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Histological analysis to tissue samples is elemental for diagnosing the risk and severity of ovarian cancer. The commonly used
Hematoxylin and Eosin (H&E) staining method involves complex steps and strict requirements, which would seriously impact
the research of histological analysis of the ovarian cancer. Virtual histological staining by the Generative Adversarial Network
(GAN) provides a feasible way for these problems, yet it is still a challenge of using deep learning technology since the amounts
of data available are quite limited for training. Based on the idea of GAN, we propose a weakly supervised learning method to
generate autofluorescence images of unstained ovarian tissue sections corresponding to H&E staining sections of ovarian tissue.
Using the above method, we constructed the supervision conditions for the virtual staining process, which makes the image
quality synthesized in the subsequent virtual staining stage more perfect. Through the doctors” evaluation of our results, the
accuracy of ovarian cancer unstained fluorescence image generated by our method reached 93%. At the same time, we evaluated
the image quality of the generated images, where the FID reached 175.969, the IS score reached 1.311, and the MS reached
0.717. Based on the image-to-image translation method, we use the data set constructed in the previous step to implement a
virtual staining method that is accurate to tissue cells. The accuracy of staining through the doctor’s assessment reached 97%. At

the same time, the accuracy of visual evaluation based on deep learning reached 95%.

1. Introduction

Computer-aided medical diagnosis is a hot topic nowadays.
In recent years, researchers devoted to the issue in this direc-
tion and achieved excellent research outcomes. Some studies
[1-5] established spiking neural networks to simulate biolog-
ical metabolic processes, infer the final physiological calcula-
tion results, and obtain the final diagnosis solution. Some
studies [6-10] rely on the idea of deep learning to build a
deep neural network model to complete the diagnosis of
patients based on the characteristics of various medical data.
The above methods have achieved extraordinary accuracy
and efficient treatment for specific medical domain.
However, few studies have focused on the preparation and
labeling of medical data. At present, traditional medical data

preprocessing methods can no longer meet the needs of intel-
ligent diagnosis with large data volumes.

The ovarian cancer is a global problem, is typically diag-
nosed at a late stage, and has no effective screening strategy
[11]. Microscopic imaging of tissue samples is the basis for
subsequent diagnosis and prognosis of cancer. H&E staining
and labeling of tissue samples can better help locate suitable
cancer tissues and perform subsequent analysis, diagnosis,
and prognosis. Therefore, strict control of tissue section stain-
ing standards will significantly enhance the final diagnosis
and prognosis results. However, the traditional histopatho-
logical section staining process involves many standard oper-
ating steps, and each technician must strictly adhere to these
gold standards. These methods are often time-consuming
and laborious and often have higher requirements. The
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histological tissue appearance may assume different color
intensities depending on the staining process, operator ability,
and scanner specifications [12]. The above problems will
seriously harm the analysis of the disease pathology of the
tissue and the events of the disease prognosis. Many coping
strategies have been established to improve the success rate
and quality of tissue staining in clinical trials. Massimo et al.
[12] presented a novel fully automated stain separation and
normalization approaches for Hematoxylin and Eosin stained
histological slides to improve the contrast between histologi-
cal tissue and background and preserve local structures with-
out changing the color of the lumen and the background.
Mario et al. [13] used experiments to clarify Eosin-based fluo-
rescence spectroscopy can be used to directly examine H&E
stained tissue slides. Relevant areas can be imaged and spectral
analysis done to obtain objective data. The above method does
solve the problems of low accuracy and poor effect in tradi-
tional staining to a certain extent. However, the first method
still cannot avoid the strict and complicated processing steps
of the traditional method. Although the second method uses
a more novel method of labeling pathological tissues, the use
of H&E staining analysis is still the mainstream processing
method for pathology research today. The popularization
and promotion of this program are still a long process.

We propose to construct a computationally staining and
labeling algorithm for H&E staining of the ovarian cancer
tissue sections. This method can effectively avoid the compli-
cated steps of H&E staining of traditional ovarian cancer
tissue sections and make up for the diagnosis tension caused
by the lack of data. Rivenson et al. [14] proposed a virtual
staining method for pathological sections based on deep
learning. They placed the fresh tissue section on a fluores-
cence microscope to observe the autofluorescence imaging
of the tissue sample and then stained and labeled the sample
to obtain the corresponding stained image. After repeating
the above work, a huge data set is constructed, and then, a
deep learning model is performed to complete the feature
learning from unstained samples to stained samples. How-
ever, the above method requires a large number of tissue
samples from the patient and cannot be effectively imple-
mented under multiple limited conditions. At the same time,
the process of data construction still cannot completely get
rid of the traditional H&E staining process.

