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Lung cancer consists of two main subtypes: small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC) that are
classified according to their physiological phenotypes. In this study, we have developed a network-based approach to identify
molecular biomarkers that can distinguish SCLC from NSCLC. By identifying positive and negative coexpression gene pairs in
normal lung tissues, SCLC, or NSCLC samples and using functional association information from the STRING network, we
first construct a lung cancer-specific gene association network. From the network, we obtain gene modules in which genes are
highly functionally associated with each other and are either positively or negatively coexpressed in the three conditions. Then,
we identify gene modules that not only are differentially expressed between cancer and normal samples, but also show distinctive
expression patterns between SCLC and NSCLC. Finally, we select genes inside those modules with discriminating coexpression
patterns between the two lung cancer subtypes and predict them as candidate biomarkers that are of diagnostic use.

1. Introduction

Lung cancer is the most commonly occurring type of cancers
worldwide. In China, lung cancer has become the first cause
of cancer death in China, with the fastest rising mortality in
population [1]. According to the third nationwide Sampling
Survey ofDeathCause Review conducted byChina’sMinistry
of Health in 2006, the mortality caused by lung cancer has
increased by 75.77% since 1990s and has increased by 33.25%
after excluding factors of age structure changes. Although it
has been widely recognized that smoking is the most related
risk factor for lung cancer [2], the complete understanding
of pathogenesis, disease diagnostics, and the development of
therapy of lung cancer are still under active research.

Lung cancer consists of two major histological types:
small-cell lung cancer (SCLC) and non-small-cell lung cancer
(NSCLC) [3]. SCLC is defined as “a malignant epithelial

tumor consisting of small cells with scant cytoplasm, ill-
defined cell borders, finely granular nuclear chromatin, and
absent or inconspicuous nucleoli” [4]. Though SCLC is
not very common in lung cancers (about 20%), it has a
strong relationship with smoking and has a rapid growth
rate, early metastases, and high initial response rates [5]. It
usually arises from major bronchi centrally, with extensive
mediastinal adenopathy [3]. NSCLC includes squamous-
cell (epidermoid) carcinoma, adenocarcinoma, and large-
cell carcinoma. Adenocarcinoma and large-cell carcinoma
usually arise from the small bronchi, bronchioles, or alveoli
(peripheral tumors) of the distant airway of the lung periph-
erally, whereas squamous-cell carcinoma usually arise cen-
trally [6]. Squamous-cell carcinoma is characterized by lobar
collapse, obstructive pneumonia, or hemoptysis and shows
late development of distant metastases. Adenocarcinoma is
associated with early development of metastases, with some
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Table 1: Summary of datasets used in our study.

GEO ID Sample type Sample number Sample information Reference
GSE23546 Normal 1349 Nontumor lung tissues from patients with lung cancer [13]

GSE41271 NSCLC 275 275 tumor specimens from ∼1,700 non-small-cell lung cancer specimens
collected at the MD Anderson Cancer Center over the years 1997 to 2005 [14]

GDS4794 SCLC 23 23 clinical small-cell lung cancer (SCLC) samples from patients
undergoing pulmonary resection [15]

GSE62021 SCLC 25 25 SCLC tumor tissues Unpublished

of the primary tumors as a symptomless peripheral lesion.
Large-cell carcinoma has large peripheral masses, sometimes
with cavitation [3].

Lung cancer patients usually have no symptoms or have
nonspecific symptoms such as shortness of breath, coughing,
and weight loss at the early stage of cancer development,
making early diagnosis of lung cancer extremely difficult.
Most diagnosed lung cancer patients are at their late stage
of cancer development, which is the main reason for the
high mortality rate of lung cancer. It is therefore of dire need
to develop sensitive and reliable tools for diagnosis of lung
cancer. Usually, the diagnosis of lung cancer involves (i) the
identification and complete classification of malignancy, (ii)
immunohistochemistry to distinguish lung cancer subtypes,
and (iii) molecular testing [7]. Given that different subtypes
of lung cancer have significantly different responsiveness to
treatment, for example, SCLC usually responds better to
chemotherapy and radiotherapy, whereas NSCLC patients
often have to be treated with surgery [8], in this study we
focus ondevelopingmethod for distinguishing different types
of lung cancer that can be of diagnostic use.

