulations have been developed. The majority
of them have used lipid-based vehicles for the intraorganismal distribution of CoQ10.
Liposomes, self-nanoemulsifying delivery systems (SNEDDs) and oleogels are some of
these innovative formulations, which although promising, are still far from being ideal.
The barrier of CoQ10 hydrophobicity has greatly been overcome by approaches such as
CoQ10 micellization or its encapsulation either on lipid-free nanoparticles or β-cyclodextrin
inclusion complexes [9].

Nevertheless, the delivery of therapeutically-effective Coenzyme Q10 doses remains
problematic. Several studies demonstrate that due to its hydrophobicity and large molecu-
lar weight, Coenzyme Q10 must be administered in substantially high doses for it to reach
organs like the kidneys, muscles or brain [13]. However, according to randomized human
clinical trials, the daily dose of Coenzyme Q10 should not exceed 1200 mg, despite the
fact that no severe toxic effect has been linked to the administration of larger doses of this
quinone. This might be a significant limitation for the effective application of CoQ10- based
treatments for several disorders.

This limitation was the main factor triggering the development of Coenzyme Q10
analogues with improved properties. These analogues were mostly created by introducing
modifications in the hydrophobic tail of CoQ10 (Idebenone, Mitoquinone, Decylubiquinone,
short-chain CoQ10) or by modifying the radicals of Coenzyme Q10’s quinone moiety (CoQ
with altered C6 position). They have been the subject of study for years now and their
features and their specific characteristics are generally well understood. Moreover, some
of them have proved effective for the treatment of numerous diseases, ranging from
neurodegenerative diseases to cardiovascular conditions or cancer. In this line, there
are several ongoing clinical trials aimed to evaluate the therapeutic efficacy of certain
analogues. All in all, there is currently a wide cohort of alternative molecules that might
outperform CoQ10 in terms of ease and efficacy for medical purposes.

2. The Relevance of Coenzyme Q10

CoQ10 is a versatile lipophilic molecule which participates in many functions in the
organism. CoQ10 is mainly required as a proton and electron carrier in the mitochondrial
respiratory chain (MRC) [14]. In mitochondria, CoQ10 is also required for pyrimidine
biosynthesis [15], as a lipophilic antioxidant [16], as a mitochondrial permeability transi-
tion pore (PTP) regulator [17] and for the maintenance of body temperature via its role
as a cofactor for the mitochondrial uncoupling proteins [18]. Moreover, CoQ10 has ex-
tramitochondrial activities such as being a recycler of oxidized antioxidants like vitamin
E [19], an inflammasome regulator [20] with anti-inflammatory effects [21], an autophagy
modulator [22], a regulator of the physicochemical properties of cell membranes [23] and as
a ferroptosis inhibitor [24]. All of these functions are possible due to its chemical structure
based on a benzoquinone ring conjugated to a ten-unit long isoprenoid chain, which makes
it a lipophilic/hydrophobic molecule with the ability to act as an efficient electron carrier
and a free radical scavenging antioxidant in cell membranes. CoQ10 can transport up to
two electrons, therefore it exists in three redox states: fully oxidized (ubiquinone), partially
reduced (semiquinone or ubisemiquinone) and fully reduced (ubiquinol). This variable
CoQ10 redox status plays an essential role in mitochondria, since it is as a key metabolic
sensor that fine-tunes mitochondrial supercomplexes’ configuration in order to match
the prevailing substrate profile [25]. Due to its extensive roles and versatility, Coenzyme
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Q10 has always been a promising therapeutic approach for the treatment of numerous
diseases. Nevertheless, the quest for an improved, more efficient, more bioavailable CoQ10
has triggered the development of highly interesting analogue molecules that are worth
looking into.