To solve the problems above, we firstly proposed a weakly
supervised image generation algorithm based on the
CycleGAN model [15], which generate the corresponding
unstained image for the stained ovarian sections.
Figure 1(a) shows the overview of this domain translation
method. We introduce the domain consistency loss based
on the original CycleGAN model, to ensure that the results
after the cycle generation are accurately matched to the spe-
cific domain. The introduction of input buffers can better
magnify the effect of domain consistency loss. We only
collected 400 H&E staining images of ovarian cancer and
80 autofluorescence images from other tissues as the experi-
mental data set. From the experimental results, it can be seen
that under such extremely inconsistent distribution condi-
tions, the construction of H&E staining images to corre-
sponding unstained images can be completed based on our
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method. The data set constructed by the above method can
provide a good data guarantee for this goal. Figure 1(b) shows
the overview of the virtual staining process. We analyzed
whether the state-of-the-art image translation model can be
effectively used in this experimental environment, but it is a
pity that although these methods have some effects, they can-
not meet our requirements for absolute fineness. Therefore,
we made improvements on the traditional UNet basic frame-
work [16] and proposed the Parallel Feature Fusion Network
(PFEN). At the same time, we introduced a more superior
training method to better fit the model to the optimal state.
Compared with the traditional image translation method,
the quality of the image generated by our improved image
translation method is superior.

In this work, we mainly solved two problems. The first is
that due to the limited number of pathological tissue samples,
we provide a method for constructing a virtual data set com-
posed of autofluorescence imaging of ovarian cancer patho-
logical tissues and corresponding H&E staining imaging.
Using our method, limited ovarian tissue images can be
augmented with high quality in a short time. Next, based
on our augmented data, we propose a virtual staining
method. Using this method can swiftly and efficiently execute
virtual staining of ovarian cancer pathological slices, and the
quality of the generated virtual stained images is guaranteed.
We have also compared with previous methods; the latter
cannot exceed our proposed method in terms of image qual-
ity or evaluation accuracy. Our Code is available at https://
github.com/menggerSherry/ImageStain.

2. Materials and Methods
2.1. Related Work

2.1.1. Generative Adversarial Network. Generative Adversar-
ial Network was first proposed by Goodfellow et al. [17]. Differ-
ent kinds of GANs model have shown its remarkable data
generation especially in the computer vision domain. Recently,
successful research such as image generation [18-20], image-
to-image translation [15, 21, 22], and superresolution [23, 24]
shown remarkable result. Traditional structure of GAN con-
tains two networks: a generator and a discriminator. The gen-
erator learns from a random noise to images which is same as
the train set. The discriminator learns to distinguish the real
image in the data set and the fake image generated by the gen-
erator. The propose of the idea of GAN can produce better
image results through the continuous adversarial training
between the generator and the discriminator. However, there
are still some problems in GAN training, such as unstable
training and model collapse.

2.1.2. Conditional GANs. Traditional GAN model has shown
very powerful data generation capabilities. However, we can-
not artificially control the generation state of GAN and let the
model generate the image we need. Mirza and Osindero [25]
successfully solved this problem. Many researchers control
GAN to generate data purposefully by imposing some condi-
tions in training and introduce many conditional GAN
models. Researchers have made many improvements to
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FIGURE 1: Overview of this virtual staining process: (a) the overview of this domain translation method; (b) overview of the virtual

staining process.

conditional GAN, making conditional GAN widely used.
Research on the conditional GAN is widely welcomed in
the face editing [26], domain transfer [27], and photo editing
[28]. Today’s conditional GAN has not only been widely used
in the direction of computer vision but also began to receive
attention in audio and language processing. As conditional
GAN has been widely used, its problems have gradually
emerged. During the training process, it is easy to fit only
to several optimal directions, which eventually leads to the
collapse of the model and loss of model diversity. At the same
time, in the training process, user cannot control the training
progress of the generator and the discriminator, making
GAN very unstable during the training process.

2.1.3. Improvement of GAN. Model collapse and training
instability seriously affected the final experimental results.
There are many aspects of research that have begun to solve
these two fatal problems and have achieved good results.
Raford et al. [20] use deep convolutional networks to design
generators and discriminators and adopt batch normaliza-
tion. The proposal of DCGAN solves the problem of unstable
training and the model collapse. At the same time, applying
CNN to the network structure can better adapt to the pro-
cessing of images. Martin et al. [18, 19, 29] analyzed in detail
the reasons for the collapse of the GAN model and the unsta-
ble training. They modified the loss of the original GAN to
Wasserstein loss [18] and added a gradient penalty [19] so
that the GAN model completely avoided these two problems.