During the development and progression of cancer, there
are significant genetic and molecular alterations in cells,
which can be permanent, irreversible, and dynamic and cause
significant variations in gene expression [9]. Thus, detecting
genes with signature expression change can provide diagnosis
markers. For instance, Zhang et al. analyzed the genome-
wide expression profiles of both mRNAs and miRNAs in
three NSCLC cell lines and identified hundreds of genes
and 10 miRNAs with significant expression changes that
can be used as potential diagnosis markers [10]. Mishra
et al. investigated the differential gene expression profile
in different lung cancer cell line and discovered a number
of genes whose expression is significantly correlated with
patients’ survival [11]. Here, we aim to identify genes with
significant gene expression change between the two subtypes
of lung cancer. This could be done by simply comparing
the expression level of a gene between the two subtypes of
lung cancer. However, mounting evidence has suggested that
this is not a reliable approach. First, this approach is not
robust and is significantly biased by expression noise [12].
Second, the top differentiated expressed genes may not be the
causal genes but the downstream response genes. Third, in
cell genes do not function by themselves but in a complicated
network, and ignoring the relationships between genes will
significantly reduce the power of finding the truly important
genes. Thus, we attempt to tackle the problem by integrating

gene expression profiles with protein-protein interaction
information using a network-based approach.We first collect
gene expression datasets from GEO, including normal lung
tissue, SCLC, and NSCLC [13–15]. Then, after determining
gene pairs with significant positive or negative correlation
in gene expression in each of the three types of datasets, we
map those gene pairs to the STRING network [16], a large-
scale gene functional association network, and then construct
a lung cancer-specific functional association network. We
further partition this network into genemodules and identify
the modules with significant association with either SCLC
or NSCLC in terms of gene expression variation. These
gene modules are considered to be potentially useful for
distinguishing SCLC from NSCLC. Functional enrichment
analysis has revealed that those gene modules are highly
related to lung cancer development. Finally, from the gene
modules we identify genes with specific association with
either SCLC or NSCLC. These genes can be exploited as
potential biomarkers of diagnostic use for distinguishing
SCLC or NSCLC.

2. Methods and Materials

2.1. Dataset Collection and Processing. We use GEO query
[17] to download gene expression datasets from GEO
database [18] and prepare three datasets corresponding to
normal lung tissue, SCLC, andNSCLC, respectively (Table 1).
These three datasets are selected using the following rules: (1)
the samples must be human tissue samples; (2) the sample
size should be greater than 100; and (3) there is no special
treatment. Since SCLC is not common, we reduce the sample
size to bemore than 20.We use R package limma [19] for gene
expression normalization. Then, for each gene expression
dataset we calculate Pearson Correlation Coefficient (PCC)
for each pair of genes using their expression profile and
select the top 1% and bottom 1% gene pairs as positively or
negatively coexpressed genes, respectively.These positively or
negatively coexpression gene pairs from the three datasets are
combined together and are mapped to the STRING [16] net-
work.These mapped gene pairs with a functional association
score greater than 500 in the STRING network are retained
and are used to construct a lung cancer-specific functional
association network. This network is then partitioned into
genemodules using a network partition algorithm called iNP
[20]. For validation purpose, we also prepare a newdataset for
NSCLC (GSE10245 [21]) whose sample size is 58 and repeat
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the above procedures to construct a new lung cancer-specific
functional association network.

