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Cytotoxic and noncytotoxic CD8+ T lymphocyte responses are essential for the control of HIV infection.
Understanding the mechanisms underlying HIV control in elite controllers (ECs), which maintain unde-
tectable viral load in the absence of antiretroviral therapy, may facilitate the development of new effec-
tive therapeutic strategies.
We developed an original pipeline for an analysis of the transcriptional profiles of CD8+ cells from ECs,

treated and untreated progressors. Hierarchical cluster analysis of CD8+ cells’ transcription profiles
allowed us to identify five distinct groups (EC groups 1–5) of ECs. The transcriptional profiles of EC
group 1 were opposite to those of groups 2–4 and similar to those of the treated progressors, which
can be associated with residual activation and dysfunction of CD8+ T-lymphocytes. The profiles of groups
2–4 were associated with different numbers of differentially expressed genes compared to healthy con-
trols, but the corresponding genes shared the same cellular processes. These three groups were associ-
ated with increased metabolism, survival, proliferation, and the absence of an ‘‘exhausted” phenotype,
compared to both untreated progressors and healthy controls. The CD8+ lymphocytes from these groups
of ECs may contribute to the control under HIV replication and slower disease progression. The EC group
5 was indistinguishable from normal.
Application of master regulator analysis allowed us to identify 22 receptors, including interferon-

gamma, interleukin-2, and androgen receptors, which may be responsible for the observed expression
changes and the functional states of CD8+ cells from ECs. These receptors can be considered potential tar-
gets of therapeutic intervention, which may decelerate disease progression.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Human immunodeficiency virus (HIV) infection remains one of
the most significant challenges facing humankind. Approximately
38 million people were living with HIV, and 690 thousand died
by the end of 2019 (https://www.who.int/news-room/fact-
sheets/detail/hiv-aids). Early administration of combined
antiretroviral therapy (cART) enables HIV infection to switch to a
chronic form and increases the lifespan of patients to those seen
in uninfected people; however, irregular use of cART and adverse
effects caused by particular drugs and their toxicity significantly
hinder the efficiency of this approach [1–3]. Moreover, since the
presence of latent HIV infection, cART must be administered
throughout life because interruption of therapy leads to viral
rebound and disease progression [4–6]. Thus, new approaches to
treat HIV infection are being developed [5,7–10]. One of the most
promising approaches is developing therapeutic and preventive
vaccines; however, no effective vaccines exist at present [7]. This
lack of a vaccine can be explained by the fact that people do not
develop natural, protective immunity to HIV infection, whereas
almost all successful vaccines were created for diseases for which
natural immunity exists [9]. Since some vaccine candidates allow
moderate protection from HIV, a successful vaccine may poten-
tially be developed; however, to this end, a more profound under-
standing of the interaction between HIV and the immune system is
required.

HIV infects CD4+ T helper cells, as well as monocytes and
macrophages and various kinds of dendritic and epithelial cells
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[11]. HIV infection causes innate and later adaptive immune
responses, where the latter includes both cellular and humoral
components. The formation of anti-HIV antibodies may be essen-
tial for control under viremia [12]. On the other hand, the CD8+ cel-
lular response seems to have a significant role [13,14]. The cellular
response causes a decline in viral load in the acute phase of infec-
tion but cannot eliminate the virus from the organism because a
high mutation rate during replication allows HIV to escape from
the immune response. Persistent infection causes chronic activa-
tion of HIV-specific CD4+ and CD8+ cells, which leads to their apop-
tosis [15,16]. A phenomenon called ‘‘bystander activation” was
described in chronically infected patients, in which significant
numbers of CD4+ and CD8+ non-HIV-specific T lymphocytes are
activated in a T-cell receptor-independent and cytokine-
dependent manner that leads to their apoptosis [13,17–19,20].
Chronic infection also causes the dysfunction or ‘‘exhaustion” of
CD8+ lymphocytes, which is characterized by increased expression
of inhibitory immune checkpoints PD-1, Lag-3, and Tim-3 on the
surface of cells and decreased ability of CD8+ cells to proliferate,
secrete cytokines, and induce cytotoxicity [21]. The high mutation
rate of HIV, immune exhaustion and the loss of CD4+ and CD8+ cells
make further immune responses ineffective with subsequent pro-
gression to AIDS [22]. However, the time from infection to the
development of AIDS can vary significantly among patients. Most
infected patients, called progressors, usually develop AIDS after
8–10 years, but a small group of people, known as long-term
non-progressors (LTNPs), remains asymptomatic for more than
ten years and are characterized by high CD4+ cell counts (more
than 500 cells/ml) [16,23–25]. Another related group of patients,
called elite controllers (ECs), demonstrates the best control of viral
replication with a viral load less than 50 copies/ml for at least one
year [16,23–25]. Little is known about the mechanisms of viral
control in ECs, but it seems that host and viral factors, as well as
various cell types, may be involved [13,16,22–28]. Among these
mechanisms, the cytotoxic and noncytotoxic responses of CD8+

lymphocytes seem to play a major role [13,16,22–26,28]. Naive
CD8+ T lymphocytes recognize MHC-I restricted HIV antigens pre-
sented by dendritic cells in lymph nodes that cause their activa-
tion, proliferation, and differentiation into cytotoxic T
lymphocytes. After that step, HIV-specific CD8+ lymphocytes are
capable of recognizing viral antigens in complex with MHC-I on
the surface of infected cells and cause their apoptosis by secretion
of perforin and granzyme B, as well as by FasL–Fas interaction
[13,16]. The virus enters the cell using the CD4 receptor and vari-
ous coreceptors, including C-X-C chemokine receptor type 4
(CXCR4) and C–C chemokine receptor type 5 (CCR5) [29]. Thus,
CD8+ lymphocytes can also exhibit noncytotoxic anti-HIV func-
tions through the secretion of chemokines that compete with
HIV particles for the corresponding co-receptors [23]. CD8+ lym-
phocytes from ECs have T-cell receptors capable of broader cross-
recognition of mutated epitopes from HIV gag antigens, which may
be a consequence of the presence of HLA-I polymorphisms, e.g.,
HLA-B*57 and B*27, that influence the selection of T cell clones
in the thymus [22,23,26,30]. CD8+ lymphocytes from ECs do not
demonstrate an ‘‘exhaustion” state and have preserved functions
related to cytotoxic and noncytotoxic responses [22,23,26,28],
including the ability to degranulate and secrete cytokines with
anti-HIV effects, such as MIP-1a/b, RANTES, IFN-c, TNF-a, and
IL-2. They also have a higher proliferation rate and low level of
apoptosis compared to progressors.