2.14. Image-to-Image Translation. The image-to-image
translation has been a hot topic since GAN was proposed.
Because of the wide range of uses of this type of problem,
many researchers have begun research in this field. This issue
was first raised by Isola et al. [21]. They modified the condi-
tional GAN and finally achieved excellent image translation

results. Today, image translation has achieved remarkable
results in domain translation [15, 26], superresolution image
synthesis [22, 30], video synthesis [31], etc. The problem we
are facing now is the H&E staining of ovarian cancer patho-
logical slices. Inspired by the above successful cases, we used
the idea of conditional GAN to improve a new network struc-
ture and training strategy and finally realized this virtual
staining of ovarian cancer. Through the final verification
stage, we found that significant success has been achieved
in both efficiency and effectiveness.

2.2. Construction of the Paired Data Set. Our goal is to finish
the accurate staining of ovarian cancer tissue. This means
that every cell structure can be accurately stained. Therefore,
we intend to build a fully supervised image to image transla-
tion model. With reference to the method of Rivenson et al.
[14], the unstained image is obtained by placing a fresh tissue
section of ovarian cancer in a fluorescence microscope for
direct observation. Then, performing elaborate staining on
this fresh tissue to get the stained image. In this way, each
unstained image corresponds to a stained image as a label.
It is indeed feasible to construct a perfect data set by repeat-
edly conducting the above steps. The work of Rivenson et al.
did give marvelous results. But when we implement their
idea, we found that collecting so many fresh sections in a
short time is indeed not an easy task, and it is laborious
and tiring to do these jobs repeatedly. There is also a problem
that the data set is limited. We have a large number of H&E
staining images of ovarian cancer, but the number of autoflu-
orescence images of fresh slices is very rare, which makes the
distribution of the two sets of data very uneven. Due to some
of the above problems, we decided to abandon the method of
Rivenson et al. and propose a deep learning method to
complete the construction of the above-paired data set under
limited supervision conditions.



2.2.1. CycleGAN Baseline. Unpaired image to image problem
is an important problem. In many cases, building a paired
data set takes a lot of time and work, but using unpaired
image to image translation can avoid time-consuming data
collection. The CycleGAN proposed by Zhu et al. [15] is a
good model to solve such problems. Zhu et al. proposed a
cycle  consistency  loss, |[|Fy_y(Gy__x(x))—x[;
|IGy__x (Fx__y (x)) —x||, finished the translation of the
domain X and the domain Y. Using this unsupervised
method can effectively achieve conversion between two dis-
tributed data. But as mentioned above, the data distribution
between our existing two domains is extremely uneven. In
our experiment, we used the CycleGAN model to complete
the data construction, but the results were very disappointing.

Figure 2(a) is the result of training using the CycleGAN
model. We can see that there are a large number of sharp
holes in the image. The input stained image’s positions corre-
sponding to these holes have normal textures, indicating that
this model cannot effectively learn the features correspond-
ing hole domain. We then introduce a large number of data
augmentation methods based on the original CycleGAN,
such as random jitter, random horizontal and vertical flips,
random jitter rotation (first interpolate and zoom, then ran-
domly rotate a small angle, and finally crop to the original
image size), and elastic deformation [16]. We can observe
the results as shown in Figure 2(b). The number of cavities
is obviously reduced, and the overall image quality has been
slightly improved, but the existence of cavities is still not
completely resolved.

We zoomed on the position of the hole as shown in
Figure 2(c). It can be found that the generator and discrimi-
nator in these positions did not play their role at all. We
hypothesis that the feature distribution of the unstained
image domain is sparser than the stained image domain’s.
The essence of domain to domain translation is to learn the
features of images in a domain and then translate these fea-
tures based on the supervision of the image feature rules of
the target domain. Based on the above assumptions, when
converting from a stained domain to an unstained domain,
the features of the stained domain learned by the generator
may be difficult to be reasonably represented by the limited
positive sample image features of the unstained domain
distribution. This will affect the discriminator’s training on
the area where these features are located. The generator
synthesized a black hole in this area, which can make the dis-
criminator think it is true, resulting in a train mode collapse
in this area. With continuous training, the effect in areas with
sufficient supervised positive sample features is getting better
and better; this area remains unchanged, and the black hole
continues to become obvious.

