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We applied and optimized the sparse representation (SR) approaches in the computer-aided diagnosis (CAD) to classify normal
tissues and five kinds of diffuse lung disease (DLD) patterns: consolidation, ground-glass opacity, honeycombing, emphysema,
and nodule. By using the K-SVD which is based on the singular value decomposition (SVD) and orthogonal matching pursuit
(OMP), it can achieve a satisfied recognition rate, but too much time was spent in the experiment. To reduce the runtime of the
method, the K-Means algorithm was substituted for the K-SVD, and the OMP was simplified by searching the desired atoms at
one time (OMP

1
). We proposed three SR based methods for evaluation: SR1 (K-SVD+OMP), SR2 (K-Means+OMP), and SR3 (K-

Means+OMP
1
). 1161 volumes of interest (VOIs) were used to optimize the parameters and train each method, and 1049 VOIs were

adopted to evaluate the performances of the methods. The SR based methods were powerful to recognize the DLD patterns (SR1:
96.1%, SR2: 95.6%, SR3: 96.4%) and significantly better than the baseline methods. Furthermore, when the K-Means and OMP

1

were applied, the runtime of the SR based methods can be reduced by 98.2% and 55.2%, respectively. Therefore, we thought that
the method using the K-Means and OMP

1
(SR3) was efficient for the CAD of the DLDs.

1. Introduction

Diffuse lung diseases (DLDs) refer to a series of abnormalities
that spread out in large areas of the lungs [1]. With the devel-
opment of the medical imaging technology, at present the
high-resolution computed tomography (HRCT) is thought
to be the best tool for the diagnosis of the DLDs, because
the pulmonary patterns can be accurately analyzed on the
HRCT images [2–4]. However, the interpretation of the
DLD patterns mainly depends on the radiologists’ individual
experiences. It is reported that the agreements between the
radiologists’ first choices were only moderate [5]. So, the
subjective differences between the radiologists may lead to
the misdiagnosis. Furthermore, the HRCT produces large
numbers of axial slices in each scan, which is a big burden for
the radiologists. Considering the above reasons, a computer-
aided diagnosis (CAD) method is required to provide the
radiologists with a “second opinion” for the diagnosis of the
DLDs [6–8].

In the past ten years, researchers have proposed several
CAD systems to classify the DLD patterns, and most of
the conventional methods aim to develop the discriminative
features for the classification. For example, Park et al. adopted
the statistical moments of the histograms and gray-level run-
length matrices (GLRLM) to represent the textural infor-
mation of the pulmonary patterns [9]. Wang et al. thought
that the GLRLM could be partitioned into four areas with
clear physical meaning, which can be used to measure the
pulmonary textures [10]. Although the features based on the
textural information have an excellent performance on the
classification of the DLD patterns, these features are still
difficult to recognize the pulmonary patterns with inhomo-
geneous textures. Therefore, researchers have combined the
texture-based measures with the geometrical information
to design the features with higher discriminative power.
In the study [11], the pulmonary patterns were determined
by six kinds of physical features, three based on the CT
values (mean and standard deviation of CT values, air
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EMPCON GGO HCM NOD NOR

Figure 1: Images of six kinds of pulmonary patterns: consolidation (CON), ground-glass opacity (GGO), honeycombing (HCM), emphysema
(EMP), nodule (NOD), and normal tissues (NOR).

density components) and three based on the geometrical
information (nodular components, line components, and
multilocular components). Uppaluri et al. adopted the texture
features and geometric fractal dimension (GFD) to classify
the pulmonary patterns, where the GFDwas used to measure
the roughness of textures [12]. In the work [13], the measures
based on the histogram, gradient, gray-level cooccurrence
matrix (GLCM), and GLRLM were used for texture analysis,
and the measures based on the top-hat transformation and
clusters of low attenuation areas were used to analyze the
shape information. Besides, the local binary pattern (LBP)
was employed to quantitatively measure the normal tissues
and two subtypes of the emphysema [14].