Investigation of CD8-related mechanisms of viral control in ECs
is essential because mimicking similar responses in chronically
infected progressors may lead to the functional remission of HIV
infection [31]. To date, most of the studies related to the investiga-
tion of mechanisms of HIV suppression in ECs have focused on par-
ticular molecules or pathways, whereas analysis of HIV-related
2448
genome-wide OMICs data provides an opportunity to reveal novel
mechanisms that were not known or previously hypothesized [32–
34]. Transcriptomics studies are the most frequent in HIV research
and include those investigating CD8+ lymphocytes from ECs and
LTNPs [35–38]. Most of the corresponding studies were focused
on total CD8+ lymphocytes, rather than HIV-specific lymphocytes
[35,37,38]. This focus is important because non-HIV-specific CD8+

and CD4+ lymphocytes are involved in the pathogenesis of disorder
by the ‘‘bystander activation” effect (see above), which leads to
their dysfunction and apoptosis [13,17–19]. On the other hand,
non-HIV-specific CD8+ cells may still contribute to the control
under HIV replication in ECs, e.g., by secretion of cytokines with
anti-HIV effects [18]. To identify specific HIV control mechanisms,
the comparison of gene transcription in CD8+ lymphocytes from
ECs to both progressors and healthy controls is required. For
instance, Hyrcza and colleagues compared transcription profiles
from total CD4+ and CD8+ lymphocytes between LTNPs, progres-
sors (acute and chronic phases), and uninfected people [35]. They
found differentially expressed genes (DEGs) between LTNPs and
progressors in both the acute and chronic phases but did not find
differences between LTNPs and healthy controls. This can poten-
tially be explained by the fact that CD8+ from ECs and LTNPs have
heterogeneous transcription profiles, and some of them are indis-
tinguishable from healthy controls. Chowdhury and colleagues
applied cluster analysis to CD8+ cell transcriptional profiles from
51 ECs and found five distinct groups [38]. Some of the groups
were distinguishable from both control samples and samples from
cART-treated patients. The authors found that the pathways gov-
erned by mTOR and eIF2 proteins are potentially the most impor-
tant for the functions of CD8+ lymphocytes in ECs and that these
pathways are dominant in three out of five EC groups.

In the present study, we performed a comprehensive analysis of
the transcription profiles of CD8+ lymphocytes from ECs using an
original pipeline. In contrast to earlier studies [35,37,38], where
transcription profiles from ECs were compared to profiles from
either cART-treated or untreated progressors, we compared gene
expression between ECs and both categories of progressors as well
as uninfected individuals. While previous researches on CD8+ tran-
scriptome [35,37,38] were focused on few pathways and proteins,
e.g., mTOR and eIF2 pathways, or interferon-stimulated genes, we
carried out a thorough comparison of investigated ECs’ and pro-
gressors’ groups using large amounts of pathways and small
groups of functionally related genes. Most importantly, we per-
formed an analysis of master regulators (MRs), which are the pro-
teins at the top of the signaling network regulating the expression
of DEGs observed in ECs.

The developed pipeline includes the following steps: (1) identi-
fication of distinct groups of ECs based on the corresponding tran-
scription profiles using hierarchical clustering; (2) identification of
differential expression for each EC group, cART-treated and
untreated progressors compared to uninfected controls; (3) com-
parison of obtained DEGs between ECs and cART-treated and
untreated progressors; (4) identification and comparison of differ-
entially regulated pathways and small groups of functionally
related genes in ECs and progressors; and (5) identification of
receptors, which are potential MRs and may be responsible for
observed gene expression changes in EC groups compared to
healthy controls. The application of the pipeline to CD8+ lympho-
cytes’ transcription profiles allows us to identify heterogeneous
groups of ECs with potentially different mechanisms of HIV con-
trol, describe the functional state of CD8+ cells for each group at
the level of genes and pathways, estimate similarity and/or differ-
ences of EC groups to cART-treated and untreated progressors, and
reveal receptors for cytokines and hormones, which may be
responsible for observed transcription profiles and, as a result, pre-
served or enhanced functions and survival of CD8+ lymphocytes.
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2. Results

2.1. Identification of EC groups based on CD8+ cell transcription
profiles

We analyzed all available datasets from the Gene Expression
Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo) belonging to
ECs and LTNPs as well as uninfected individuals. We observed that
datasets with the following GEO IDs: GSE87620, GSE6740,
GSE28128 include CD8+ cells transcription data from ECs and
LNTPs. The dataset GSE87620, created by Chowdhury and col-
leagues [38], includes samples from 51 ECs, 32 cART-treated
patients, and ten uninfected individuals. Both GSE6740 and
GSE28128 datasets contain data on five LTNPs, and the GSE28128
dataset also contains data on eight ECs. GSE6740 and GSE28128
datasets contain data mostly on LTNPs, which may differ by mech-
anisms and CD8+ transcription profiles from ECs [39]. ECs are
defined mainly based on low viral load, whereas LTNPs are mainly
based on slow disease progression (decrease in CD4+ cell counts)
[40]. The LTNPs may have comparatively high viral load but slow
disease progression as individuals from GSE6740 and GSE28128
datasets. Therefore, we may conclude that due to low viral load
ECs may be non-progressors if they are characterized by low dis-
ease progression; but we cannot regard LTNPs as ECs at the same
time. Therefore, these two groups should be analyzed separately.
It is important to note that the number of samples (by five samples
from GSE6740 and GSE28128) is too low to perform the clustering
analysis for LTNPs’ samples.

Then, transcription profiles from three datasets (GSE87620,
GSE6740, and GSE28128) were measured on three different
microarray platforms: Illumina HumanHT-12 V4.0 expression bead
chip (GSE87620), Illumina HumanWG-6 v3.0 expression bead chip
(GSE28128), and Affymetrix Human Genome U133A Array
(GSE6740). To merge all samples from three datasets, cross-
platform normalization is required. To do it, the same or similar
microarray platforms are needed. In our case, two very different
platforms (Illumina and Affymetrix) were used. Moreover, to
merge and normalize data, the influence of two factors on gene
expression must be evaluated: the effect of disease (e.g., ECs vs.
healthy people) and batch effect (e.g., the effect of microarray plat-
form). For this analysis, each dataset must contain transcriptional
data from both ECs and healthy people [41]. Unfortunately, the
GSE28128 dataset, based on Illumina microarray as the
GSE87620 dataset, does not contain samples from healthy people.
I It makes corresponding analysis impossible. Since the two prob-
lems mentioned above cannot be outperformed, we have chosen
the dataset GSE87620 for further analysis because it (i) contains
the largest amounts of samples from ECs obtained in similar exper-
imental conditions, including microarray platform, and (ii)
includes data on samples of CD8+ lymphocytes from healthy unin-
fected individuals, which is essential for the analysis.

We performed hierarchical clustering of 51 ECs’ samples from
the GSE87620 dataset in the space of 7113 genes with the highest
variance of expression values across samples (see Materials and
Methods) and found five distinct clusters (Fig. 1) (see also
Table S1).