2.2.2. Domain Consistency Network. When data augmenta-
tion is introduced, the number of samples theoretically
increases, but with the increase in the number of data aug-
mentation methods introduced, many augmented images
may appear only a few times during training, which will
cause the underfitting issue. We therefore introduce an input
buffer to store the input image after a large amount of data
augmentation and then randomly select the input image
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from the buffer as the input of the network. At the same time,
in order to enhance the fitting ability of the network, we
introduce the domain consistency loss. Specifically, a domain
consistency discriminator is introduced to distinguish which
domain the image belongs to. It participates in the training
with the generator. In this way, through continuous training,
the generator can synthesize images that are more accurate to
a specific domain.

Figure 3 describes the structure of the domain consis-
tency network and its training process. Where SepConv is
the Deep Separable Convolution, LReLU is the LeakyReLU
activation operation. The network first downsampling the
input image on both sides three times to extract the effective
features of the image, then fuses the two features and per-
forms a series of convolution layers with 1x 1 kernel to
extract relevant information from the fused features and
obtain a single-channel result. We ensure that the output
dimension of the network is the same as the output dimen-
sion of the discriminator. In this way, real images with a large
amount of data augmentation are first pushed into the buffer,
and then, the buffer randomly selects two batches of images
as the real image input of the domain consistency network.
The domain consistency network learns that they belong to
the same domain. The image generated by the generator
and the real image randomly selected from the buffer are
used as the input of the domain consistency network, and
the network learns to distinguish that they belong to different
domains. While learning to fool the discriminator, the gener-
ator also needs to fool the domain consistency network so
that the domain consistency network thinks that the gener-
ated image and the real image are in the same domain.

We define the mapping G, : X — Y as the conversion
process from the stained image domain X to the unstained
image domain Y, and its corresponding domain consistency
network is C,. We can describe the domain consistency loss as:

L(G, C, X, Y, Y3) = [Ey~pda[a(y) [(Cl (Aug(Y), AUg(Yz)))z]
+ Erppao[(1= Co(Aug(Y1), G, (X)))?].

(1)

The Aug in Equation (1) represents the corresponding
data augmentation; Aug(Y,) and Aug(Y,), respectively, rep-
resent the unstained image randomly selected from the input
buffer after the augmentation transformation. Here, G, tries
to generate an unstained image G,(x) that is very close to
the representative Aug(Y,) of the unstained image domain,
and C, tries to distinguish whether the two input images
Aug(Y,) and Aug(Y,) are in the same domain. Like the idea
of adversarial training, G, tries to minimize the objective func-
tion of equation; C, tries to maximize the objective function of
Equation (1), which is expressed as ming max¢ L(G,, C;, X,
Y,,Y,). Similarly, to ensure the balance of training, we use
ming max¢ L(G,, C,, Y, X, X,) to represent the domain
consistency loss affecting the stained image.

The image shown in Figure 2(d) is the result of the
unstained image synthesized by the generator after we intro-
duce the domain consistency network. It can be found that
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compared with the results of the first two models, the result
of Figure 2(d) is closer to the real image domain, the image
quality has been significantly improved, and the sharp holes
have become significantly smoother. Yet it is extremely
frustrating that the issue of sharp holes has not been
completely solved, and there are still unmatched black areas
in the generated image.

2.2.3. Modification of the Generator Network Structure. Let
us revisit the reasons for the formation of sharp holes. A
similar problem also occurred in the experiment of Karras
et al. [32-34]. They observed that most images generated

by StyleGAN [33] exhibit characteristic droplet-like artifacts
that resemble water droplets. They think it is caused by the
AdalN problem in StyleGAN, and then, they canceled the
normalization operation in StyleGAN2 [34], so that
droplet-like artifacts can be effectively solved. The generator
of the traditional CycleGAN model adopts the network
structure proposed by Johnson et al. [35]. The design idea
of the network is to perform deep feature fusion of the
sampled feature maps by stacking residual blocks. And
CycleGAN uses Instance Normalization after each convolu-
tion operation. Combined with the hypothesis of Karras
et al, we believe that the key issue lies in Instance



Normalization. Instance Normalization is to normalize each
layer of feature maps separately, which may ignore the cor-
relation between each layer of feature maps to a certain
extent. Meanwhile, due to the structural particularity of the
residual block, directly summing the residual and the result
after convolution is likely to amplify the effect of Instance
Normalization, thus creating this kind of hole.