2.2. Identification of Lung Cancer-Specific Gene Modules. For
each of the partitioned gene modules, we test whether it has
significant gene expression variation between normal, SCLC,
and NSCLC samples. Since each module includes a group
of genes that are significantly functionally related to each
other, a module can be considered as a pathway. There are
many ways to determine whether a pathway is significantly
differentially expressed between cancer and normal samples.
Here, we choose a simple method, the median expression
value. We use the median expression value for all genes
inside the module as the representative expression value
for the module in a given sample. Then, we perform t.test
to compare the module’s expression values in either SCLC
or NSCLS samples against those in normal samples and
define the differentially expressed modules between lung
cancer and normal samples as those with 𝑃 value < 0.01
(adjusted by FDR) and the log (fold change) greater than 2.
Next, from those differentially expressed modules we further
quantitatively determine their specificity in distinguishing
SCLC or NSCLC by plotting a ROC curve using the module’s
expression value in SCLC samples against the values in
NSCLC samples. The AUC (area under curve) of the ROC
curve is calculated and is used to indicate the specificity of
the module to either SCLC or NSCLC.The AUC ranges from
0 to 1, with random association equaling to 0.5. AUC of 0 or 1
corresponds to perfect specific in distinguishing the two lung
cancer subtypes. In addition, if the AUC is greater than 0.5,
it indicates that the module tends to be upregulated in SCLC
compared to that in NSCLC or vice versa. We use Cytoscape
3.1 to display module structure and use R to draw clustering
figures.

2.3. Function Enrichment Analysis. Given a selected gene
module, we perform function enrichment for the genes inside
the module. GO annotation file is downloaded from [22]
on Nov. 23rd, 2014. Pathway annotation from MSigDB is
downloaded from GSEA [23]. Biological process GO terms
and MSigDB pathways are tested for enrichment using
Fisher’s test() in R. The significance of threshold was set at
0.01. Since there are many enriched gene sets that are highly
overlapping (sharing common genes), we use a cluster-and-
filter strategy to reduce the enriched gene sets. In the cluster-
step, we first calculate the relatedness between all gene sets
(defined as the number of overlapped genes/the number of
union genes) and form a gene set-based network. Then, we
use iNP to partition the network into modules within which
gene sets are highly overlapping. In the filter step, after the
enrichment analysis, we map all enriched gene sets to gene
set modules and then select the most significantly enriched
gene set within each module as the representative gene sets.
Finally, we collect all representative gene sets of each enriched
module to form a reduced list of enriched gene sets.

2.4. Detection of Genes with Significantly Different Expression
Pattern between the Stages and Subtypes of NSCLC. The
NSCLC datasets provide the stage and subtype information
for each sample. By grouping samples according to stages or
subtypes, we perform ANOVA test to determine whether a
given gene’s expression value is significantly different in at
least one stage or subtype ofNSCLC.We set𝑃 value threshold
as 0.05 with fdr adjustment.

3. Results

3.1. Construction of a Lung Cancer-Specific Functional Asso-
ciation Network. We prepare three gene expression datasets
for normal lung tissues (1,349 samples), SCLC (90 samples),
and NSCLC (275 samples), respectively, from GEO database
(Table 1). For each dataset, we calculate Pearson Correlation
Coefficient (PCC) for each pair of genes using their expres-
sion profiles in the datasets. PCC ranges from −1 to 1, with
1 indicating positive correlation and −1 indicating negative
correlation. After sorting all gene pairs according to their
PCC values, from each of the three datasets we select the
top 1% and the bottom 1% gene pairs as the positively and
negatively coexpressed gene pairs.Then, we combine all gene
pairs selected from the three datasets and map them to the
STRING network [16], a functional association network. By
retaining those gene pairs that have a functional association
score greater than 500 (the score indicates a strong functional
association between the pair of genes), we obtain a lung
cancer-specific gene functional association network, which is
a binary network, consisting of 7,572 genes and 43,816 edges.