3. Most Relevant Coenzyme Q10 Analogues
3.1. Idebenone

Idebenone is a synthetic quinone with prominent similarities to the naturally occurring
CoQ10. Structurally, it bears the same quinone moiety than CoQ10 but is characterized by
the presence of a much shorter and less lipophilic tail. Strikingly, despite its analogy to
CoQ10, Idebenone is not synthesized by any organism and cannot be isolated from any
natural source [26]. It is a novel chemical compound developed in the 1980s by Takeda
Pharmaceuticals as part of a medicinal chemistry approach that aimed to generate phar-
macologically active entities [27]. The physicochemical properties of Idebenone mainly
differ from those of CoQ10 due to substantial differences between their tails. The natural
quinone presents a tail with 10 isoprenyl units (accounting for a total of 50 carbon atoms)
with a strong hydrophobic character. Contrastingly, Idebenone’s tail is only 10 carbon
atoms long and bears a terminal hydroxyl group that enables its polarity. These opposing
features explain the differences between the uptake of CoQ10 and Idebenone. While the
first is slowly absorbed from the intestinal tract (tmax of 6–8 h) [13], the synthetic quinone
presents a much faster intestinal absorption (tmax of 1–2 h) [28]. Moreover, Coenzyme
Q10 presents an elimination half-life of 33 h [13] whereas Idebenone is metabolized within
minutes of its administration and therefore, no Idebenone is detectable within plasma
after 1 h [29]. It has been proposed that Idebenone’s activity and efficacy resides in these
sub-metabolites, as proven by Giorgio et al. [30]. Even though CoQ10 and Idebenone share
multiple intracellular functions, there is compelling evidence to suggest that this analogue
exerts new functions. In the context of mitochondrial respiration, Idebenone has been
identified as an efficient substrate for complex II and III [31] and contrary to CoQ10, a
slow substrate for complex I. Moreover, it has been demonstrated that Idebenone can
inhibit the activity of complex I through the blockade of its Coenzyme Q10 binding pocket,
hence preventing the physiological reduction of the endogenous quinone [32,33]. It would
seem reasonable to believe that, given the importance of complex I, Idebenone would
compromise cellular homeostasis. Nevertheless, it has extensively been demonstrated
that in the presence of CoQ10, Idebenone activates alternative pathways to circumvent
dysfunctional complex I [33,34]. The best known of these pathways is mediated by the
cytoplasmic enzyme NADH-quinone oxidoreductase 1 (NQO1) [35]. This enzyme reduces
Idebenone upon entering the cell as part of a response to detoxify quinones and prevent
ROS production. Then, the reduced Idebenone enters mitochondria, where it is directly ox-
idized by complex III. By donating electrons from the cytoplasm to complex III, Idebenone
successfully negotiates complex I to complex III electron transport, whose impairment
would otherwise be fatal for cellular fitness [36].

Another of these interesting pathways is the glycerophosphate (G3PDH) shuttle,
which also provides mitochondria with energy from a non-mitochondrial source [37].
Interestingly, this mechanism has mostly been observed to be active in tissues with a high
energy demand. It has been reported that physiological levels of CoQ10 are required for
Idebenone to efficiently activate this metabolic pathway. However, the mechanism through
which Idebenone mediates such activation remains elusive [38].

The fact that Idebenone, in the presence of CoQ10, leads to a shift from complex
I-dependent respiration to alternative pathways either involving complex II-dependent
substrates or cytoplasmic substrates that are fed to complex III is of great interest given
that most mitochondrial disorders are caused by complex I dysfunction. In light of this
evidence, it would be reasonable to prioritize the application of Idebenone-based therapies
rather than CoQ10 treatments on patients of complex I-related diseases such as Leigh
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syndrome, mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes
(MELAS), Duchene Muscular Dystrophy or glaucoma [39,40].

Apart from its implication on the mitochondrial respiratory chain, Idebenone functions
as a potent intracellular antioxidant in vitro and in vivo [41,42]. Several studies on the
topic have proved the efficacy of this synthetic quinone against ROS-induced toxicity but
there is still no consensus as to which working concentration of Idebenone is needed for an
effective protection against oxidative stress. It is relevant to point out that in order to elicit
its antioxidant or electron donor activity, Idebenone must be in its reduced hydroquinone
form [43]. As previously mentioned, the cytoplasmic reductase NQO1 mediates Idebenone
activation upon its entry into the cell. Unlike other quinones, Idebenone does not require the
activity of mitochondrial respiratory complexes for its activation. This feature is especially
convenient for the treatment of mitochondrial disorders’ patients, whose mitochondria are
severely impaired.

On top of this, the ability of Idebenone to protect complex II and III from lipid
peroxidation damage is worth mentioning. It is widely known that lipid peroxidation-
derived changes on the mitochondrial membrane leads to the impairment of the activity of
complexes II, III and V. Recent studies have demonstrated that in this context, Idebenone
treatment not only protected the function of complex III [44], with which it interacts, but
also that of complex II [45]. This protective characteristic was observed in human tissue
cultures, further reinforcing the clinical interest on Idebenone as a therapeutic entity.

In fact, Idebenone has been tested as a treatment for several mitochondrial diseases.
The therapeutic efficacy of this CoQ10 analogue is especially remarkable on Leber’s heredi-
tary optic neuropathy (LHON). This maternally inherited disease is provoked by mutations
on the mitochondrial DNA (mtDNA) that lead to impairment of complex I and thus to
retinal ganglion cells’ death. For its antioxidant properties, as well as its ability to act as an
electron carrier, overcoming mitochondrial complex I deficiency by transferring electrons
directly to mitochondrial complex III, Idebenone is the most adequate antioxidant to treat
LHON patients [46]. Indeed, as reported in a recent clinical trial with a large cohort of
patients, Idebenone succeeded in promoting the recovery of visual acuity in most of the
patients [47]. Moreover, it was observed that the beneficial effect of Idebenone persisted
despite discontinuation of the treatment [48].