We made a simple design on the basis of the original
generator to completely solve this problem. Since Instance
Normalization may affect the correlation between feature
maps, we enhance the correlation of the network’s feature
channels. We first use the Xception block [36] instead of
the original residual block. Xception block uses a depth-
wise separable convolution, which is mainly composed of
depth-wise convolution and point-wise convolution. The
benefit of the depth-wise separable convolution is that the
convolution’s spatial correlation and the feature map channel
correlation are operated separately, which reduces the
number of training parameters and improves the influence
of the convolution on the channel correlation. Next, in order
to completely eliminate the problem of Instance Normaliza-
tion, we replace the convolution operation in the upsampling
process and downsampling with depth-wise separable
convolution operation. Through the above modifications,
we believe that the new generator can completely avoid the
cavity problem.

Figure 2(e) is the inference result after training with the
improved generator network. We can see that we have
completely solved the hole problem, and the image quality
was further enhanced. At the same time, through quantitative
evaluation, we conclude that this method can construct a
good unstained data set. We evaluated the quality of images
generated by different methods, and the test results are
shown in Table 1. From the evaluation results in the table,
we can see that the quality of the images generated by our
method far exceeds the state-of-the-art method. At the same
time, we also submit the generated data to the doctor to
judge, so that the doctor can distinguish the authenticity of
the generated image. We have prepared 400 unstained
images generated by different methods to allow doctors to
judge the images within the specified time. According to
the number of correct images, we can get the accuracy. The
correct rate of each trial we recorded is shown in Table 2. It
can be found that the accuracy of the images obtained by
the previous methods is very low. Our analysis is due to the
influence of the black holes in the generated images. When
there are black holes in the generated image, the doctor will
naturally distinguish the difference from the real image and
consider the image to be a fake image. This may be why when
we completely solve the hole problem, the accuracy of the
image is doubled.

2.3. A Virtual Staining Method Specific to Tissue Texture.
Through the above methods, we successfully constructed
the paired data set composed of unstained images and
stained images. We thus can regard virtual staining as an
image-to-image translation problem. Today, many mature
algorithms in the field of image-to-image translation have
produced amazing results, yet whether these algorithms can
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TaBLE 1: Comparison of the quality of unstained images using
different methods.

Improved Ours (with
CycleGAN CycleGAN Ours separable Conv)
1S | 1.590 1.700 1.407 1.311
FID
! 471.421 360.029 235410 175.969
MS
L 0.883 0.873 0.794 0.717

TABLE 2: Accuracy results of unstained images synthesized using
different methods.

Improved Ours (with
CycleGAN CycleGAN Ours separable Conv)
ll)oaor 12.50% 125%  24.25% 77.5%
Doctor
5 3.50% 5.50% 39.5% 86.5%
]3) octor 5 0% 1.50% 55.50% 93.50%

be directly applied to this special domain remains to be veri-
fied. What we want is an image translation that is accurate to
the tissue, so we need to build a more accurate image-to-
image translation algorithm. In order to achieve this goal,
we have made many modifications to the loss function,
network structure, and training strategy.

2.3.1. The Review of Image-to-Image Translation. Conven-
tional image-to-image translation algorithms are usually
based on the Pix2Pix baseline. Isola et al. [21] use UNet as
the generator and use the patchGAN structure discriminator
to discriminate images with accuracy to the patch. And the
L1 loss is introduced on the basis of the conventional GAN
loss to evaluate the pixel gap between the real image and
the generated image. UNet was originally a dedicated net-
work structure designed to handle cell structure segmenta-
tion tasks. It can effectively retain a lot of accurate and
detailed feature information through layer-by-layer skip con-
nections. At the same time, the patchGAN discriminator
reduces the receptive field of the image to be determined, so
that the discriminator has a stronger ability to distinguish
the details of the image, which also promotes the quality of
the generated image. We consider using the idea of Pix2Pix
to perfect the model so that the model can better apply to
the problems we are facing this time.

2.3.2. A UNet Structure-Based Generator. The essence of the
image translation task is that we input an image into the net-
work; the network can learn various features of the image and
then convert the original features of the image into the target
features. We can simply regard the feature as the information
that people can obtain by observing the image, specifically,
the information that can perceive after the pixel value of
the image is saw by the person. Therefore, the translation
process from an image with original features to an image with
another type of features can be conceded as the pixel value
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conversion of the image. From this perspective, image trans-
lation and semantic segmentation tasks are very similar,
which is why the generator networks in the earliest image
translation tasks (such as Pix2Pix [21]) are designed with
the help of UNet networks. The UNet network was first used
in the semantic segmentation task of the cell dimension. It
uses skip connection to allow the network to effectively learn
detailed features. Therefore, our task is also based on the
UNet structure to design generator.