In this paper, the sparse representation approaches were
introduced to recognize the DLD patterns. The main idea
of the sparse representation is to approximate the example
by a weighted linear combination of a small number of key
features (atoms), which are selected from an overcomplete
dictionary. It is thought that the sparse representation can
improve the performance of the image classification [15–17].
Firstly, the images could be treated as a distribution of a set
of representative features, so the sparse representation can
encode the semantic information of the images. Secondly,
the number of atoms in the dictionary is greater than the
dimensionality of the input examples, which means that
the approximation of the example is not unique. So, it
can find a relative better approximation among the various
combinations of atoms. Thirdly, the sparse representation
is shown to be robust in the presence of the noise. Due
to these advantages, the sparse representation approaches
have been applied in the CAD recently. For example, Liu
et al. developed a sparse representation based method to
detect the colon polyp and lung nodule [18]. Vo and Sowmya
trained discriminative dictionaries to classify four kinds of
the pulmonary patterns [19]. In the work [20], the dictionary
of the texton was learned and used to recognize the normal
tissues and three subtypes of the emphysema.

In this work, by adopting the two of the most popular
algorithms, the singular value decomposition (SVD) based
K-SVD algorithm [21] and orthogonal matching pursuit
(OMP),we proposed a sparse representation basedmethod to
classify the normal tissues (NOR) and five kinds of the DLD
patterns, including the consolidation (CON), ground-glass
opacity (GGO), honeycombing (HCM), emphysema (EMP),
and nodule (NOD). Figure 1 gives the images of the six kinds
of the pulmonary patterns. According to our knowledge,

there is no work aimed at applying the sparse representation
approaches to analyze these six kinds of the pulmonary
patterns. The proposed method using the K-SVD and OMP
achieved a high classification accuracy (greater than 95%) in
the experiments, which was thought to be of great potential
by the radiologists. However, the runtime of this method was
relatively long.Therefore, we also tried to reduce the runtime
of the sparse representation based method. Considering that
the operation of the K-SVD and OMP spent the most time
on the training and testing, respectively, we employed the K-
Means to replace the K-SVD and used a simple version of the
OMP which was named OMP

1
in the paper. Experimental

results show that the replacement of the K-SVD and OMP
by the K-Means and OMP

1
can reduce the runtime of the

method while keeping the classification accuracy.
There are two major differences against a preliminary

version of this work [23]. Firstly, we not only adopted the
sparse representation approaches for the classification but
also optimized the dictionary learning and sparse coding in
this work. Secondly, we changed the experimental data to
make the number of training and testing samples approxi-
mately equal. This paper is organized as follows. In Section 2,
we describe the proposed methods. The experimental results
are given and discussed in Section 3. Finally, we conclude the
paper in Section 4.

2. Proposed Methods

In this research, we adopted and optimized the sparse
representation approaches to classify the normal tissues and
five kinds of the DLD patterns on HRCT images. Figure 2
gives the framework of our methods. In the training stage,
firstly huge numbers of local features were extracted from
the training volumes of interest (VOIs) and used to train an
overcomplete dictionary. Secondly, the sparse representation
of the local features was calculated according to the given
dictionary, and theVOI-level descriptors of the trainingVOIs
were generated by the procedure named spatial pooling.
Finally, the descriptors were used to train a support vector
machine (SVM) classifier. In the testing stage, after extracting
the local features on the testing VOI, the learned dictionary
was adopted to calculate the sparse representation of the local
features, and then the VOI-level descriptor was generated.
At last, the descriptor was fed into the trained classifier and
the result was given. In order to easily understand the paper,
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Figure 2: The framework of our methods.

we introduce the sparse representation and its optimization
at first, and then we describe the other parts of our methods.

2.1. Sparse Representation. Let 𝑚 examples and the normal-
ized overcomplete dictionary be y

𝑖
∈ R𝑛, 𝑖 = 1, 2, . . . , 𝑚, and

D ∈ R𝑛×𝑘, 𝑛 ≪ 𝑘, respectively, the sparse representation of𝑚
examples a

𝑖
∈ R𝑘can be formulated as

min
D,a

𝑚

∑

𝑖=1

󵄩
󵄩
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󵄩
y
𝑖
−Da
𝑖

󵄩
󵄩
󵄩
󵄩

2

2
subject to 󵄩󵄩󵄩

󵄩
a
𝑖

󵄩
󵄩
󵄩
󵄩0
≤ 𝑇, (1)

where the ‖ ⋅ ‖
0
means the 𝑙0-norm indicating the sparsity

of the vector (number of nonzero entries in the vector),
and 𝑇 is the threshold of the sparsity. It could be found
that the a

𝑖
can be thought of as the coefficients of the

atoms.There were twomain components in the operation: (1)
training an overcomplete dictionaryD (dictionary learning);
(2) calculating the sparse representation of the input example
a according to a given dictionary (sparse coding).