Apart from its unparalleled therapeutical performance on LHON patients, this syn-
thetic quinone stands out for its efficacy as a treatment for Friedreich ataxia (FRDA). From
1990 and up to the present, several clinical trials have tested the impact of Idebenone
supplementation on patients of FRDA. These studies have proven that the quinone ame-
liorates patients’ conditions through the improvement of neurological function (reduced
general weakness, improvement in fine movement and speech, and decreased difficulty
in swallowing) [49] and cardiac hypertrophy (reduction in interventricular septal wall
thickness, left ventricular posterior wall thickness, or left ventricular mass index) [50,51].
Idebenone has been widely tested in clinical trials for several years. Its main relevance
is in FRDA [52–55], Duchenne muscular dystrophy [56–58] and multiple sclerosis [59,60],
all of them with promising results. Currently, Idebenone has passed phase III and new
applications in clinical trials are rising, such as Parkinson’s disease [61], LHON [62] or
MELAS syndrome [63]. These clinical trials confirm the safety and efficacy of Idebenone,
particularly when administered at higher doses [27].

The therapeutic spectrum of this polar CoQ10 analogue also comprises conditions
such as pulmonary fibrosis [64], dementia [65], MELAS [66] and glaucoma [67].

All in all, in addition to the functions it shares with CoQ10 (antioxidant capacity and
the ability to donate electrons to complex III), Idebenone presents an impressive repertoire
of features of great medical interest. For this reason, it should be regarded as a promising
alternative, or even improvement, to conventional CoQ10 therapies.
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3.2. Mitoquinone

Mitoquinone, also named MitoQ, is another of the more widespread CoQ10 ana-
logues [68]. This mitochondrial-targeted antioxidant was developed in the 1990s by co-
valently attaching ubiquinone or CoQ10 to the lipophilic decyltriphenylphosphonium
(dTPP) cation through a 10-carbon aliphatic chain [69]. The most relevant feature that
differentiates MitoQ from other CoQ10 analogues is its ability to selectively concentrate
on the mitochondrial membrane. This remarkable capacity is owed to the dTPP cation,
which crosses the mitochondrial lipid bilayer and accumulates several-hundred fold in the
mitochondrial matrix driven by the large potential of the organelle’s inner membrane [70].
Once in the matrix, the ubiquinone moiety of MitoQ is reduced by complex II yielding
ubiquinol, which acts as a potent antioxidant [71,72]. This ubiquinol moiety is constantly
recycled to the active antioxidant by the respiratory chain. Moreover, the precise localiza-
tion of MitoQ in the matrix-facing surface of the inner membrane favors the ability of this
molecule to protect the components of the mitochondrial electron transport chain (ETC)
from lipid peroxidation [73]. Even though it has been observed that Mitoquinone mainly
reacts with lipid peroxidation products, further research is required to define its exact mode
of action [74]. Another interesting asset of MitoQ is its fast uptake from the circulation into
cells following oral or intravenous (IV) administration [75]. This enhanced bioavailability
with respect to CoQ10 has boosted the clinical application of the synthetic quinone, which
has become one of the most recurrent alternatives to traditional CoQ10 therapies.

Even though MitoQ was initially conceived to protect the mitochondrial membrane
from lipid peroxidation [73], it is currently used to treat a broad range of conditions.
For instance, studies have demonstrated that MitoQ not only restores the mitochondrial
membrane potential in heart failure induced by pressure overload but also mitochondrial
respiration and calcium retention capacity. On top of this, 14-week treatment with MitoQ
reduced the ROS over-production associated with this syndrome [76]. Still in the field
of cardiovascular diseases (CVD), MitoQ has been tested as a therapy for hypertension
in humans. According to the authors of this study, 6-week supplementation with MitoQ
improved vascular endothelial function, reduced aortic stiffness and decreased oxidized
LDL (a circulating marker of oxidative stress) in middle-aged or older adults with a
hypertension background. In light of these observations, the authors claim that MitoQ may
be an effective treatment for improving vascular function and thus decreasing the risk of
CVD [77].

However, it is important to point out that the applications of this CoQ10 analogue go
way beyond vascular conditions. In fact, MitoQ has been found to be extremely effective for
the treatment of diabetic kidney disease (DKD). The kidney protective function of MitoQ
has been linked to (1) its ability to restore mitophagy via Nrf2-mediated regulation of
PINK transcription; (2) its reduction of mitochondrial oxidative stress; and (3) its capacity
to ameliorate aberrant mitochondrial dynamics, which would otherwise trigger tubular
injury and apoptosis attenuation under high glucose conditions [78].

Interestingly, apart from preserving the kidneys from damage, MitoQ has been re-
ported to protect the liver through several mechanisms. In alcoholic fatty liver disease
MitoQ has been observed to successfully prevent ethanol-induced oxidant-damage and
liver steatosis through a mechanism involving ROS/reactive nitrogen species (RNS) scav-
enging and the suppression of Hypoxia-inducible factor 1-alpha (HIF1α) activation [79].
Furthermore, according to the authors of a recent clinical trial, MitoQ decreased necroin-
flammation in the liver of chronic Hepatitis C patients, as indicated by the significant
reduction of alanine transaminase (ALT) and aspartate aminotransferase (AST) reported in
their blood’s plasma [80].