The process of using convolution to extract image feature
values is a process of continuous dimensionality reduction of
image feature data. In this process, the network must selec-
tively learn to extract more representative features. On the
contrary, some low-frequency, nonrepresentative features
will be ignored in the feature extraction process. When we
directly sample the dimensions of features, the network can
only use these most representative features. In the process
of directly decoding from high-frequency features to the
target image, the network will ignore many low-frequency
features, which makes the generated image quality very
unsatisfactory. The introduction of skip connection is to fuse
these low-frequency features with the features of the restora-
tion process. This is why the image translation model using
the UNet network as the generator can achieve great results.

So why do not we directly tell the network what charac-
teristics we want to learn? We therefore deconstructed the
original UNet network and designed a new generator. We
call it the Parallel Feature Fusion Network (PFEN). Its
network structure is shown in Figure 4. The stained image
we input first enters the Average Pooling Sampling Block in
Figure 4(a), and the network will perform the sampling work
according to different sampling steps. Through the above
operations, we obtain sampled images at different scales.
Taking an input image with a size of 256 x 256 pixels as an
example, after sampling with steps 6, 5, 4, 3, 2, and 1, respec-
tively, the different scaled images with 8 x 8, 16 x 16, 32 x 32,
64 x 64, 128 x 128, and 256 x 256 are obtained. Through
continuous downsampling operations, the image will lose
many low-level aspects features but on the contrary can
retain many high-level features. For example, after we sample
a cell tissue image, we can see that the high-level aspect fea-
tures of the image such as the shape of the cell, but we cannot
see the low-level features that are lost after sampling, such as
the detailed structure within the cell.

After receiving the input images of six scales, we input the
images of each scale into the corresponding Parallel Feature
Extraction Block in Figure 4(b). Each feature extraction
network is designed based on the UNet structure, and the
detailed network implementation is shown in Figure 5. The
function of the FromRGB module in Figure 5(a) is to convert
the image into a feature map of 512-dimensional channels. In
the entire network, we stipulate that the feature map is 512
dimensions. We design three branches in FromRGB module,
and each branch adopts different sampling methods. Finally,
the feature maps of different sensory scales sampled by differ-
ent sampling methods are deeply fused and used as the input
of the improved UNet network in Figure 5(b).

Due to the different sampling scales of input images of
different scales, we design three UNet structures as the fea-

ture extraction network, named UNet,, UNet,, and UNet,,
respectively. The subscripts indicate the feature sampling
depth of the UNet. The network structure shown in
Figure 5 is UNet,. What differs from the traditional UNet is
that we added the additional skip connections. Unlike the
conventional UNet network, we have introduced additional
skip connections from the upper layer to the lower layer on
the UNet. As we mentioned, every time the network passes
through a convolutional layer, some low-frequency features
are lost. The original UNet skip connection only guarantees
the low-frequency feature transfer to the same layer, but the
lower layer may also need the low-frequency feature of the
upper layer. We therefore introduced a skip connection from
the upper layer to the lower layer so that the bottom layer can
also learn effective low-frequency features. This design is very
similar to the idea of UNet3+ [37], but we removed the skip
connection to the deeper layer. First of all, the number of
layers of our three UNet networks is not deep enough. The
introduction of so many skip connections may not be signif-
icantly improved. On the contrary, it will bring a greater
amount of calculation. This new structure diagram of UNet
is shown in Figures 5 and 6 where the red arrows indicate
the new skip connection we added. We used Unet, and UNet
as the generator to train the models separately and evaluate
the quality of the generated images. It can be seen from
Table 3 that the image quality generated by UNet, is
improved compared with the traditional UNet, where the
FID decreased by about 2-3 and the Inception Score
decreased by about 0.01-0.04. However, the network depth
of UNet is only 6 layers, and the depth of UNet reaches 8
layers. It can be proved that UNet, has a powerful feature
learning ability within a limited sampling field.

We specify that 8 x 8 and 16 x 16 input images use UNet,
network, 32 x 32 and 64 x 64 input images use UNet, net-
work, and 128 x 128 and 256 x 256 input images use UNet,
network. In the process of continuous sampling of images
with 256 x 256 pixels to 8 x 8, the lower resolution image
retains the higher-level aspect features, which can be learned
by using the shallow network structure like UNet,. As the
image pixels increase, the UNet network structure continues
to deepen, and the effect of UNet will continue to be
highlighted. The low-level aspect features of high-resolution
images can be learned through the deeper network like
UNet, and UNet,. In this way, the network can learn the
image features of each level of the sampling module accord-
ing to our wishes, and the resulting feature maps cover the
feature values of the image from coarse to fine. We finally
introduce an upsample process to continuously fuse these
features to obtain the final output image. In the process of
upsample, we also introduce skip connection to ensure the
feature of high-level aspects to propagate down better. Com-
pared with the traditional UNet network as the generator, the
network designed by us has a wider reception field, and the
image obtained has a stronger performance ability, while
covering all the characteristics of UNet. From Table 3, com-
pared with the image quality generated by UNet, the FID of
the image generated by using our PFFN network as a gener-
ator was reduced by about 3-9, and the Inception Score was
reduced by about 0.1-0.2. Compared with the image FID
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Ficure 6: The UNet structure introducing additional skip
connections.