3.2. Identification of Differentially Expressed Gene Modules in
Lung Cancer. Using a network partition algorithm called iNP
[20], we partition the lung cancer-specific gene functional
association network into 737 modules with a modularity
of 0.53. Genes within each module are highly functionally
associated with each other. To determine whether a gene
module is differentially expressed between cancer andnormal
samples, we first determine the expression value of the
module using themedian expression value of genes inside the
module in each sample. Then, similar to determining differ-
entially expressed genes, we use t.test to identifymodules that
are differentially expressed between SCLCorNSCLC samples
and normal lung tissues samples. We find a total number
of 71 modules that are significantly differentiated expressed
between lung cancer and normal tissues (Figure 1). Of these
modules, 23 and 28 are significantly up- and downregulated
in SCLC, respectively. As forNSCLC, there are 18 upregulated
and 18 downregulated modules. In addition, there are 8
modules that are upregulated in both SCLC and NSCLC, and
8modules that are downregulated in both SCLC andNSCLC.

3.3. Functional Analysis of Differentially Expressed Gene Mod-
ules in Lung Cancer. To obtain functional insights about
the differentially expressed gene modules, we conduct path-
way enrichment analysis for genes inside those modules.
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Figure 1: Heatmap of gene modules that have differential expression pattern between SCLC or NSCLC and normal lung tissue samples.
Each column represents a module. The top four rows represent the types of differential expression pattern. For example, SCLC up means the
module is upregulated in SCLC, compared to normal tissues. The most significantly enriched functions of selected gene modules are shown
with 𝑃 values at the bottom of the heatmap.

The full list of the module ID, genes inside the mod-
ule, and enriched functions can be found in Supplemen-
tal Table 1 in Supplementary Material available online at
http://dx.doi.org/10.1155/2015/685303. Here, we only provide
a reduced list of enriched functions (see Methods for details)
in order to reduce the redundancy among enriched functions.
The most significantly enriched functions of selected gene
modules are shown in Figure 1 for illustrative purpose. For
genemodules that are upregulated in both SCLC andNSCLC,
some of them are enriched with glycolysis metabolic process,
a common hallmark for many types of cancers [24]. For
the gene modules that are only upregulated in SCLC, we
find that their functions are involved in mitochondrial, cell
cycle, and chromatin organization.This is consistent with the
phenotypic description of SCLC, which says that cancer cells
of SCLC have finely granular nuclear chromatin, suggesting
that chromatin organization may be disrupted. It has also
been proposed that a therapeutic strategy for SCLC can be
to target the mitochondrial apoptosis pathway [5]. For gene
modules that are downregulated in only SCLC, they are
enriched with diverse functions, such as asthma, regulation

of immune system process, muscle contraction, and fatty
acid metabolism. Though asthma is rarely related to SCLC,
some cases have been reported [25]. Fatty acids in erythrocyte
are treated as potential biomarkers in the diagnosis of lung
cancer [26]. For gene modules that are upregulated in only
NSCLC, some are enriched with function involved in DNA
replication, which is consistent with previous findings that
genes DNA repair are closely related to the risk of NSCLC
[27]. For gene modules downregulated only in NSCLC, some
of them are enriched with Notch pathway and glutathione
transferase activity, both of which have been reported to be
strongly related to lung cancer [28, 29].Thus, functional anal-
ysis of differentially expressed genes supports that these gene
modules are strongly related to lung cancer development,
making it possible for us to conduct further exploitation to
identify gene biomarkers that can be of diagnosis use for
distinguishing the two subtypes of lung cancer.

3.4. Identification of Potential Diagnosis Biomarkers that
Distinguish SCLC and NSCLC. Given the 71 gene modules
that are significantly differentially expressed between lung
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cancer and normal lung tissues, we seek to find those that
are specific to either SCLC or NSCLC lung cancer subtype.
To do this, we use the module’s expression value (the median
expression value of all genes inside the module) to classify
SCLC and NSCLC cancer samples and plot an ROC curve
for each module. The AUC (area under curve) of an ROC
ranges from 0 to 1, with 0.5 indicating randomness. AUC of
0 or 1 corresponds to perfect specific in distinguishing the
two lung cancer subtypes. In addition, as we try to classify
SCLC against NSCLC, an AUC close to 1.0 indicates that the
module is upregulated in SCLC compared to that in NSCLC,
and if it is close to 0.0, then the module is downregulated
in SCLC. We find 10 modules with AUC score greater than
0.9, indicating that these modules are strongly upregulated
in SCLC compared to NSCLC. There are also 16 modules
with scores smaller than 0.1, suggesting that they are strongly
downregulated in SCLC.