By adopting the K-SVD and OMP for the dictionary
learning and sparse coding, respectively, we proposed a
method that was called SR1 in the paper. The K-SVD trained
the dictionary by alternatively updating the coefficients with
the fixed dictionary (sparse coding stage) and then updating
the dictionarywith the fixed coefficients (dictionary updating
stage) until the stop condition was met.

(1) In the sparse coding stage, it was recommended to use
the OMP, a greedy technique [21]. In the beginning,
the solution support was empty and an initial residual
vector was evaluated by the input example. At each
iteration, the atom that had the largest inner product
with the residual vector was added to the support.
Then the sparse approximation of the example was
calculated according to the support, and the residual
was updated. These processes were repeated until

the number of atoms in the support was greater than
the sparsity threshold.

(2) In the dictionary updating stage, the columns of the
D (atoms of the dictionary) were updated sequen-
tially. When the 𝑖th atom was being updated, the
reconstruction matrix except the current atom was
restricted by choosing the examples which were
reconstructed by using the current atom and then
decomposed by the SVD.The first left-singular vector
was adopted to update the atom.

After training the dictionary by the K-SVD, the SR1 also
used the OMP to calculate the sparse representation of local
features, the same as the sparse coding stage in the K-SVD.
There were two parameters in the sparse representation, the
number of atoms and the sparsity in the approximation. We
adjusted the number of atoms from 500 to 3000 with an
interval of 500 and the sparsity from 2 to 14 with an interval
of 2 in the experiments.We present the way of optimizing the
parameters in Section 3.2.

2.2. Optimization of Sparse Representation. The runtime of
the CAD method is also an important criterion in the
clinical practice. The SR1 that uses the K-SVD and OMP (see
Section 2.1) can achieve a high classification accuracy, but
the runtime of the SR1 was relatively long (see Section 3.3).
Considering that the dictionary learning and sparse coding
spent the most time on the training and testing, respectively,
another aim of our research was to optimize these two steps.

Although it might be useless in the clinical workflow,
we thought that the optimization of the dictionary learning
can be convenient for the developers to update the existing
methods. It is reported that the K-Means algorithm can
achieve a competitive performance on the natural image
classification with the K-SVD when the same number of
atomswas used [24].Moreover, the K-Means could be treated
as a simple version of the K-SVD. In the dictionary updating
stage, the average operation and SVDwere adopted to update
the atoms by the K-Means and K-SVD, respectively. And in
the sparse coding stage, the K-Means set the coefficient of
the closest atom to 1 (the values of other coefficients were
0), while the sophisticated OMP algorithm was adopted in
the K-SVD. It can be deduced that the K-Means would need
a shorter runtime than the K-SVD to train the dictionary.
Furthermore, the K-Means can be efficiently implemented by
using the 𝑘-dimensional tree (𝑘-d tree) technique. Due to the
above reasons, we tried to adopt the K-Means as a substitute
of the K-SVD to train the dictionary.

In the SR1, the OMP was adopted as the solver of
the sparse coding, which iteratively calculated the sparse
approximation of examples, and only one atom was added
to the support at each iteration. It can be deduced that the
runtime of the method may be reduced by selecting enough
atoms at one time. So, this approach was named OMP

1
in the

paper. After arranging the inner products of the atoms and
example in a descending order, the first sufficient numbers
of atoms were treated as the solution support and then
used to calculate the sparse representation of the example.
Algorithm 1 gives the OMP

1
. Although the residual error of
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Input: The example y ∈ R𝑛 and normalized dictionaryD ∈ R𝑛×𝑘, 𝑛 ≪ 𝑘
Output: The sparse representation of the example vector a ∈ R𝑘
Initialization:

Initial solution supportΩ = 𝜙, and sparsity constraint 𝑇
Computation:
(1) Choose 𝑇 atoms that have the largest inner products with example

y ⋅ d
1
≤ y ⋅ d

2
≤ ⋅ ⋅ ⋅ ≤ y ⋅ d

𝑇
≤ ⋅ ⋅ ⋅ ≤ y ⋅ d

𝑘

(2) Add the selected atoms to the solution support
Ω = {d

1
, d
2
, . . . , d

𝑇
}

(3) Compute the sparse representation of the input example
a = (Ω𝑇Ω)−1Ωy

Algorithm 1: The OMP1 algorithm.

Table 1:Three proposed methods for evaluation of sparse represen-
tation approaches.