generated by UNet,, the FID was reduced by about 1-8, and
the Inception Score was reduced by about 0.1-0.2.

2.3.3. Choice of Loss Function. The most commonly used loss
functions of traditional GANs are cross-entropy loss and L,
loss. These loss functions have proven their feasibility in
GAN training through a large number of experiments. But
there are also many studies show that using these two loss
function optimization models in GAN’s training will cause
very terrible results. Moreover, many drawbacks of GAN,
such as mode collapse and training instability, are caused
by the use of these instable loss functions. We used this kind
of loss function to train in the experiment, yet the result is not
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TaBLE 3: Comparison of image quality using different loss functions
and generator network structures.

Network Loss function FID | IS |
L, 57.6092 1.3405
Lygan 54.1733 1.4687
Liggistic 56.1733 1.4687
et Ly +Lg, 59.4684 1.4720
Lygan * Lim 58.1196 1.4720
Liggistic + Lgm 56.1639 1.4432
L, 54.1436 1.3928
Lyygan 50.8299 1.4256
UNet, Lyogistic 52.4708 1.3865
L +Lg, 51.3790 1.3907
Lygan + L 55.2754 1.4852
Liggistic + Lim 49.3387 1.4073
L, 54.8384 1.3835
Lygan 49.1167 1.3903
Ligistic 49.6818 1.4124

PFFN (ours)

Ly +Lg, 49.3575 1.3238
Lygan + Lim 47.0977 1.3505
Liggistic + Lim 48.8730 1.2158

what we expected. Therefore, choosing an appropriate loss
function is very important in this experiment.

In this experiment, we consider using two robust loss
functions: Wasserstein loss with gradient penalty [18, 19]
and Logistic loss [33] with R1 regularization [38, 39] as the
training loss function. Wasserstein distance is simple and
direct compared to the original loss function and highly
correlates with the quality of the synthesized image of the
generator. Using Wasserstein loss may be a good choice.
Logistic loss is applied in the StyleGAN paper by Karras
et al. [33]. He used this loss as the adversarial loss and gener-
ated the high-resolution face images. Both of these two loss
functions have very good performance. In order to verify
which loss function can be better applied to our virtual stain-
ing experiment, we use these functions to train the model and
evaluate the generator by the quality of the image. As shown
the results in Table 3, we find that the image quality synthe-
sized by the generator trained with the Wasserstein loss
(Equation (2)) is better.

Lgan (G Dy %, y) =By ([P G(X))] =By () xp ()

[P 9)] = AgpEsp @ [ (V=P ®)I[1; = 1)°]-
2)

The traditional image translation model usually intro-
duce an additional L1 loss (Equation (3)) based on adversar-

ial loss; its function is to narrow the global gap between the
real image and the generated image. But the introduction of
this loss will make the image blurred and attenuate the qual-
ity of the generated image. To get a higher quality image, we
need a sturdy loss function to act on the generator. Wang
et al. [22] used the feature matching loss (Equation (4)) in
the high-resolution image translation task of the Cityscapes
data set and got flawless results. We introduced this loss into
the training of the generator and found that the effect has
been significantly improved through the final evaluation
results. According to the results of our experiment, we choose
Wasserstein loss in the adversarial loss, as shown in the

Equation (2), where [E;CNPdm(;C)[||(V}D(?C)H122 —1)?] represents
the gradient penalty for the X, which is the random interpo-
lating of the positive sample and the generated sample. In
order to reduce the global difference between the generated
image and the real image, we retain the L1 loss as shown in
Equation (3). In order to further improve the quality of the
generated image, we increase the feature matching loss, as
shown in the Equation (4), where N represents the number
of layers of the discriminator.

Lpix(G’ x,y) = [Ex~pdma(x),y~pdma(y) [Hy - G(x)”ll] > (3)

Lin(G D, % y) =B (6 9~pana)

N

=3 (1D 3) D Gl |-

(4)

The model loss we finally get is expressed by the following
Equation (5). We use the gradient descent method to solve the
following equation: Gy, Doy = arg ming max,L(G, D, x, y).
Finally, we can get the optimal solution of the staining model.