Fig. 1 shows that transcription profiles from ECs are heteroge-
neous, and some of the revealed groups have opposite profiles
(‘‘cyan” and ‘‘blue” groups). These results are in agreement with
earlier study by Chowdhury and colleagues [38]. In accordance to
this study, the heterogeneity of CD8+ T cell transcription profiles
from 51 ECs cannot be explained by differences in age, gender, race
and ethnicity of individuals, as well as presence of protective alle-
les HLA-B*57/B*27/B*5801, the duration of HIV infection, viral
load, the ratio of CD4+ / CD8+ cells, total CD4+ counts, the neutral-
izing breadth of HIV-specific antibodies, and the breadth and
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magnitude of HIV-specific cytotoxic response [38]. Thus, the
observed differences in gene transcription may be due to the dif-
ferences in functional state of CD8+ lymphocytes essential for viral
control.

To estimate the significance of the obtained EC groups, we per-
formed bootstrap resampling analysis and obtained p-values for
each cluster: the higher the p-value, the more probable the exis-
tence of a cluster. Two types of p-values were calculated: the AU
(Approximately Unbiased) p-value and BP (Bootstrap Probability)
value, which were computed by multiscale and normal bootstrap
resampling, respectively (see Materials and Methods). Most clus-
ters have significant p-values of more than 0.95, and two clusters
have p-values of more than 0.65 (Table 1), which indicates that
revealed clusters are relatively stable under perturbations.

Hereafter, we will refer to EC groups by numbers in order as in
Table 1 (EC groups 1–5). The associations between particular sam-
ples and their groups are available from Table S1.

2.2. Identification of DEGs and their comparison between EC groups
and cART-treated and untreated progressors

We identified DEGs between each of the EC groups and healthy
controls as well as between cART-treated progressors and controls
(Table 2). We also retrieved two other datasets with CD8+ cell tran-
scription profiles from untreated progressors and corresponding
healthy controls, available in GEO (see Materials and Methods).
The first dataset (GEO ID: GSE6740), published by Hyrcza and col-
leagues, contains data on CD8+ lymphocytes from untreated pro-
gressors in acute and chronic phases of infection [35]. The
second dataset (GEO ID: GSE25669) contains corresponding infor-
mation from untreated progressors in the acute phase. Since the
transcription profiles were measured on different microarrays,
we identified DEGs for each dataset separately. Numbers of up-
and downregulated genes with log fold change > |0.7| and adjusted
P-value less than 0.1 in various groups of ECs and progressors are
given in Table 2. The corresponding thresholds were chosen empir-
ically to balance the number of DEGs and statistical significance of
differential expression. Only EC groups 2 and 3, as well as
untreated progressors, were associated with a high number of
DEGs, whereas other groups containing the most samples were
only slightly different from healthy controls.

To compare transcriptional profiles between EC groups together
with cART-treated progressors and healthy controls, we performed
cluster analysis in the space of genes that were differentially
expressed in at least one EC group or cART group compared to
the healthy control (Fig. 2).

Analysis of the content of Table 2 and Fig. 2 allows the following
conclusions to be drawn. First, all transcription profiles from EC
group 5 and some profiles from EC group 4, as well as
cART-treated progressors, are indistinguishable from healthy
controls (right part of Fig. 2). This finding may indicate that total
CD8+ lymphocytes from corresponding ECs are potentially not
involved in control under viremia. However, it should be noted
that the changes in the functional state of CD8+ cells from ECs
and other HIV-infected people may not be associated with changes
in gene transcription but can be related to the changes in the pro-
teome and post-translational modifications [29,32]. Since some
samples from cART-treated progressors are clustered together with
samples from healthy individuals, considerable control under viral
replication may be achieved in corresponding cART-treated pro-
gressors. As samples from cART-treated progressors are divided
into two groups on the dendrogram (Fig. 2), we performed
bootstrap resampling analysis in a similar manner to the case of
ECs but did not find any stable clusters. Second, transcriptional
profiles from EC groups 2, 3, and, partially, group 4 (cyan, green,
and red color in the left part of Fig. 2) are clearly distinguishable

https://www.ncbi.nlm.nih.gov/geo


Fig. 1. Heatmap demonstrating clustering results of CD8+ transcription profiles from ECs. The rows in the heatmap are genes; the columns are samples. The blue, cyan,
green, red, and yellow colors of columns represent EC groups 1–5 (Table 1). Row Z-Score is the number of standard deviations by which the value of gene expression in
particular sample is above or below the mean value of all samples. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Table 1
The significance of EC clusters.

Cluster No Color in heatmap No of samples AU p-value BP p-value

1 Blue 8 0.99 0.99
2 Cyan 5 0.66 0.65
3 Green 9 0.78 0.65
4 Red 13 0.99 0.98
5 Yellow 16 0.99 0.97

Table 2
Numbers of up- and down-regulated genes identified in groups 1–5 of ECs and
progressors.

Groups No of
samples

Up-
regulated

Down-
regulated

EC group 1 (blue) 8 4 65
EC group 2 (cyan) 5 1063 1073
EC group 3 (green) 9 263 351
EC group 4 (red) 13 79 16
EC group 5 (yellow) 16 14 17
cART-treated progressors 32 14 86
Untreated progressors (acute phase)

1 (GSE6740)
5 362 303

Untreated progressors (acute phase)
2 (GSE25669)

4 331 479

Untreated progressors (chronic
phase) (GSE6740)

5 95 118
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from the healthy control. These groups are similar to each other in
terms of transcriptional profiles, but they differ in the magnitude of
gene expression changes. For example, EC group 2 was associated
with 1063 upregulated genes with log fold change greater than 0.7
and adjusted p-value less than 0.1. However, only 232 of 1063
genes were also upregulated in group 3, and this number increased
when the threshold was lowered, e.g., 447 genes were upregulated
with log fold change greater than 0.5 and 559 genes with log fold
change greater than 0.3. Nevertheless, significant numbers of DEGs
are unique for each of the three groups, e.g., 315 of 1063 genes are
upregulated in EC group 2 but not upregulated in EC group 3 with
any log fold change thresholds at p-value less than 0.05. Similarly,
84 of 263 genes were upregulated in EC group 3 but not upregu-
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lated in EC group 4. The same differences were observed for down-
regulated genes. Third, EC group 1 (blue color) and a significant
portion of cART-treated progressors had transcription profiles
opposite those in EC groups 2, 3, and 4 (middle part of Fig. 2).

The transcription profiles from ECs and cART-treated progres-
sors cannot be directly compared with untreated progressors’ pro-
files, since they were measured on different microarray platforms.
Instead, we performed a cluster analysis of corresponding log fold
changes, calculated by dividing the average expression values in
each group to the average expression values in healthy controls
(Fig. 3).