(a) Proposed methods

Method Dictionary learning Sparse coding
SR1 𝐾-SVD OMP
SR2 𝐾-Means OMP
SR3 𝐾-Means OMP1

(b) Experiments on the evaluation of sparse representation approaches

Evaluation Comparison of methods
𝐾-SVD versus 𝐾-Means SR1 and SR2
OMP versus OMP1 SR2 and SR3

the OMP
1
would be larger than the OMP, the performance

of this approach can be ensured under a certain sparsity
constraint [25].

In order to examine the performances of the sparse rep-
resentation approaches, we constructed another two sparse
representation based methods: SR2 (K-Means+OMP) and
SR3 (K-Means+OMP

1
) in this work. The replacement of the

K-SVD by the K-Means was evaluated by comparing the SR1
and SR2 (both of the two methods adopted the OMP for
the sparse coding), and the substitution of the OMP by the
OMP
1
was evaluated by comparing the SR2 and SR3 (both

of the two methods adopted the K-Means for the dictionary
learning). Table 1 summarizes the three sparse representation
based methods and the experiments on the evaluation of the
sparse representation approaches.

2.3. Calculation of Local Features. It is thought that the DLD
patterns can be featured by a combination of CT values and
measures based on the geometrical information. In this work,
we used the local features proposed in the work [26] which
adopted the eigenvalues of the Hessian matrix to measure the
geometrical information.The local features were calculated at
each sampling point on the VOI as the following procedures.
Firstly, a cubic-shape patch was constructed by sampling on
the VOI whose center was located on the sampling point,
and four kinds of the statistical moments were calculated on
this patch: mean, standard deviation, skewness, and kurtosis.

Then the eigenvalues of the Hessian matrix were calculated
for each voxel within the patch. Let the eigenvalues be 𝜆

1
, 𝜆
2
,

and 𝜆
3
, 𝜆
1
≥ 𝜆
2
≥ 𝜆
3
. We arranged the eigenvalues in the

order of the position. So, three new patches were constructed
whose components were 𝜆

1
, 𝜆
2
, and 𝜆

3
respectively, and the

same moments were calculated on these three eigenvalues
based patches. Finally, the moments calculated on all four
patcheswere concentrated into a 16-dimensional vector as the
feature vector. In the experiments, the step of the sampling
points was set to 4 × 4 × 4. And the size of the patch was a
parameter, which was adjusted from 2×2×2 to 6×6×6. The
way of tuning the parameter is described in Section 3.2.

2.4. Spatial Pooling. The procedure of the spatial pooling
was used to summarize the sparse representation of the local
features over the regions into a VOI-level descriptor for each
VOI. These descriptors were used as the input vectors of
the classifier. We adopted one of the most popular choices,
the average pooling in the work, which could be seen as an
average operation of the vectors. Let z ∈ R𝑘 be the VOI-level
descriptor, let a ∈ R𝑘 be the sparse representation vectors,
and let {⋅}

𝑡
be the 𝑡th element of the vector. The average

pooling of𝑚 vectors is given by

z
𝑡
=

1

𝑚

𝑚

∑

𝑖=1

a
𝑖𝑡
, 𝑡 = 1, 2, . . . , 𝑘. (2)

2.5. Classification. In the research, we adopted the support
vector machine (SVM) as the classifier to recognize the
descriptors generated in the spatial pooling. We used a
version named LIBSVM [27]. It is reported that the sparse
representation based classification with the linear kernel can
achieve a competitive performance and smaller computa-
tional cost than the nonlinear kernels [16]. So, we employed
the LIBSVM with a linear kernel. The kernel is given by

𝐾(x
𝑖
, x
𝑗
) = x𝑇
𝑖
x
𝑗
, (3)

where x
𝑖
and x

𝑗
are both descriptors. Because the SVM was

originally designed as the binary (two-class) classifier, the
LIBSVM adopted the one-against-one technique to extend
the binary SVM classifier for themulticlass tasks.There is one
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parameter in the classifier: soft-margin penalty 𝐶. The way of
adjusting the parameter is described in Section 3.2.

3. Experiments and Results

3.1. Data. We obtained 117 scans from 117 subjects from
Tokushima University Hospital in Japan. All HRCT scans
were acquired by Toshiba Aquilion 16-row multislice CT
when edge-enhanced filtering was not applied. A tube voltage
of 120 kVp and current of 250mAs were used. The resolution
of scans was 512×512, and the in-plane resolution was about
0.6mm.The slice thickness was 1mm.