Neurodegeneration is undoubtedly one of the medical fields at which MitoQ has been
most extensively studied due to its promising therapeutic potential. In vitro studies have
proven that MitoQ protects neuronal models of Parkinson’s disease (PD) against 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced behavioral deficit, tyrosine hydroxylase
(TH)-positive neuronal loss, depletion of striatal dopamine, inactivation of mitochondrial
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aconitase, neuronal apoptosis and cell death [81]. Additionally, application of MitoQ on a
PD-zebrafish model increased mitochondrial function and improved antioxidant balance
as well as neurotransmitter levels in the fish [82]. This evidence suggests that MitoQ could
be a highly effective treatment for Parkinson’s disease patients. This mitochondria-targeted
quinone also seems to be of great interest for therapeutic applications on Alzheimer’s
disease (AD). Indeed, MitoQ-attenuated β-amyloid (Aβ)-induced neurotoxicity in cortical
neurons and prevented increased production of reactive species and loss of mitochondrial
membrane potential in them [83]. Moreover, exposure to MitoQ increased lifespan and
promoted the healthspan of transgenic Aβ-overexpressing C. elegans nematodes [84]. On
top of this, the synthetic antioxidant prevented cognitive decline as well as oxidative stress,
Aβ accumulation, astrogliosis, synaptic loss, and caspase activation in a mouse model of
AD [83]. All in all, it would seem reasonable to support the use of MitoQ as a therapy
for diseases involving oxidative stress and metabolic failure, like AD. As a matter of fact,
there is compelling evidence to suggest that MitoQ-based treatments would be highly
beneficial for Huntington’s disease [85], amyotrophic lateral sclerosis [86] and traumatic
brain injury [87] patients.

There are countless clinical trials on humans related to mitoquinone: Parkinson
disease [88], multiple sclerosis [89,90], metabolic dysfunction in asthma [91], aging [92],
hepatitis C [93] and non-alcoholic fatty liver disease [94]. Currently, some of them are still
ongoing. Interestingly, the efficacy of this CoQ10 analogue is variable, being successful for
the treatment of certain conditions but totally ineffective in others.

MitoQ is unquestionably a promising antioxidant with a wide variety of potential
clinical applications. However, the molecular mechanisms through which it might elicit its
therapeutic functions are still not completely understood. Further research is required to
fully comprehend the versatility of this quinone and to possibly unravel some of its still
undisclosed features.

3.3. Decylubiquinone

Decylubiquinone (DUb), 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone, is a syn-
thetic CoQ10 analogue at which the isoprenoid side chain of CoQ10 is substituted by a
saturated decyl hydrocarbon chain that favors its passive localization to the mitochondrial
membranes [95]. This modification is critically involved in the antioxidant or pro-oxidant
properties of the ubiquinone analogue [96]. Like CoQ10, DUb is able to take electrons
from complex I to be reduced into decylubiquinol, which subsequently transfers electrons
to complex III. Hano et al. [97] showed the effect of DUb on the steady state kinetics of
complex I in bovine heart mitochondria concluding that the binding of DUb induced a
conformational change in the shape of the binding site, which allows the binding of a
quinone with a long isoprenoid side chain. DUb may be used favorably as an alternative
to CoQ10 because the interaction of DUb with complex I is more similar to that between
endogenous ubiquinone and complex I [98].

Jayne E. et al. [99] studied the effects of DUb on the activities of mitochondrial com-
plexes in rat brain synaptosomes. They concluded that DUb can enhance the activities
of supercomplexes such as I/III and II/III but is not determinant in the activities of the
individual complexes, I, III, and IV, or in the rate of oxygen consumption, which was com-
pletely unaffected by DUb. The precise mechanism by which DUb increases the activities
of supercomplexes [100] remains unknown. Jayne E. et al. propose that the addition of
decylubiquinone may increase the rate of electron transfer from complex I to complex III,
resulting in increased complex I/III-specific activities. Although there is little evidence
on the involvement of complex II in supercomplexes, a study has suggested that complex
II can associate with complexes III and IV or with complexes I, III, and IV to form super-
complexes [101]. In fibroblasts derived from Leber Hereditary Optic Neuropathy (LHON)
harboring the m.11778G > A mutation, DUb highly decreases reactive oxygen species (ROS)
from affected and control cells [102].
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Although DUb is known for being a CoQ10 analogue and presumably keeps its
beneficial effects, it also shows new effects as a mitochondrial PTP modulator [96]. In
cancer research, the combination treatment of DUb, an X-linked inhibitor of the anti-
apoptotic protein (XIAP) and EDL-360 significantly inhibited glioma growth by inducing
apoptosis, which shows that DUb has anticancer activity [103]. Furthermore, combination
treatment of DUb with thialysine significantly suppressed the viability of human acute
leukemia Jurkat T cells [104]. DUb is also capable of inhibiting breast cancer growth and
metastasis by suppressing tumor-induced angiogenesis. DUb suppresses angiogenesis via
the ROS/p53/BAI1 signaling pathway in vascular endothelial cells [105]. The findings
indicate that DUb could exert an important effect on cancer progression and treatments
associated with the inhibition of angiogenesis.