Although transcription profiles from untreated progressors in
the acute phase (see AI1 and AI2 labels on Fig. 3) were derived from
different datasets (GSE6740 and GSE25669) and measured on dif-
ferent platforms (Affymetrix Human Genome U133A Array and
Illumina HumanHT-12 V4.0 expression bead chip), the correspond-
ing fold changes are clustered together to confirm the correctness
of the approach used. Profiles from different phases of infection
(acute and chronic) are also similar (see AI1 and AI2 labels for
acute phase and CI label for the chronic phase in Fig. 3). An earlier
study by Hyrcza and colleagues did not reveal DEGs between sam-
ples of CD8+ lymphocytes from acute and chronic phases [31].
Thus, we will further refer to profiles of progressors with no regard
to the phase of infection.

Fig. 3 shows that EC groups 2 to 5 are clustered together
and have transcription profiles different from those of untreated
progressors. EC group 1 and cART-treated progressors are clus-
tered together and have transcription profiles distinct from
other groups. Thus, three large groups of distinct CD8+ cell tran-
scription profiles exist: (i) EC groups 2–5, with a decreasing
number of DEGs compared to healthy controls in order from
2 to 5; (ii) untreated progressors, whose profiles are different
from those of ECs, which may indicate observed dysfunction
of CD8+ lymphocytes; and (iii) EC group 1 and most of the
cART-treated progressors, whose profiles are different from
healthy controls but opposite to other EC groups and different
from untreated progressors. We performed bootstrap resampling
analysis and found that the AU and BP p-values for these three
groups were equal to 1. It means that three clusters are stable
under perturbations.



Fig. 2. Comparison of five EC groups with cART-treated progressors and healthy controls. The rows in the heatmap are genes; the columns are samples. The blue, cyan,
green, red, and yellow colors of columns represent EC groups 1–5 (Table 1); grey and black colors represent cART-treated progressors and healthy controls, respectively. Row
Z-Score is the number of standard deviations by which the value of gene expression in particular sample is above or below the mean value of all samples. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Comparison of log fold changes from five EC groups, cART-treated and untreated progressors. The rows in the heatmap are genes; the columns are groups of HIV-
infected individuals. The EC groups 1, 2, 3, 4, 5 (EC1-5) are marked by blue, cyan, green, red, and yellow colors. cART-treated progressors (cART) are marked by grey color.
Untreated progressors in acute (AI1 and AI2) (GSE6740 and GSE25669 GEO datasets, correspondingly) and chronic (CI) (GSE6740 GEO dataset) phases are marked by black
color. Only genes, which were differentially expressed in at least one of the investigated groups (Table 2), were used to create the heatmap. Row Z-Score is the number of
standard deviations by which the value of log fold change in particular column is above or below the mean value of all groups. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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2.3. Identification of pathways and cellular processes related to
identified EC groups, cART-treated and untreated progressors

To identify KEGG pathways (https://www.genome.jp/
kegg/pathway.html) related to the groups mentioned above, we
performed gene set enrichment analysis (see Materials and Meth-
ods). Since a particular pathway can have parts of signaling cas-
cades, which are observed in many other pathways, and most
DEGs may belong to these unspecific parts, the enrichment analy-
2451
sis results may contain many false-positive associations with path-
ways. To filter out such nonrelevant pathways, we manually
checked the positions of DEGs in pathway maps. For example, if
the ‘‘p53 signaling pathway” was found but the TP53 gene was
not differentially expressed, the pathway was removed from fur-
ther analysis. The obtained list of KEGG pathways is presented in
Fig. 4. Since the involvement of pathways into HIV control, e.g., cor-
responding changes in functions of p53 in ECs, may not be associ-
ated with only changes in gene transcription but can be related to

https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
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the changes in the proteome and post-translational modifications
[29,32] we prepared the complete list of pathways without filter-
ing, which is presented in Table S2.

The key DEGs from pathways related to activation, survival, and
immune-specific CD8+ lymphocyte functions are presented in
Table 3. Here, we considered genes as differentially expressed if
the log fold change was more than |0.5| and the unadjusted p-
value was less than 0.05. The corresponding thresholds were cho-
sen empirically to balance the number of key genes and differential
expression with statistical significance.

Fig. 4 shows the same relations between EC groups, as well as
treated and untreated progressors, as presented in Fig. 3. The high-
est number of pathways was found for ECs. Untreated progressors
are associated with fewer pathways, and the direction of regulation
of some of them, especially signal transduction pathways, is oppo-
site to most ECs. The direction of pathway regulation in EC group 1
Fig. 4. KEGG pathways are differentially regulated in ECs, cART-treated and untreat
enrichment analysis (see Materials and Methods). The positive value and red color mean
pathway is down-regulated compared to healthy control. EC 1–5 are groups of ECs; cAR
phase from GSE6740 and GSE25669 GEO datasets, correspondingly; CI is untreated prog
references to color in this figure legend, the reader is referred to the web version of thi
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and cART-treated progressors was opposite to EC groups 2–4 as at
the level of DEGs (Figs. 2 and 3).

EC groups 2 and 3 are associated with the same differentially
regulated pathways, whereas group 4 is associated with fewer
pathways which, however, may be observed because some tran-
scription profiles from EC group 4 are indistinguishable from
healthy controls (Fig. 2), but other profiles from this group are sim-
ilar to those from groups 2 and 3. The t-scores obtained for each
pathway by gene set enrichment analysis (see Materials and Meth-
ods) decreased from group 2 to 4, which indicates the different
magnitudes of the pathways’ differential expression. We per-
formed gene set overrepresentation analysis (see Materials and
Methods) to find KEGG pathways associated with genes that are
differentially expressed in EC group 2 (EC group 3) but not differ-
entially expressed in EC group 3 (EC group 4) (see above). The
obtained pathways (Table S3) completely intersected with path-
ed progressors. The values (columns 3–5) are t-test scores calculated in gene set
that pathway is up-regulated, whereas the negative value and blue color mean that
T is cART-treated progressors; AI1 and AI2 are untreated progressors in the acute
ressors in the chronic phase from GSE6740 GEO dataset. (For interpretation of the
s article.)



Table 3
The key differentially expressed genes from revealed pathways representing the most important cellular processes, potentially related to HIV progression.