The VOIs were constructed according to the following
procedures. (1) All scans were reviewed by a radiologist, and
a maximum of three axial slices was selected from the top,
middle, and bottom parts of the lungs, respectively, in each
scan. Only one kind of the pulmonary pattern dominantly
existed on each selected slice, and the radiologist should
indicate what the dominant texture was and where it existed.
(2) Another two radiologists reviewed the results of the first
radiologist. Only the slices which were thought to be correct
by both radiologists were selected. (3) The regions of the
pulmonary patterns on the selected slices were marked by
all three radiologists, respectively, and the common regions
chosen by the radiologists were saved. (4)Thegridswith a size
of 32 × 32 were overlaid on the slices, and the square-shaped
patches were constructed where the regions marked by the
radiologists should take more than 70% area of the patches.
(6)The VOIs with a size of 32×32×32were constructed.The
patches were treated as the central-axial slice of VOIs.

3.2. Experimental Setting. In the experiment, we separated
the VOIs into two independent sets. One set (1161 VOIs) was
adopted as the training set to optimize the parameters of
the methods and then train the methods with the optimal
parameters.The other set (1049 VOIs) was used as the testing
set to evaluate the performances of the methods. There
was no cross subject between the two sets. The number of
VOIs of each type of patterns for the training and testing is
summarized in Table 2. All methods were operated on the
server with a 2.8GHz Intel Core i7 CPU and 24GB RAM.

There were four kinds of parameters in the proposed
methods: the size of cube-shape patches, the number of
atoms, the sparsity of the sparse representation, and the
parameter related to the classifier. We tuned the values of
the patch size from 2 × 2 × 2 to 6 × 6 × 6 with a step
of 1 × 1 × 1, the number of atoms from 500 to 3000 with
an interval of 500, and the sparsity from 2 to 14 with an
interval of 2. The parameter of the SVM classifier was set to
2
−2
, 2
−1
, . . . , 2

11
, 2
12. These parameters were simultaneously

optimized by a 20-fold cross-validation test on the training
set. The combination of the parameters which achieved
the best overall accuracy in the cross-validation test was
chosen as the optimal parameters.The results of the proposed
methods in the cross-validation were given in Figure 3.
Figure 3(a) shows that when the patch size was nearly to the
step of sampling point (4 × 4 × 4), the overall accuracy was
near its maximum. Figure 3(b) illustrates that the raising of

Table 2: Number of VOIs in the training and testing set.

CON GGO HCM EMP NOD NOR Total
Training set 49 170 221 323 113 285 1161
Testing set 45 160 204 275 92 273 1049

the number of atoms can improve the performance of the
methods. Figure 3(c) shows that, with the increasing of the
sparsity, the overall accuracy of the SR1 and SR2 remained,
but the SR3 was decreased.

3.3. Three Kinds of Baseline Methods. We compared the pro-
posed methods with three kinds of state-of-the-art published
techniques, which were called SDF [11], CSE [28], and BOW
[29], respectively. The parameters of the baseline methods
were optimized in the same way as the proposed methods.

(1) In the work [11], the pulmonary patterns were deter-
mined by the six kinds of specially designed features.
So, this method was called SDF in the paper. These
six features were mean and standard deviation of CT
values, air density components, nodular components,
line components, and multilocular components. A
three-layered artificial neural network (ANN) with
back-propagation algorithm was adopted as the clas-
sifier. In the work [11], the number of hidden units in
the ANN was empirically set to 10. We adjusted the
number of hidden units from 5 to 30 with an interval
of 5 in the experiments. Because 2D regions of interest
(ROIs) were required by the SDF, we used the central
slices in the axial direction of the VOIs as the ROIs in
the experiments.

(2) In the work [28], the signature of the VOI was used
for the classification.The signature was defined as the
centroids and the weights of the clusters (number of
voxels in the clusters), and the K-means algorithm
was used to calculate the centroids of the clusters. In
order to reduce the computational cost, the canonical
signatures for each class were generated by combin-
ing and reclustering the signatures of the training
data. The earth mover’s distance (EMD) approach
was adopted to measure the similarity between the
two signatures, and the nearest neighbor (NN) was
employed as the classifier. In the classification, the
VOIs were recognized by comparing the signatures
of the VOIs with the canonical signatures. Because
the canonical signatures and earth mover’s distance
(EMD) were used, this method was called CSE in
the paper. The CSE had only one parameter: the
number of clusters. Considering that the large value
was suggested to be avoided, we adjusted the number
of clusters from 5 to 60 with a step of 5.