Keeping in mind both effects, antioxidant and PTP modulators, Murad et al. [106]
showed an attenuation on the levels of systolic blood pressure, LDL-cholesterol and mal-
ondialdehyde, and an increase in HDL cholesterol levels in stroke-prone spontaneously
hypertensive (SHRSP) in a rat model. As a result, DUb can also be considered a new
potential antihypertensive, hypolipidemic and antioxidant therapeutic agent on the preven-
tion and treatment of diseases linked to oxidative stress. Currently, there are no ongoings
clinical trials despite decylubiquinone’s presumed potential.

3.4. Plastoquinone and SKQ1

There are plenty of known antioxidants capable of removing ROS from mitochondria;
however, most of them can also act as prooxidants depending on the dosage and the
circumstances [107,108]. For this reason, Antonenko et al. [109] started the search for a
therapeutically useful, rechargeable antioxidant operating without risk of prooxidant side
effects. Plastoquinone was their starting molecule. This ubiquinone analogue operates in
the chloroplast electron transfer chain as an antioxidant, while the electrons in the MRC
are served by ubiquinone. The presence of an exclusive quinone for ROS removal in the
chloroplast emphasizes the potent antioxidant effect of plastoquinone [110]. The presence
of this chloroplast-exclusive ubiquinone remarks the elevated oxidative stress present
in the chloroplast [111]. This high oxidative stress present in the chloroplast is mainly
caused by the high light absorbance by chlorophyll [112] and the acidic environment of the
thylakoid [113], both elements enhance the ROS production in the cell.

To make plastoquinone able to penetrate mitochondria, Antonenko et al. synthesized
several plastoquinone derivatives combined with various penetrating ions and tested them
in model membranes, mitochondria, cells and organisms. These compounds were named
after Skulachev Ion and Quinone (SkQ) [114]. Cationic plastoquinone derivatives penetrate
planar phospholipid membrane [115], only accumulate in mitochondria [116], and can be
reduced by complex III in the MRC [109]. Nevertheless, the antioxidant mechanisms of SkQ
have not been described in full detail. For instance, the exact mechanism through which
SkQ1 interferes with the superoxide-producing sites of the MRC or other sources of ROS
remains elusive. Two principal hypotheses have been proposed to explain the antioxidant
ability of SkQ1 [117]. One of them is based on the fatty acid co-mediated uncoupling and
has a strong support in bioenergetics [118], the other suggests an ion-pairing mechanism
for administered drugs and endogenous compounds [119].

In isolated mitochondria, among all synthetized SkQs, SkQ1 was found to operate as
a very potent antioxidant at lower concentrations protecting cardiolipin against oxidation
by OH-. Although SkQ1 showed strong prooxidant effects at higher concentrations, the
threshold between antioxidant and prooxidant concentrations for SkQ1 is as wide as about
1000, whereas for its ubiquinone-containing analogue MitoQ it was less than 2 under
the same conditions [120]. In cell cultures, SkQ1 inhibited H2O2-induced apoptosis and
mitochondrial fragmentation, and stimulated mitochondrial fusion [121].

Nowadays, SkQ1 is being used in many fields: inflammation [122,123], wound heal-
ing [122,124], tumor growth suppression [125], Alzheimer’s disease [126], fertility [127], ag-
ing [128,129], immunoregulation [130], ischemia [131] and mitochondrial diseases [132,133]
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among others. All of them are related with mitochondrial function and ROS homeostasis.
It is important to highlight the importance of SkQ1 as an anti-aging molecule or gero-
protector since it has been reported to increase lifespan of several animal models from
crustaceans up to mice [134,135]. SkQ1 acts mainly by decelerating the age-related decay
of the immune system as an involution of thymus and spleen follicles and a reduction of
the ratio of lymphocytes to neutrophils in blood [116]. However, the effect on the lifespan
is only visible in non-sterile vivariums. In mice, the effect of SkQ1 is also accompanied by
significantly slowing down most age-related processes such as osteoporosis, sarcopenia or
loss of vision [135,136].

There are several clinical trials using SkQ1 to treat dry-eye syndrome [137–139]. This
pathology affects around 20% of global population, with a higher incidence in older
people [140]. Dry-eye syndrome disease is a chronic condition of the corneal surface marked
by persistent symptoms of irritation or burning that can cause inflammatory damage to
the cornea and conjunctiva if untreated. Although it is considered a multifactorial disease,
one study reached phase 3, indicating that SkQ1 is safe and efficacious for the treatment of
dry eye signs and symptoms [141].