After identifying gene modules that have distinct expres-
sion pattern between SCLC and NSCLC, we further seek to
find genes that are of diagnostic use for distinguishing SCLC
and NSCLC. For this purpose, we develop a score function
to measure the ability to distinguish the two subtypes of
lung cancer for each gene. This score integrates both the
cancer type specificity of the module and the coexpression
value difference of the gene. The cancer type specificity of
a module is simply defined by the absolute value of AUC-
0.5. The coexpression value difference of a gene in a given
module is determined by the average of the coexpression
value difference of the interactions involving this gene in
this module. The coexpression value difference for a given
interaction is defined by the difference in coexpression
pattern of the two interacting genes between SCLC and
NSCLC. For example, for two interacting genes A and B,
if they are positively coexpressed in SCLC while negatively
coexpressed in NSCLC (see Section 2 for the definition of
positively or negatively coexpressed gene pairs), then the
coexpression value difference will be 1 − (−1) = 2 and vice
versa. However, if the two interacting genes are positively or
negatively coexpressed in one cancer subtypewhile randomly
coexpressed in another one, then the coexpression value will
be 1 − 0 = 1. If both genes are either positively or negatively
coexpressed in both cancer types, then the coexpression value
difference will be 0. By computing the coexpression value
difference of all interactions in the module that involve the
gene under test, we can compute the average and use it to
represent the coexpression value difference for this gene.
Finally, the coexpression value of the gene is multiplied by
the cancer type specificity of the module to produce a score
for the gene.

Following the above-described strategy, we have obtained
137 genes with significant power in distinguishing SCLC from
NSCLC and show the top 10 upregulated and top 10 down-
regulated genes in SCLC as candidate genes of diagnostic use
in Figure 2. Three upregulated genes in SCLC are from one
module named M505 (Figure 3(a)). This module is enriched
with mitochondrial related functions.The AUC score for this
module is 0.957, indicating that this module is significantly
upregulated in SCLC compared to NSCLC. One of the three
genes is UQCRB that has the highest score. UQCRB interacts
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Figure 2: Bar plot for the top 10 upregulated and top 10 down-
regulated genes in SCLC, compared to that in NSCLC. The bar
height of each gene represents the predicted score for the gene that
distinguishes SCLC samples fromNSCLC samples (see Section 2 for
details). Geneswith score greater than 0 are upregulated genes, while
those with score smaller than 0 are downregulated genes.The IDs of
the module where the predicted genes belong are shown inside the
bar.

with 18 genes in this module. Among the 18 interactions
involving UQCRB, 16 are negatively coexpressed in SCLC
while 14 are positively coexpressed in NSCLC. UQCRB is
ubiquinol-cytochrome c reductase binding protein and is
strongly upregulated in SCLC. It is likely that this gene may
be important for the disrupted mitochondrial functions in
SCLC. Interestingly, we find that there is a SNP located on
UQCRB, rs7827095, which is strongly related to lung disease
according to a cohort study [30]. As for genes downregulated
in SCLC, ACBD3 has the highest score. ACBD3 is present
in a module named M339 that is strongly downregulated in
SCLC with an AUC score of 0.000152 (Figure 3(b)). ACBD3
interacts with two genes in this module, which are BPNT1
and BLZF1. Interestingly, ACBD3 and BPNT1 are negatively
coexpressed in SCLC,while ACBD3 andBLZF1 are negatively
coexpressed in NSCLC. ACBD3 is acyl-CoA binding domain
containing 3 protein and is involved in hormone regulation of
steroid formation.This gene has been reported to show signif-
icant difference between responders (PR) and nonresponders
(PD) to gefitinib in NSCLC treatment [31]. Here, our study
suggests that ACBD3 is worthy of further exploitation to
understand its involvement in the development of NSCLC.
The full list of predicted genes is shown in Supplementary
Table 1.