(3) The work [29] adopted a model named “bag-of-
words” (also named bag-of-features) to generate the
VOI-level descriptors, so this method was called
BOW in the paper. The main idea of the bag-of-
words was to train a code-book (dictionary) at first
and then use the histograms of the words (atoms)
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Figure 3: Overall accuracy of the proposed methods in the cross-validation; (a) the patch size was adjusted when the number of atoms and
sparsity parameters were fixed; (b) the number of atoms was adjusted when the patch size and sparsity were fixed; (c) the sparsity was adjusted
when the patch size and number of atoms were fixed.

in the code-book to represent the images. These
histograms could be used as the input vectors of the
classifier. In the experiments, the K-Means algorithm
was adopted to cluster the local features, and the
centers of the clusters were saved as the words of
the code-book. The number of words was adjusted
from 50 to 400 with an interval of 50. The local
features adopted in the work [29] were the same as
the proposed methods, so we adjusted the values of
the patch size from 2 × 2 × 2 to 6 × 6 × 6 with a step
of 1 × 1 × 1, the same as proposed methods.The SVM
was adopted as the classifier. Considering that the 𝜒2

kernel achieved the best result in the work [29], the
LIBSVM was employed with the 𝜒2 kernel. Equation
(4) gives the 𝜒2 kernel, where 𝛼 is the parameter for
the kernel and x

𝑖
and x

𝑗
are both histograms with 𝑘-

bins:

𝐻(x
𝑖
, x
𝑗
) = exp[

[

−𝛼

𝑘

∑

𝑡=1

(x
𝑖𝑡
− x
𝑗𝑡
)

2

x
𝑖𝑡
+ x
𝑗𝑡

]

]

. (4)

The possible values of the soft-margin penalty and 𝛼 were set
to be 2−2, 2−1, . . . , 211, 212 and 2−10, 2−9, . . . , 21, respectively.
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Figure 4: Sensitivity and specificity of each method for the pulmonary patterns with optimal parameters.

Table 3: Overall accuracy of each method with optimal parameters.

Method Overall
accuracy Optimal parameter

SR1 96.1% Patch size: 4 × 4 × 4, number of
atoms: 2000, sparsity: 8, 𝐶: 0.5

SR2 95.6% Patch size: 5 × 5 × 5, number of
atoms: 2000, sparsity: 2, 𝐶: 0.25

SR3 96.4% Patch size: 3 × 3 × 3, number of
atoms: 3000, sparsity: 2, 𝐶: 16

SDF 75.8% Number of hidden units: 10
CSE 65.1% Number of clusters: 25

BOW 85.5% Patch size: 3 × 3 × 3, number of
atoms: 300, 𝑔: 1.0, 𝐶: 4.0

3.4. Experimental Results. Table 3 gives the overall accuracy
of each method with the optimal parameters on the testing
set.The sparse representation based methods achieved better
results than the baseline methods (SR1: 96.1%, SR2: 95.6%,
SR3: 96.4% versus SDF: 75.8%, CSE: 65.1%, BOW: 85.5%).
Figure 4 shows that the sensitivity and specificity of the
proposed methods for each pulmonary pattern were all
beyond 90%, better than the baseline methods. Additionally,
Table 4 shows that the 𝑃 values of the statistical differences
(calculated by theMcNemar’s test) for the proposed methods
against the baseline methods were all smaller than 0.0001,
which means that there were significant differences between
the methods.

On the other hand, Table 5 compares the runtime of
the proposed methods with the optimal parameters. When
the K-SVD was replaced by the K-Means, the runtime of
the dictionary learning can be decreased by 98.2% (SR1:
13520 s versus SR2: 241 s). When the OMP

1
was substituted

for theOMP, the average runtime of recognizing one VOI can
be decreased by 55.2% (SR2: 0.29 s versus SR3: 0.13 s).