L(G’ D’ x,y) = Lgan(G’ D’ x’y) + Apiprix(G’ x’y)

(5)
+ )\’mefm(G’ D, X, y) .

3. Results and Discussion

Through the above training, we have successfully generated
H&E staining of ovarian cancer pathological slices. Figure 7
is the result comparison between the generated virtual
stained image and the real H&E staining image. Intuitively,
the gap between the real and the fake is quite hard to distin-
guish, but for this method to be better used in medical prod-
ucts, we need to compose a series of evaluations on these
virtual stained images we generate.

3.1. Artificial Pathology Analysis. A successful virtual staining
section can express the correct pathological characteristics;
otherwise, it will seriously affect the doctor’s pathological
diagnosis. To evaluate the generated pathological slices more
subjectively, we invited three professional doctors to analyze
the difference between the image generated by our model and
the real image and evaluate whether the staining for these
images is successful. After evaluating each image, we can
roughly get the staining accuracy of our model. Since it is a
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Real H&E stained

FIGURE 7: Virtual staining result display on pathological sections of ovarian cancer.

TABLE 4: Staining accuracy of our model analyzed by three doctors.

Doctor 1  Doctor 2 Doctor 3
Samples with successful staining 190 196 194
Accuracy 95% 98% 97%

heavy task to evaluate a large number of images, we only
randomly selected 200 images as the evaluation data, and
the final results obtained are shown in Table 4. According
to the doctor’s evaluation results in Table 4, the staining
accuracy of our method reaches 97%, which proves that our
method has achieved a perfect staining effect. However, our
verification case is only 200 cases, which cannot well repre-
sent the overall effect. We need to add evaluation cases in
the next period of treatment.

3.2. Visual Simulation Analysis. It was mentioned in the pre-
vious section that direct subjective analysis by doctors can
certainly get a good score result, but it will consume a lot of
time and work, and the results of the evaluation using a small
number of samples do not have a good overall representative-
ness. In particular, our model can generate a large number of
H&E staining models in a short time, which is very unrealis-
tic for doctors to perform analysis and evaluation.

To overcome this problem, we propose a method based
on deep learning to simulate the visual analysis of doctors.
The H&E staining sections of real ovarian cancer we selected
have detailed pathological analysis results, and each section
doctor clearly marked a cancer lesion and tumor type. We
can train a classification network based on the data set com-
posed of real images based on the above annotations. We can
think that the trained classification network has the doctor’s
focus classification ability. Since the generated pathological
stained slices should have the same pathological characteris-
tics as the corresponding real stained slices, we use the
pretrained classification network to make inference and pre-

diction tumor type results for the corresponding generated
virtual stained images. Finally, we calculate the difference
between the result of the generated image and the real result
to get the final accuracy. This accuracy can approximately
represent the quality of the lesion features based on the image
generated by our model.

First of all, each stained image in our data set is annotated
by professional doctors according to the four types of tumors.
Next, we use these labeled data sets to train a VGG16 classi-
fication network. The classification accuracy of the trained
network reached about 97%. We can think that this VGG
network has a strong ability to distinguish ovarian cancer
tumor types. Then, we use the trained VGG network to
predict the stained ovarian cancer sections we generated
and calculate the accuracy. If the prediction of the generated
image is correct, it can indicate that the virtual stained
slice we synthesized expresses the correct feature of the
lesion. We think it is reasonable to apply such images to
pathological analysis. Finally, the accuracy of the proposed
method reached 95%. We can conclude the final difference
of virtual staining to be 2%. It can be proved that our
method has reached the standard of pathological analysis
of ovarian cancer.

4. Conclusions

We provide a more efficient solution for H&E staining of
ovarian cancer pathological sections. Using our method can
be very effective to save time and quickly assist the doctor
in diagnosis. We have used many evaluation methods. From
the results, the quality of the stained image generated by our
method is very perfect. At the same time, we have also
proposed an effective autofluorescence image generation
algorithm in the absence of valid data, which can save time-
consuming and laborious data preparation time in many
cases. In the next research, we will carry out research on
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virtual staining of more pathological tissues in order to real-
ize a more extensive virtual staining technology.

Data Availability

The data we use is mainly composed of the TCGA ovarian
cancer database and the clinical data. TCGA ovarian cancer
data can be obtained from https://portal.gdc.cancer.gov/.
Considering the privacy of patients, we cannot open access
to our clinical data.
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