3.5. C6 Position

In the CoQ10 molecule, the antioxidant activity is believed to originate at the quinone
nucleus, which is the reason why keeping the quinone nucleus and introducing some hy-
drophilic groups at the C6 position could increase its antioxidant effects and bioavailability.
In order to better understand the structure reactivity relationship of CoQ10 analogues as
antioxidants and to find some potential therapeutic agents for oxidative stress-related dis-
eases, Wang et al. [142] synthesized a series of 2,3-dimethoxy-5-methyl-1,4- benzoquinones
substituted at the C6 position with various methoxy-, hydroxyl- and heterocyclic groups,
and looked for their antioxidant effects against 2,2-diphenyl-1- picrylhydrazyl (DPPH)
in vitro. They also established a protocol for the synthetic synthesis of several novel CoQ10
analogues by C6 substitution. Among CoQ10 and its analogues tested, those containing
piperazine and morpholine at the C6 position of CoQ10 exhibited higher antioxidant activi-
ties than those containing hydroxyalkyl or alkoxy-substituents at the same position. Their
best antioxidant was C6 N-benzoylpiperazine CoQ10 that showed better radical scavenging
activities than standard CoQ10. Furthermore, C6 piperazine CoQ10 was highly soluble in
water, meaning that this compound would have a more potent antioxidant activity than
CoQ10 in hydrophilic environments.

These results confirm that the rational design of CoQ10 analogues as novel antioxidants
is possible and efficient. These CoQ10 analogues are just the tip of the iceberg for the
development of potential therapeutic antioxidants to treat oxidative stress-related diseases.
Unluckily, Wang et al. did not follow their research on these compounds.

3.6. Short Chain Coenzyme Q10

Apart from Idebenone, many kinds of CoQ10 analogues with distinct lengths of the
isoprenoid side-chain lengths exist in nature. In humans and most higher organisms, CoQ10
is the only quinone acting at the ETC [143]; however rodents possess CoQ9 as the main
quinone analogue together with a small amount of CoQ10 [144]. Aerobic bacteria such as
Escherichia coli and yeast as Saccharomyces cerevisiae have CoQ8 and CoQ6 as their main
analogues respectively [143]. On the other hand, CoQ with shorter isoprenoid side chains
than CoQ5 are barely observed as main quinones in organisms. Nevertheless, they have
been frequently used as intermediaries during in vitro respiratory chain enzyme studies
rather than endogenous CoQ because of their higher water solubility.

Short chain quinones have been studied as therapeutic molecules due to their ability
to reduce oxidative stress [145], enhance mitochondrial electron transfer [34], and modulate
apoptosis [146]. Kagan et al. [147] revealed a correlation between the isoprenoid side
chain length and antioxidant potential of the CoQ10 analogues, in which the antioxidant
efficiency of the CoQ10 analogues increases as the length of their chain shortens. However,
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it has been reported that some CoQ with a shorter isoprenoid side chain than CoQ4 could
be cytotoxic to cultured mouse embryonic myocardial cells [148] and induce the apoptosis
of the human leukemia B-cell line BALL-1 [149]. Moreover, there is evidence that the
shortest chain CoQ10 analogues, such as CoQ2 or CoQ3, are inhibitors of complex I [150]
and promoters of ROS production in the MRC [151], since they are complex I binding
site competitors and are very inefficient in the NADH electron transfer process [152]. In
contrast, there are no reports about the toxicity of long length CoQ such as CoQ11, CoQ12,
or CoQ13.

The main quinone cellular metabolism pathway requires two consecutives steps:
First NADPH:cytochrome P450 reductases generate semiquinones by incomplete, one-
electron reduction [153]. However, these semiquinones are mostly unstable and prone
to generate ROS [154]. Then NQOs, as seen in the Idebenone section, complete the two-
electron reduction of quinones and their derivates [154]. The whole process synthetizes
hydroquinones, also known as quinols, without the risk of ROS release. Furthermore,
the relevance of NQOs is based on their capacity to mitigate the noxious effect of several
toxins and prooxidants [155]. For instance, NQOs have been shown to be involved in
the reduction of several drugs such as quinone epoxides, aromatic nitro and nitroso
compounds, azo dyes and Cr(VI) compounds [156], with NQO1 showing its highest
specificity towards quinones. With respect to benzoquinones, NQOs are able to efficiently
reduce CoQ0 [157] and CoQ1 [145]. Erb M et al. [34] described that effectiveness of short
chain quinones in restoring the mitochondrial function as strongly being dictated by the
hydrophilicity/lipophilicity of the entire molecule rather than particular structural features.
These parameters determine the reduction by NQO1, the influence levels of lipid peroxides
by their antioxidant function and finally govern their interaction with the ETC.