T cell function
category

EC group 2–5 EC group 1 cART-
treated
progressors

Untreated progressors

Homing to lymph
node

CCR7; CCR7;, SELL;

T cell receptor
pathway

CD8A", ITGAL", CD3D", CD247", ICOS", LCK;,
FYN", PTPRC", NFATC2", NFKB1", JUN"

CD8A;, ITGAL;,
CD3D;, CD3G;,
CD247;, PTPRC;,
FOS;

ICOS;, FOS;,
JUN;

CD8A", ITGAL", ICOS;, FYN", PTPRC;, NFKB1;, FOS;, JUN"

Inhibitory immune
checkpoints

PDCD1", CTLA4", LAG3", HAVCR2"

Receptors for CD8+

lymphocytes’
growth factors

IL2RB", IL4R", IL7R" IL7R; IL4R;, IL7R;

Cytotoxic functions FASLG;, PRF1", GZMB" PRF1; PRF1" FASLG", PRF1", GZMB"
Secreted cytokines,

which compete
with HIV to co-
receptors

CCL3L3", CCL4", CCL5", CXCL12; CXCL12" CCL3", CCL4", CCL5"

Cell cycle regulators CCND2", CCNE1; CCND2; CCND2;, CCNE1", CCNE2", CCNA2", CCNB1", CCNB2",
CDK1", CDK2"

Pro-survival genes BCL2", CFLAR", BIRC2", BIRC3", GADD45A",
GADD45B"

GADD45B; BCL2;, BIRC3;, GADD45A;, GADD45B;

Pro-apoptotic genes FAS", BAX;, APAF1", DFFA;, CASP8", CASP7;,
CASP2", CASP4"

CASP8; BAK1", FAS", BAX", APAF1", BCL2L11", DFFA", CASP3",
CASP8", CASP7", CASP4"

Interferon-
stimulated genes

ADAR", APOBEC3F;, APOBEC3G", DDX58;,
IFITM1", IFNG", IFNGR1", IRF1", ISG15;, JAK1",
OAS1;, PSMB8", STAT2", TAP1", TRIM5;,
TYK2"

JAK1;, TRIM22; IFNG;,
IFNGR1;

APOBEC3F", APOBEC3G", APOBEC3H", BST2", DDX58",
EIF2AK2", IFI35", IFI6", IFIH1", IFIT1", IFIT3", IFNG",
IFNGR1;, IFNGR2;, IRF9", ISG15", JAK2", MX1", OAS1",
OAS2", OAS3", OASL", PSMB8", PTPN2", SOCS1;, STAT1",
TAP1", TRIM22", ZBP1"
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ways from Fig. 4. Thus, we conclude that EC groups 2 to 4 are sim-
ilar to each other at the level of pathways but different in the num-
ber of DEGs and the magnitude of fold changes. EC group 5 was
indistinguishable from healthy controls at the level of pathways.

The most important cellular processes regulated by the identi-
fied pathways are as follows: (i) cell metabolism and protein syn-
thesis; (ii) T cell activation, migration, and performing CD8+ cell-
specific functions, including contact cytolysis of target cells and
secretion of cytokines; and (iii) cell growth, proliferation, and
apoptosis. The highest number of revealed pathways was related
to cell metabolism and various steps of protein synthesis: from
gene transcription to translation, folding, transport, and degrada-
tion (Fig. 4) (for more details see Discussion).
2.4. Identification of master regulators responsible for the observed
transcriptional changes in ECs

Since HIV does not infect CD8+ lymphocytes, the observed tran-
scription changes in ECs may be a consequence of the action of
cytokines, growth factors, and mediators on corresponding recep-
tors on the surface of cells. We used the Genome Enhancer tool
(https://ge.genexplain.com) to find MRs, which are the proteins
at the top of the signaling network regulating the activity of tran-
scription factors and their complexes and, in turn, are responsible
for expression changes observed in ECs (see Materials and
Methods).

We selected only those MRs whose transcription changed sig-
nificantly with log fold changes higher than |0.5| and p-values less
than 0.5. This was done to filter out irrelevant MRs, which may not
influence gene expression in ECs and may not even be expressed in
CD8+ lymphocytes. The transcription changes of selected MRs
themselves mean that they are part of positive feedback loops
and are extremely important to maintain the transcription profiles
observed in ECs.

We also calculated MRs for cART-treated and untreated pro-
gressors for comparison. Most MRs obtained for each group of
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ECs, cART-treated and untreated progressors are intracellular
‘‘hubs,” such as kinases, phosphatases, ubiquitin ligases, GTPases,
and transcription factors (Table S4). We focused on receptors
because their interaction with corresponding ligands is the first
of the consequent events leading to gene transcription changes.
As a result of the analysis, we identified 22 receptors, which may
be responsible for the observed transcription changes in five EC
groups (Fig. 5) (for details on receptors, see Discussion). The recep-
tor was selected if the corresponding gene was differentially
expressed with a log fold change greater than |0.5| and a p-value
less than 0.5 in at least one of five EC groups.
3. Discussion

In our study, we performed the comprehensive analysis of the
transcriptional profiles of total CD8+ lymphocytes (including HIV-
and non-HIV-specific lymphocytes) from ECs, cART-treated, and
untreated progressors using the original pipeline. The correspond-
ing analysis allowed us to identify several groups of ECs, which are
characterized by distinct transcriptional profiles, up- and down-
regulated pathways, cellular processes, and MRs. Comparison of
the obtained pathways, processes and MRs to those from cART-
treated and untreated progressors allowed us to identify the most
important differences in functional states of CD8+ T lymphocytes
and to suggest possible mechanisms of HIV control.

We identified three large clusters (displayed in Fig. 3 and Fig. 4)
of transcription profiles from the total CD8+ cells: (i) profiles from
ECs which, in turn, formed four distinct groups (EC groups 2–5); (ii)
profiles from untreated progressors, which are different from those
of ECs; (iii) profiles from a small group of ECs (EC group 1) and pro-
files from cART-treated progressors, which are opposite to other EC
groups and different from untreated progressors.

The transcriptional profiles from EC groups 2–5 differ from each
other in numbers of DEGs and the magnitude of fold changes (the
ratio of the average of expression values in each group to the aver-
age of expression values in healthy controls): group 2 is associated

http://https://ge.genexplain.com


Fig. 5. Receptors, identified as MRs, and their transcription changes in EC groups, cART-treated and untreated progressors. EC 1–5 are groups of ECs; cART is cART-
treated progressors; AI1 and AI2 are untreated progressors in the acute phase from GSE6740 and GSE25669 GEO datasets, correspondingly; CI is untreated progressors in the
chronic phase from GSE6740 GEO dataset.
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with the highest number of DEGs and highest magnitude, whereas
group 5 is indistinguishable from the healthy control. Nevertheless,
EC groups 2 to 4 were similar at the level of differentially regulated
pathways (Fig. 4). On the other hand, these groups are different in
terms of MRs (Fig. 5, Table S4), which regulate the transcription of
observed DEGs. EC group 2 was associated with the highest num-
ber of differentially expressed MRs and positive feedback loops
(see Results), which can explain the highest number of DEGs
among all four groups (Table 2). EC groups 3 and 4 are associated
with fewer and different MRs. Given the information on DEGs
(Table 2), differentially expressed pathways (Fig. 4), and MRs
(Fig. 5, Table S4), we can conclude that the same cellular functions
are changed in CD8+ lymphocytes from EC groups 2–4 but with dif-
ferent magnitudes, and the initial causes may be different, which is
reflected by different MRs.