3.5. Further Validation of the Proposed Method. To fur-
ther validate our method, we select a new NSCLC dataset
(GSE10245) which has 58 samples (the original dataset
includes more than 100 samples) and then repeat the analysis
to predict genes that can distinguish SCLC from NSCLC.
We obtain 101 genes in which 15 overlaps with the original
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Figure 3: Examples of gene modules and genes that can distinguish SCLC from NSCLC. (a) shows a module that is upregulated in SCLC,
while (b) shows a module with only four genes that is downregulated in SCLC. The ROC curve of the two modules is shown at the right
of the figure. The color of each gene inside the module represents the expression pattern of this gene between a cancer subtype and the
normal lung tissues, with red indicating that it is upregulated in cancer, while blue indicating that it is downregulated. The edge color of each
interaction inside the module represents the coexpression information in the corresponding cancer subtypes, with orange indicating positive
coexpression while green indicating negative coexpression.

predictions (Figure 4(a)). The overlap is significantly higher
than random (P value < 1𝑒 − 10), indicating that our method
is robust to the choice of datasets.

In addition, we inspect whether the predicted genes based
on the original datasets can be used to distinguish different
stages of lung cancer or the subtypes within either SCLC or
NSCLC. The NSCLC dataset actually includes not only stage
information, but also the subtypes of NSCLC information.
The stage information is 48 IA, 84 IB, 11 IIA, 39 IIB, 51
IIIA, 35 IIIB, and 7 other stages. In this dataset, there are
14 subtypes of NSCLC, including 183 adenocarcinomas, 80
squamous, and 12 other subtypes of NSCLC. Among the
137 predicted genes, we find 78 genes that can distinguish
adenocarcinoma from squamous samples based on their
expression levels and 14 genes that have significant gene
expression variation in at least one stage of NSCLC (see
Section 2 for details of the test procedure). The proportion
of those genes among the predicted genes is significantly
higher than that of randomly selected genes (both 𝑃 values
< 0.01) (Figure 4(b)). These results suggest that a significant
proportion of our predicted genesmay also carry information

to distinguish between different stages and subtypes of
NSCLC.

4. Discussion

Lung cancer is the leading cause for cancer related death
worldwide. It can be classified into twomain subtypes (SCLC
and NSCLC) according to their physiological phenotypes.
In this study, we have conducted a computational study
to predict molecular biomarkers that are of potential diag-
nostic use for distinguishing the two types of lung cancer.
By collecting gene pairs that are significantly positively or
negatively coexpressed in normal lung tissues, SCLC sam-
ples, and NSCLC samples and considering their functional
associations, we have constructed a lung cancer-specific
gene functional association network. After partitioning the
network into gene modules, we identify gene modules that
have significant expression variation between lung cancer
and normal lung tissues. We then compute the specificity of
each of these modules in distinguishing SCLC from NSCLC
and further identify candidate genes inside the module that
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Figure 4: (a) Venn diagram to show the overlap between the genes predicted by using the new NSCLC dataset and those predicted based on
the original three datasets. (b) Proportion of genes among the predicted genes that are significant in distinguishing between different subtypes
and stages of NSCLC and that are among randomly selected genes. “∗∗” indicate that the observed proportion is significantly higher than
random.