In order to find novel treatment for mitochondria diseases, Chan T et al. [145] used
CoQ1 and a rotenone-cellular-based model to study the molecular mechanism of cell death
by complex I inhibition. They found that CoQ1 was able to prevent rotenone-induced
hepatocyte cytotoxicity but also restore ATP levels, mitochondrial membrane potential
and respiration. This observation suggested that the CoQ1 could reactivate the ETC after
severe mitochondrial damage. The CoQ1 cytoprotection may result from its reduction by
NQO1 using NADH to form Q1H2. This reoxidation of NADH may restore cellular redox
potential and prevents cytotoxicity. They also noted that Q1H2, when formed, could act
as an electron bypass and reduce complex III to promote ATP formation, however this
effect was not correlative with higher concentrations, in contrast to the antioxidant capacity.
In addition, the superoxide radicals formed by complex I may be scavenged by Q1H2.
Overall, the cytoprotective effect of CoQ1 was attributed to its ability to act as an electron
acceptor and/or an antioxidant rather than by acting as an electron bypass to restore ATP.
No cytoprotection occurred with NQO1-inactivated hepatocytes.

Erb M et al. [34] performed a large quinone screening with 70 related quinone com-
pounds including idebenone, decylubiquinone and several short-chain quinones. These
compounds were tested for their ability to rescue ATP levels in three different cell lines:
human myoblasts 9Te, rat myoblast L2 and immortalized human hepatocytes HepG2.
They showed that structural modifications to the side chains determining the physico-
chemical properties of the molecules were influencing their ATP rescue activity, rather
than modifications in the quinone moiety itself. Although previous studies had remarked
that the ATP rescue activity is dependent on reduction by NQO1 in cells [36], no clear
correlation between the reduction by NQO1 in a cell-free assay system and cellular ATP
rescue activity was found. Some compounds successfully activated NQO1, however they
failed to protect against rotenone-induced loss of ATP. On the other hand, some compounds
showed significant ATP-rescue activity in cells but hardly any reduction by NQO1 in cell
free assays. This discrepancy suggested that other parameters in addition to reduction
by NQO1 also influence the ability to rescue ATP levels under conditions of impaired
complex I. Depending on the hydrophilicity/lipophilicity balance, prooxidant tendency
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and dosage, they concluded that just a few short-chain quinones could be beneficial for
ROS/mitochondrial impairment-related diseases.

Opposed to the classic antioxidant perspective of short chain quinones, Takahashi
T et al. [146] focused on their ability to induce apoptosis. They observed different toxicities
of each quinone chain length against HeLa cells and they stablished the following rank of
potency: CoQ0 >> CoQ3 ≈ CoQ1 ≥ CoQ2 >> CoQ4. CoQ0 was the most toxic compound
to HeLa cells among the compounds tested. The study showed that the reduction of the
short chain of CoQ by NQO1 could induce apoptosis of HeLa cells by ROS and p53 in
an independent manner; however, the exact mechanism supporting this process is still
unknown.

Interestingly, a recent study has proven that CoQ4, at lower doses than those used
by Takahashi et al., functions as Coenzyme Q10 in the mitochondrial respiratory chain of
patients with ubiquinone deficiency [158]. This implies that CoQ4 could be a promising
therapeutic alternative to CoQ10. To further reinforce this, it has been observed that dietary
supplementation with CoQ4 succeeded to rescue a Drosophila model of Coenzyme Q10
deficiency [159].

3.7. EPI-743/Vatiquinone

EPI-743 or vatiquinone is a para-benzoquinone analog resulting from the combination
of both CoQ10 and vitamin E molecules that presents improved pharmacologic properties
and therapeutic efficacy than its constituents alone. In vitro, EPI-743 has been shown
to be approximately one thousand- to ten thousand-fold more potent than CoQ10 or
idebenone in protecting mitochondria during extreme prooxidant environments [160].
EPI-743 is considered safe, orally absorbed and crosses the blood–brain barrier [160]. Its
biological activity depends on the intrinsic properties of the para-benzoquinone moiety
to undergo a reversible two electron cycling reaction [160]. This molecule, also known
as α-tocotrienol quinone, exerts its effect on the activity modulation of oxidoreductases,
in particular NQO1, resulting in increased cellular glutathione (GSH) concentration and
improvement of the REDOX status. In addition, EPI-743 may be able to regulate the gene
expression profile of antioxidant mechanisms, including GSH biosynthesis [161]. GSH
plays a key role in the cellular free radical defense and is mainly distributed across the
cytoplasm [162]. GSH also acts on various organelles, including peroxisomes, the nuclear
matrix, endoplasmic reticulum and mitochondria [163]. Recently, Kahn-Kirby A. et al.
remarked the relevance of EPI-743 demonstrating that it is able to regulate the balance
between glutathione peroxidase 4 (GPX4) and 15- lipoxygenase 15 (15-LO) [164]. The loss of
this equilibrium promotes the activation of the ferroptosis pathway, which is a form of iron-
and lipid-dependent regulated cell death associated with GSH depletion and production of
lipid peroxides by lipoxygenase enzymes [165]. The ferroptosis process is directly linked to
several disorders such as epilepsy [166], mitochondrial pathologies [167,168], cancer [169]
and neurodegeneration [170].