3.5. Discussion. Experimental results show that the sparse
representation based methods had a good performance on
the classification of the six kinds of the pulmonary patterns,
which were thought to be of great potential for the clinical
application by the radiologists. Furthermore, the replacement
of the K-SVD and OMP by the K-Means and OMP

1
can save

the runtime of the method while keeping the classification
accuracy. Therefore, we thought that the SR3 which adopted
the K-Means and OMP

1
was efficient in the CAD of the

DLDs.
It is thought that the images could be treated as a

distribution of a set of representative features, so the sparse
representation can extract the important information of
examples while removing the irrelevant details, which is
advantageous for the classification. Although the textures
of the DLD patterns on the HRCT images are complex,
the sparse representation approaches are able to produce
the descriptors with enough discriminating power. So, the
proposed methods achieved good results in the experiments.

However, the performance of the sparse representation
based methods on the classification of the GGO and NOD
was relatively worse. The appearance of the GGO on the
HRCT image is a hazy increased in the pulmonary attenu-
ation (“whiter” than the normal pulmonary parenchyma, but
“blacker” than the soft tissues such as vessels). So, the extent of
the GGO would affect the recognition. Figures 5(a) and 5(b)
give two examples of the GGOwhich were misclassified to be
NODandEMP, respectively. Comparedwith the surrounding
normal tissues, the abnormal extent is relatively low in the
VOIs. For the NOD, the recognition would be affected by the
number of nodular opacities. Figure 5(c) shows an example of



8 Computational and Mathematical Methods in Medicine

Table 4: 𝑃 value of statistical difference between pairs of methods.

SR1 SR2 SR3 SDF CSE BOW
SR1 — 0.57 0.75 <0.0001 <0.0001 <0.0001
SR2 0.57 — 0.31 <0.0001 <0.0001 <0.0001
SR3 0.75 0.31 — <0.0001 <0.0001 <0.0001
SDF <0.0001 <0.0001 <0.0001 — <0.0001 <0.0001
CSE <0.0001 <0.0001 <0.0001 <0.0001 — <0.0001
BOW <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 —

(a) (b) (c)

Figure 5: Misclassified examples by the proposed methods. (a) An example of the GGO which was misclassified to be the NOD. (b) An
example of the GGO which was misclassified to be the EMP. (c) An example of the NOD which was misclassified to be the NOR.

Table 5: Runtime of proposed methods with the optimal parame-
ters.

Methods Time of dictionary
learning

Time of recognizing
one VOI

SR1 13520 s (𝐾-SVD) 1.27 s (OMP)
SR2 241 s (𝐾-Means) 0.29 s (OMP)
SR3 350 s (𝐾-Means) 0.13 s (OMP1)

the NOD which was misclassified to be the NOR.The reason
may be the few nodular opacities in the VOI.

For the CAD system, it is also important to reduce
the runtime of the method while keeping the classification
accuracy. Considering that the dictionary learning and sparse
coding spent the most time on the training and testing,
respectively, we tried to optimize these two stages. In order to
reduce the runtime of the dictionary learning, we used the K-
Means to train the dictionary, which could be seen as a simple
version of the K-SVD. Figure 6 compares the SR1 (using
the K-SVD) and SR2 (using the K-Means). It can be found
that the two methods had similar classification accuracies.
Furthermore, the runtime of the dictionary learning by the
K-SVD was nearly 50 times as long as the K-Means when the
same number of atoms was used. It is demonstrated that the
replacement of the K-SVD by the K-Means can considerably
decrease the runtime and not affect the classification accu-
racy.

For the optimization of the sparse coding, although
the runtime of recognizing one VOI in our experiment
seemed not very long, the CAD system will be used to
analyze the whole lungs of patients in the clinical practice,
which can be divided into tens of thousands of VOIs. So, a
small reduction of the runtime in the experiment (classify

the individual VOIs) is meaningful which can lead to a
remarkable decrease in the actual practice (recognize the
whole lungs of patients). In order to reduce the runtime of
the sparse coding, we applied a simple version of OMP, which
selected the desired number of atoms at one time instead
of the iterative calculation (OMP

1
). Figure 7 compares the

SR2 (using the OMP) and SR3 (using the OMP
1
) when the

same parameters were used. The recognition rates of the SR3
were similar to the SR2 when the sparsity was small (2 and
4). And the SR3 spent shorter runtime than the SR2. It is
demonstrated that the application of the OMP

1
with a high

sparsity can achieve a good result and reduce the runtime of
the method.