The observed differences between EC groups may not be related
to different mechanisms of HIV control but may be associated with
other characteristics of patients. In accordance to study by Chowd-
hury and colleagues [38], the existence of EC groups 2–5 cannot be
explained by differences in age, gender, race, and ethnicity of
individuals, as well as the presence of protective alleles
HLA-B*57/B*27/B*5801, the duration of HIV infection, viral load,
the ratio of CD4+ / CD8+ cells, total CD4+ counts, the neutralizing
breadth of HIV-specific antibodies, and the breadth and magnitude
of HIV-specific cytotoxic response. At the same time, it is worth
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noting that the possibility of a relationship between EC groups’
presence and the duration of EC status exists because it is quite
challenging to assess the EC status due to the frequency of HIV load
monitoring. Additionally, it is difficult to estimate the time from
the beginning of infection to diagnosis. The differences between
EC groups 2–5 may be explained by other unknown factors, such
as the presence of different HIV variants with different impacts
on CD8+ cell transcription and functions, co-morbidities, and
changes in microbiome [32].

The identified pathways may indicate preserved functions, sur-
vival, and proliferation of CD8+ lymphocytes from EC groups 2–4
compared to untreated progressors. Many pathways related to
metabolism and protein synthesis were up-regulated in EC groups
2–4, whereas fewer corresponding pathways were up-regulated in
untreated progressors, which may indicate a lower degree of
increase in metabolism (Fig. 4). The anti-apoptotic genes were
up-regulated in CD8+ lymphocytes from EC groups 2–4 and
down-regulated in untreated progressors (Table 3). The pro-
apoptotic genes were upregulated in untreated progressors,
whereas they have a mixed pattern of expression in EC groups
2–4. Thus, CD8+ lymphocytes from EC groups 2–4 have a higher
ability to survive than untreated progressors; these observations
are in accordance with literature data [16,23]. The transcription
of cyclins is also dissimilar in EC groups 2–4 and untreated pro-
gressors. The only gene coding cyclin D2 is up-regulated in ECs,
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whereas genes coding cyclins E1, E2, B1, B2, and A2 are up-
regulated in untreated progressors (see Table 3). Since CD8+ cells
from the blood are asynchronized in cell cycle phases, this observa-
tion may indicate cell cycle arrest in the G2 phase. The HIV-1 pro-
tein vpr causes G2 arrest in both infected and uninfected cells,
whereas the Vif protein promotes the G1 to S phase transition
[42,43]. Only cyclins D1 and D2 are expressed in all phases of the
cell cycle; thus, the presence of their transcription in EC groups
2–4 and the absence of transcription of other cyclins may indicate
normal CD8+ lymphocyte proliferation. CD8+ lymphocytes from
ECs are known to preserve their ability to proliferate compared
to progressors [26]. The receptors of CD8+ cell growth factors were
also up-regulated in EC groups 2–4 but down-regulated in
untreated progressors (Table 3). The absence of dysfunction of
CD8+ lymphocytes in ECs is supported by unchanged transcription
of immune checkpoints, whereas the corresponding genes are up-
regulated in untreated progressors [21] (Table 3). Interestingly, the
transcription of genes coding perforin and granzyme B was up-
regulated in both groups, but the gene coding Fas ligand was
down-regulated in ECs but up-regulated in untreated progressors.
CD4+ and CD8+ T lymphocytes in LTNPs have lower frequencies of
apoptosis than progressors, which correlates with a lower fre-
quency of cells expressing Fas and FasL [44]. Interferon-
stimulated genes are up-regulated in untreated progressors, but
mostly unchanged or even down-regulated in EC groups 2-4 com-
pared to healthy controls. It is known that interferon activation
plays a deleterious role in HIV pathogenesis, including ‘‘exhaus-
tion” and apoptosis of lymphocytes, whereas decreased expression
of interferon-stimulated genes is associated with HIV control
[45,46].

The EC group 5 is indistinguishable from a healthy control. It
may indicate that total CD8+ lymphocytes from corresponding
ECs are potentially not involved in control under viremia. On the
other hand, the changes in the functional state of CD8+ cells from
these ECs required for HIV control may not be associated with gene
transcription changes but can be related to the changes in the pro-
teome and post-translational modifications [29,32]. Conversely,
the absence of transcriptional changes in EC group 5 may indicate
an exceptional control of viral replication and the absence of
‘‘bystander activation” of CD8+ lymphocytes [47–50]. Following
the study by Chowdhury and colleagues [38], all 51 elite
controllers had an undetectable viral load (usually less than 50
or less than 75 copies/mL) on at least two consecutive occasions
for at least two years. Viral load measured by single copy viral
RNA assay and duration of HIV infection were not distinguished
between EC groups 1–5. However, the blips of infection between
measurements are not excluded. Thus, spontaneous cases of func-
tional cure of HIV among studied ECs, especially from group 5, may
occur. Additional extensive studies, such as assessment of HIV-
DNA reservoir, are required to prove such individuals’ presence.
The involvement of CD8+ cells with unchanged gene expression
in HIV control and the degree of such control should be estimated
in future studies.

In contrast, the pathways associated with cART-treated progres-
sors are differentially regulated in the opposite direction compared
to ECs: they are mostly downregulated, whereas the same path-
ways from EC groups 2–4 are upregulated (Fig. 4). This finding
may indicate the downregulation of metabolism, activation,
growth, proliferation, and other essential processes in CD8+ T lym-
phocytes from cART-treated progressors. Some pathways, e.g., JAK-
STAT and FoxO pathways, are changed in the same direction in
cART-treated and untreated progressors (Fig. 4). However, the
transcription of many important genes, e.g., pro- and anti-
apoptotic genes, is not changed, unlike in untreated progressors
(see Table 3). This finding may indicate that many of the consid-
ered processes are preserved in CD8+ T lymphocytes from cART-
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treated compared to untreated progressors, which is in accordance
with literature data [28]. It is known that low-level viremia
(~1 copy/mL of plasma) is detectable in most individuals under
cART, which leads to residual activation and dysfunction of
CD8+ T lymphocytes.

Surprisingly, EC group 1 is associated with transcription
changes and pathways similar to those in cART-treated progres-
sors. Thus, EC group 1 may also be associated with some degree
of CD8+ T lymphocyte dysfunction and may have other viremic
control mechanisms that are unrelated to CD8+ cells.