have discriminating power for lung cancer subtypes. There
are several interesting findings that resulted from this study.
First of all, we find that gene modules that are upregulated
in both lung cancer subtypes are significantly enriched
with glycolysis metabolism, while those downregulated gene
modules shared for the two lung cancer subtypes are enriched
with phenylalanine metabolism, suggesting that there are
common altered metabolisms in the development of both
SCLC and NSCLC. Secondly, we find gene modules that
are differentially expressed only in one subtype of lung
cancer and are enriched with specific functions. For example,
gene modules upregulated only in SCLC are enriched with
functions in chromatin modeling, while those upregulated
in NSCLC are enriched with DNA replication process,
suggesting that there may be unique mechanism for the
development of specific lung cancer subtypes. Thirdly, we
have obtained a list of genes that have significant discrimi-
nating power in distinguishing lung cancer subtypes. These
genes are identified by integrating both cancer-specificity
information and coexpression information and provide novel
hypothesis for the development of specific subtype of lung
cancer. Finally, although the study is designed for identifying
molecular biomarker for distinguishing lung cancer subtypes,
the methodology developed here can be readily applied for
distinguishing the subtypes of other types of diseases.
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[13] Y. Bossé, D. S. Postma, D. D. Sin et al., “Molecular signature of
smoking in human lung tissues,” Cancer Research, vol. 72, no.
15, pp. 3753–3763, 2012.

[14] M. Sato, J. E. Larsen, W. Lee et al., “Human lung epithelial
cells progressed to malignancy through specific oncogenic
manipulations,” Molecular Cancer Research, vol. 11, no. 6, pp.
638–650, 2013.

[15] T. Sato, A. Kaneda, S. Tsuji et al., “PRC2 overexpression and
PRC2-target gene repression relating to poorer prognosis in
small cell lung cancer,” Scientific Reports, vol. 3, article 1911, 2013.

[16] D. Szklarczyk, A. Franceschini, M. Kuhn et al., “The STRING
database in 2011: functional interaction networks of proteins,
globally integrated and scored,” Nucleic Acids Research, vol. 39,
supplement 1, pp. D561–D568, 2011.

[17] S. Davis and P. S. Meltzer, “GEOquery: a bridge between
the Gene Expression Omnibus (GEO) and BioConductor,”
Bioinformatics, vol. 23, no. 14, pp. 1846–1847, 2007.

[18] T. Barrett, D. B. Troup, S. E. Wilhite et al., “NCBI GEO: mining
tens of millions of expression profiles—database and tools
update,”Nucleic Acids Research, vol. 35, supplement 1, pp.D760–
D765, 2007.

[19] G. K. Smyth, “Limma: linear models for microarray data,” in
Bioinformatics andComputational Biology SolutionsUsing R and
Bioconductor, pp. 397–420, Springer, New York, NY, USA, 2005.

[20] S. Sun, X. Dong, Y. Fu, and W. Tian, “An iterative network
partition algorithm for accurate identification of dense network
modules,” Nucleic Acids Research, vol. 40, no. 3, p. e18, 2011.

[21] R. Kuner, T. Muley, M. Meister et al., “Global gene expression
analysis reveals specific patterns of cell junctions in non-small
cell lung cancer subtypes,” Lung Cancer, vol. 63, no. 1, pp. 32–38,
2009.

[22] M. Ashburner, C. A. Ball, J. A. Blake et al., “Gene ontology: tool
for the unification of biology,”Nature Genetics, vol. 25, no. 1, pp.
25–29, 2000.

[23] A. Liberzon,A. Subramanian, R. Pinchback,H.Thorvaldsdóttir,
P. Tamayo, and J. P. Mesirov, “Molecular signatures database
(MSigDB) 3.0,” Bioinformatics, vol. 27, no. 12, pp. 1739–1740,
2011.

[24] R. A. Gatenby and R. J. Gillies, “Why do cancers have high
aerobic glycolysis?” Nature Reviews Cancer, vol. 4, no. 11, pp.
891–899, 2004.

[25] M. S. Dionisi and S. Rubino, “Asthma associated with small-cell
lung cancer,” Supportive Care in Cancer, vol. 3, no. 5, pp. 317–318,
1995.
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