We compared the proposed methods with the SDF due
to the two reasons. The first one was that the SDF had
been successfully applied to classifymost kinds of pulmonary
patterns, including normal tissues and six kinds of the DLD
patterns.The second one was that the features extracted from
the images were directly used as the input vectors of the
classifier without a “sparse coding” step. Unfortunately, the
performance of the SDF was not satisfied in the experiments.
We thought that the classification may be affected by detect-
ing the geometrical-based components (nodular, linear, and
multilocular component), which is still a difficult problem in
the CAD, especially for the images of the severe DLDs.

The CSE was slightly similar to the SR2 and SR3. Firstly,
the K-Means algorithm was adopted in all three methods.
Secondly, the signatures of the VOIs, which were used as the
input vectors of the classifier, were generated according to the
local features. It could seem as a “coding” step, but not the
sparse coding. Therefore, the CSE was used to compare with
the proposed methods.The CSE produced the worst result in
the experiments.The reason for the bad performance may be
that the NN classifier is naive comparing to the SVM.
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Table 6: Comparison of SR3 and BOW.

Overall accuracy Time of dictionary learning Time of recognizing one VOI
SR3 96.4% 350 s (𝐾-Means) 0.13 s
BOW 85.5% 70 s (𝐾-Means) 0.013 s

K-SVD + OMP (SR1)
K-means + OMP (SR2)
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Figure 6: The classification accuracy and runtime of the dictionary learning of SR1 (K-SVD+OMP) and SR2 (K-Means+OMP). The patch
size was 4×4×4 and the number of nonzero entries was 8. Replacement of the K-SVD by the K-Means can reduce the runtime of the method
while keeping the classification accuracy.
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Figure 7: The classification accuracy and runtime of recognizing one VOI (except feature extraction) of SR2 (K-Means+OMP) and SR3 (K-
Means+OMP

1
). The patch size was 3 × 3 × 3 and the number of nonzero atoms was 3000. Replacement of the OMP by the OMP

1
can reduce

the runtime of the method and achieve good performance when the value of the sparsity is small.

The bag-of-words is a popular model for the image
classification, and the bag-of-words based methods have
achieved good results in the previous works. The bag-
of-words model could be treated as a special version of
the sparse representation, which was implemented with an
extremely strict constraint on the sparsity. In the bag-of-
words, only one atom was used to approximate the example,
and the coefficient of the selected atom was fixed at 1. The
work [16] thought that this constraint was too restrictive,
so it would produce a large reconstruction error. For the
sparse coding strategy, the sparsity constraint was relaxed by
allowing a small number of atoms to describe the examples.

Although more time would cost, the sparse coding approach
can achieve a fine reconstruction. Therefore, it can reserve
more important information of the examples, which was
advantageous for the classification. On the other hand, the
experimental data adopted in our experiments was different
from the previous work [29]. It also would affect the classifi-
cation of the BOW.Table 6 compares the overall accuracy and
runtime of the SR3 and BOW. The BOW spent little time on
both the dictionary learning and recognizing. However, the
SR3 achieved a significantly better overall accuracy. Figure 8
shows two example images of the NOR which were correctly
classified by the SR3 but falsely recognized as the NOD by
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Figure 8: Example images of the NOR which were classified to the
NOD by the BOWmethod.

the BOW.The reason of the misclassification may be that the
appearance of these two VOIs was similar to the NOD.There
were many structures with high CT values (“whiter” than the
normal pulmonary parenchyma) such as vessels in the VOIs.

4. Conclusion

In this research, the sparse representation approaches were
applied and optimized for the classification of the normal
tissues and five kinds of the DLD patterns. By using the K-
SVD and OMP, it achieved a satisfied recognition rate but
spent too much time in the experiment. So, we tried to
replace the K-SVD by the K-Means and substitute the OMP
by a simple version of the OMP, which selected a sufficient
number of atoms at one time (OMP

1
). Experimental results

showed that the performances of the sparse representation
based methods were significantly better than the baseline
methods (SR1: 96.1%, SR2: 95.6%, and SR3: 96.4% versus SDF:
75.8%, CSE: 65.1%, and BOW: 85.5%). Furthermore, when
the K-SVD was replaced by the K-Means, the runtime of the
dictionary learningwas reduced by 98.2% (SR1: 13520 s versus
SR2: 241 s). Andwhen theOMP

1
was substituted for theOMP,

the average runtime of recognizing oneVOIwas decreased by
55.2% (SR2: 0.29 s versus SR3: 0.13 s).Therefore, we concluded
that the method using the K-Means and OMP

1
(SR3) was

efficient for the CAD of the DLDs. We will apply the SR3 in
the clinical practice in future research.
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