The observed transcription changes in CD8+ lymphocytes from
ECs may be a consequence of the action of various cytokines,
growth factors, and mediators on corresponding receptors on the
surface of cells. We identified 22 receptors (Fig. 5) that were pre-
dicted as MRs by the Genome Enhancer tool and may be responsi-
ble for the expression changes observed in ECs. Many of the
identified receptors are expressed in the opposite direction in
ECs and untreated progressors. Taking into account the key roles
that these receptors play in gene expression changes in ECs and
progressors, they may represent the potential targets of therapeu-
tic intervention, which enables switching of the phenotype of CD8+

lymphocytes to those in ECs, decelerating disease progression and
potentially increasing the antiviral noncytotoxic response.

Most of the identified receptors are related to various cytokines,
which are important for regulating CD8+ lymphocyte functions. For
instance, the interferon-gamma receptor is a potential MR for DEGs
from both ECs and treated and untreated progressors. IFNGR1 gene
transcription changed in the opposite direction in ECs and progres-
sors. Interferon-gamma is one of the most important cytokines
required to increase CD8+ lymphocyte abundance during viral
infection and regulate their homeostasis [51,52]. The IL-4 receptor
gene is unexpectedly upregulated in EC group 2 and downregu-
lated in untreated progressors. IL-4 is a T helper 2 cytokine that
reduces the ability of CD8+ lymphocytes to suppress HIV infection
[53]. Gene IL2RB coding subunit beta of the IL-2 receptor is upreg-
ulated in ECs but unchanged in progressors. In contrast to IL-4, IL-2
enhances CD8+ T cell anti-HIV activity and optimizes both effector
T cell generation and differentiation into memory cells [53,54].
Thus, it appears that the combination of signaling from various
receptors, rather than from a single receptor, may cause gene
expression changes and functional states observed in ECs and
progressors.

Some of the identified receptors, e.g., androgen and G-coupled
estrogen receptors, are not typically associated with CD8+ lympho-
cytes; however, they may also contribute to expression changes in
ECs. For instance, the androgen receptor gene is downregulated in
EC groups 2 and 4, but its expression is not changed in progressors.
It was shown that women are significantly overrepresented in the
EC population compared to men [26]. This finding can be explained
by influence of androgens on the immune system, including CD8+

lymphocytes [55]. Thus, the androgen receptor may play a signifi-
cant role in the observed phenomenon.
4. Conclusions

We have developed an original pipeline to analyze the tran-
scription profiles of CD8+ lymphocytes from a large cohort of ECs,
cART-treated and untreated progressors. This pipeline includes
cluster analysis of CD8+ cells’ transcription profiles from ECs, com-
parison of the obtained clusters to corresponding profiles from
cART-treated and untreated progressors, identification and com-
parison of pathways and cellular processes between revealed
groups of ECs and progressors, and identification of receptors,
which are potential MRs and may be responsible for observed gene
expression changes in EC groups. The application of the pipeline
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allowed us to obtain the new findings regarding the heterogeneity
of the mechanisms of HIV control in ECs.

First, we identified five EC groups (EC groups 1–5) with distinct
transcription profiles from CD8+ lymphocytes. Second, we analyzed
the peculiarities of each group of ECs associated with their
transcription profiles. Particularly, the transcriptional profiles of
EC group 1 were opposite to those of EC groups 2–4 and similar
to those of the cART-treated progressors. The transcriptional pro-
files of EC groups 2–4 are distinguishable from healthy controls
and similar to each other in terms of DEGs and pathways, but they
differ in the magnitude of gene expression changes so that the
number of DEGs and magnitude increase from EC group 4 to group
2. The EC groups 2–4 are also different from each other at the level
of potential MRs, which may indicate the different original causes
of observed transcription changes. The transcription profiles from
EC group 5 are indistinguishable from healthy controls.

Comparison of transcriptional profiles between five groups of
ECs and both untreated and cART-treated progressors allowed us
to identify key pathways, processes, and MRs, which may be
essential for HIV control and may represent potential therapeutic
intervention targets. We demonstrated that transcription changes
in EC groups 2–4 are distinct from untreated progressors and oppo-
site to cART-treated progressors. According to pathway analysis,
the CD8+ lymphocytes from EC groups 2–4 associated with
increased survival, proliferation, cellular metabolism, and protein
synthesis compared to cells from both untreated progressors and
uninfected individuals. Compared to untreated progressors, the
CD8+ lymphocytes from EC groups 2–4 are not associated with
the ‘‘exhausted” phenotype: a state of CD8+ cells characterized by
an increased expression of inhibitory immune checkpoints (PD-1,
Lag-3, and Tim-3) on the cell surface leading to a decreased ability
of CD8+ cells to proliferate, secrete cytokines and induce cytotoxic
effect. These findings may explain the observed viral control status
of ECs from groups 2–4 and indicate the potential involvement of
non-HIV-specific CD8+ lymphocytes in noncytotoxic antiviral
functions.

The corresponding profiles from EC group 1 are opposite to
those of EC groups 2–4 and similar to those of the cART-treated
progressors. The ECs from group 1 may be associated with
low-level viremia, which is present in cART-treated progressors,
that leads to residual activation and dysfunction of CD8+ T
lymphocytes. According to the findings mentioned above,
EC groups 1 and 5 may have mechanisms of HIV control unrelated
to transcriptional changes in CD8+ cells.

Finally, we identified 22 receptors, whose modulation may be
responsible for the observed transcription changes and functional
state of CD8+ lymphocytes from ECs. Besides receptors for cytoki-
nes, hormones and mediators receptors were identified, e.g.,
androgen receptor and G-coupled estrogen receptors, whose rela-
tionships with ECs were not previously described. The directions
of changes in the transcription of receptor-coding genes are similar
or opposite to untreated progressors depending on the receptor.
Thus, it appears that the combination of signals from various
receptors, rather than from a single receptor, may cause gene
expression changes and functional states observed in ECs. The
revealed receptors, especially those whose transcription changes
are different in ECs and untreated progressors, e.g., interferon-
gamma or androgen receptors, and their combinations may repre-
sent the potential targets of therapeutic intervention, enabling
switching the phenotype of CD8+ lymphocytes to those in ECs,
decelerating disease progression, and potentially increasing the
antiviral responses.