EPI-743 has been successfully tested in various clinical trials, principally focused on
mitochondrial diseases [171]. In one study with LHON patients [172], EPI-743 treatment
arrested disease progression and reversed vision loss in all but one of five treated patients.
In LHON patients, EPI-743 counters disease progression and improves quality of life by
increasing the GSH cellular pool [173,174]. In Leigh syndrome patients, administration of
EPI-743 reduced hospitalization and adverse events of the pathology [175–177]. Further-
more, EPI-743 has passed phase 2 trials in Parkinson’s disease [178], Rett syndrome [179]
and Pearson’s syndrome [180]. Currently, EPI-743 is gaining relevance for the treatment of
epilepsy [164,166] and Friedreich ataxia, being responsible for a significant improvement
in neurological function and an arrest of disease progression [167,181,182].

Taking together all the positive results, EPI-743 is presented as a promising molecule
for many mitochondrial-related diseases. However, most of the clinical assays rely on a
small number of patients due to the rarity of these pathologies. Despite an equal adminis-
tration of EPI-743, there is a high variability in response between patients due to individual



Antioxidants 2021, 10, 236 11 of 20

differences in drug absorption and metabolization [161]. In addition, some authors noted
that EPI-743’s co-administration with other palliative drugs can alter in some way its final
activity [183].

4. Conclusions

Overall, the beneficial effects of CoQ10 on human health and disease treatment are
well known. However, there is growing interest among the scientific community for
CoQ10 analogues and their presumably optimized performance in antioxidant therapies.
In this review we have outlined the chemical improvements that successfully enhance
CoQ10 bioavailability: shortening of its isoprenoid chain (idebenone and short chain CoQ
analogues); addition of specific radicals to promote its mitochondrial accumulation (mito-
quinone); modification of natural analogs to boost their antioxidant effect (plastoquinone);
modification of the quinone ring (C6 modifications); and introduction of changes on its
isoprenoid chain (decylubiquinone) to diversify its biology, its hybridization with other
antioxidants and to enhance its potency (EPI-743). Taken together, these synthetic CoQ10
analogues open the door to new and improved therapies for conditions ranging from
mitochondrial diseases to cancer.

All the reviewed analogues are summarized in Table 1 and Figure 1.
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Table 1. Coenzyme Q10 analogues and their applications.

Coenzyme Q10 Analogue Medical Applications Level of Study References

Idebenone

LHON Approved for patients’ treatment [46–48]

Friedreich ataxia Patients’ treatment [27,49–51]

Pulmonary fibrosis Tested in vivo [64]

Dementia Patients’ treatment [65]

MELAS Patients’ treatment [66]

Glaucoma Patients’ treatment [67]

Mitoquinone

Heart failure Tested in vivo [76]

Hypertension Tested in vivo [77]

Diabetic kidney disease Tested in vivo [78]

Alcoholic fatty liver disease Tested in vivo [79]

Hepatitis C Patients’ treatment [80]

Parkinson’s disease Patients’ treatment [81,82]

Alzheimer’s disease Tested in vivo [83,84]

Huntington’s disease Tested in vivo [85]

Amyotrophic lateral sclerosis Tested in vivo [86]

Traumatic brain injury Tested in vivo [87]

Decylubiquinone
LHON In vitro studies [102]

Cancer Tested in vivo [103–105]

Hypertension Tested in vivo [106]

SkQ1

Inflammation Tested in vivo [122,123]

Wound healing Tested in vivo [122,124]

Tumor growth suppression In vitro studies [125]

Alzheimer’s disease Tested in vivo [126]

Fertility Tested in vivo [127]

Aging Tested in vivo [128,129]

Immunoregulation Tested in vivo [130]

Ischemia Tested in vivo [131]

Dry eye treatment Patients’ treatment [140,141]

CoQ10 with modifications on C6 ROS related diseases - -

Short-Chain CoQ10
CoenzymeQ10

deficiency-related syndromes Tested in vivo [145]

Apoptosis modulation In vitro studies [146]

EPI-743

LHON Patients’ treatment [172]

Leigh syndrome Patients’ treatment [175,177,184]

Parkinson’s disease Patients’ treatment [178]

Rett syndrome Patients’ treatment [185]

Pearson’s syndrome Patients’ treatment [180]

Epilepsy In vitro studies [164]

Friedreich’s ataxia Patients’ treatment [167,181,182]
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Abbreviations
ROS Reactive Oxygen Species
CoQ10 Coenzyme Q10
MRC Mitochondrial respiratory chain
MSA Multiple system atrophy
NQO1 Cytoplasmic enzyme NADH-quinone oxidoreductase 1
G3PDH Glycerophosphate
MELAS Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes
LHON Leber’s hereditary optic neuropathy
mtDNA Mitochondrial DNA
FRDA Friedreich Ataxia
dTPP Decyltriphenylphosphonium
ETC Electron transport chain
IV Intravenous
CVD Cardiovascular disease
DKD Diabetic Kidney Disease
RNS Reactive Nitrogen Species
HIF1α Hypoxia-inducible factor 1-alpha
ALT Alanine transaminase
AST Aspartate aminotransferase
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
TH Tyrosine hydroxylase
PD Parkinson Disease
AD Alzheimer Disease
Aβ β-amyloid
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