The pipeline developed can be further applied for a comprehen-
sive analysis of the transcription profiles of some other viral infec-
tious diseases to find potential host targets for the development of
novel antiviral medicines.
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5. Materials and Methods

5.1. Transcriptional datasets

The three datasets GSE87620, GSE6740, and GSE25669 with
CD8+ cell transcriptional profiles from ECs, cART-treated and
untreated progressors, and uninfected individuals were obtained
from Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.-
gov/geo). Despite some other HIV- and EC-related transcriptomics
experiments were done in recent years and corresponding data
was publicly available [32], only these three datasets contained
samples of CD8+ lymphocytes from healthy uninfected individuals,
which was important for the performed analysis. The dataset
GSE87620 includes 51 samples from ECs, 32 samples from
cART-treated patients, and 10 samples from uninfected people.
The dataset GSE6740 contains data on CD8+ lymphocytes from
untreated progressors in acute (5 samples) and chronic (5 samples)
phases of infection and uninfected individuals (5 samples). The
dataset GSE25669 contains corresponding information from
untreated progressors in the acute phase (4 samples) and unin-
fected people (2 samples). The transcriptional profiles from
GSE25669, GSE87620, and GSE6740 datasets were measured on
three microarray platforms: Illumina HumanHT-12 V3.0 and V4.0
expression bead chips and Affymetrix Human Genome U133A
Array, correspondingly.
5.2. Preprocessing, clustering of samples and identification of
differentially expressed genes

The corresponding analysis was performed using various R
packages from The Comprehensive R Archive Network (https://
cran.r-project.org) and Bioconductor (https://www.bioconductor.
org). All steps of analysis were performed separately on each of
the three datasets.

Background correction and quantile normalization of transcrip-
tion data were performed using different functions depending on
the microarray platform: function ‘‘rma” from the ‘‘affy” package
for Affymetrix microarray (GSE6740 dataset) and the ‘‘neqc” func-
tion from the ‘‘limma” package for Illumina bead chips (GSE87620
and GSE25669 datasets).

Next, we removed probes that were unexpressed in all samples
of the dataset. To filter out corresponding probes on the Affymetrix
microarray, we used the ‘‘mas5calls” function from the ‘‘affy” pack-
age and removed probes having an ‘‘absent” score across all sam-
ples. To do this on Illumina bead chips, we removed probes that
have detection p-values greater than 0.05 in all samples of the
dataset.

We selected only probes having Entrez IDs and only one probe
per gene with the highest variance among samples using the
‘‘nsFilter” function from the ‘‘genefilter” package. It was done
because of three reasons. First, the probes with the highest vari-
ance are the most informative for identifying differences between
elite controllers’ transcription profiles since they have different
expression values in different profiles. Second, most applied meth-
ods required transcription data at the level of genes but not probes,
e.g., gene set enrichment analysis and search for MRs. Third, com-
paring DEGs and MRs, between transcription datasets derived from
different microarray platforms also required gene-level transcrip-
tion data. The obtained gene transcription profiles were used at
all stages of the pipeline.

To find potential clusters on heterogenic transcriptional profiles
from ECs, we selected 51 corresponding samples and filtered out
50 percent of genes with the lowest variance using the ‘‘nsFilter”
function. This step was employed to remove genes whose expres-
sion is not changed significantly across samples and cannot be use-
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ful to find potential EC groups. To find clusters, we used a hierar-
chical agglomerative clustering approach implemented in the
‘‘hclust” basic R function. We choose 1 – Pearson correlation coef-
ficient between pairs of samples as a distance measure, and the
‘‘ward.D2” clustering method [56]. To estimate the uncertainty in
obtained clusters, we performed multiscale bootstrap resampling
using the ‘‘pvclust” function from the ‘‘pvclust” package. For each
cluster, ‘‘pvclust” calculates p-values, which indicate how strongly
the cluster is supported by data: the higher the p-value, the more
probable the cluster’s existence. Function ‘‘pvclust” provides two
types of p-values: the AU (Approximately Unbiased) p-value and
BP (Bootstrap Probability) value. The AU p-value is computed by
multiscale bootstrap resampling, whereas the BP value is com-
puted by normal bootstrap resampling [57].

To visualize clusters, we used the ‘‘heatmap.2” function from
the ‘‘gplots” R package. This function creates a heatmap with two
dendrograms: one for rows, which are genes, and another for col-
umns, which are samples. To create these dendrograms, the above-
mentioned clustering method (‘‘ward.D2”) and distance measure
(1 – Pearson correlation coefficient) were used. The lengths of den-
drogram branches are proportional to 1 – Pearson correlation coef-
ficient values. To highlight the differences in gene expression
values between samples, row Z-scores were calculated. The row
Z-score is the number of standard deviations by which the value
of gene expression in a particular sample is above or below the
mean value of all samples.

To identify DEGs for each of the obtained clusters of ECs, groups
of cART-treated and untreated progressors compared to uninfected
people, we used the Linear Models for Microarray Data (Limma)
approach [58]. The analysis was performed using functions from
the ‘‘limma” R package. The thresholds on log fold changes and
Benjamini-Hochberg corrected (adjusted) p-values were chosen
depending on the particular analysis.

5.3. Gene set enrichment analysis

To identify KEGG pathways (https://www.genome.jp/
kegg/pathway.html) that were differentially regulated in each
group of ECs, as well as in cART-treated and untreated progressors
compared to uninfected persons, we performed gene set enrich-
ment analysis [59] using the ‘‘gage” function from the ‘‘gage” R
package [60]. Function ‘‘gage” implemented a two-sample t-test
for determining the differential expression of genesets, e.g., genes
from a particular pathway, between two conditions, e.g., samples
from cART-treated progressors and uninfected individuals. We
selected pathways with an adjusted p-value of less than 0.1, which
is the default threshold. The required data on relations between
human genes and KEGG pathways were retrieved from the Enrichr
database (https://amp.pharm.mssm.edu/Enrichr/#stats).

5.4. Gene set overrepresentation analysis

To identify KEGG pathways associated with genes that are dif-
ferentially expressed in EC group 2 (EC group 3) but not differen-
tially expressed in EC group 3 (EC group 4), gene set
overrepresentation analysis was used [59]. This analysis allows
the identification of pathways where investigated genes are over-
represented compared to the background gene set, e.g., all genome
genes. To perform analysis, we used the function ‘‘enrichr” from
the ‘‘enrichR” R package. We selected pathways with an adjusted
p-value less than 0.1, as in the gene set enrichment analysis.

5.5. Identification of master regulators

To identify MRs, we used the Genome Enhancer tool
(https://ge.genexplain.com) developed by geneXplain GmbH [66].
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Briefly, Genome Enhancer implemented a pipeline including three
main steps: (i) analyze promoter regions of genes to predict tran-
scription factor binding sites using positional weight matrices from
the TRANSFAC database [61]; (ii) since it is clear by now that com-
binations of TFs, rather than a single TF, drive gene transcription
and define its specificity, the combinations of TF binding sites
called ‘‘composite regulatory modules” are identified [62]; and
(iii) reconstruct the signaling pathways that activate these TFs
and identify master regulators at the top of such pathways
[63,64]. This analysis uses a signaling network from the TRANS-
PATH database [65].

5.6. Implementation of the pipeline in R

The R scripts implementing all steps of the pipeline, except
the search for MRs realizing in Genome Enhancer tool
(https://ge.genexplain.com), are available on the GitHub repository
(https://github.com/serivanov86/EC_transcription_analysis).
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