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Abstract: Activated protein C (APC) is a vitamin-K dependent plasma serine protease, which
functions as a natural anticoagulant to downregulate thrombin generation in the clotting cascade.
APC also modulates cellular homeostasis by exhibiting potent cytoprotective and anti-inflammatory
signaling activities. The beneficial cytoprotective effects of APC have been extensively studied and
confirmed in a number of preclinical disease and injury models including sepsis, type-1 diabetes and
various ischemia/reperfusion diseases. It is now well-known that APC modulates downstream cell
signaling networks and transcriptome profiles when it binds to the endothelial protein C receptor
(EPCR) to activate protease-activated receptor 1 (PAR1) on various cell types. However, despite
much progress, details of the downstream signaling mechanism of APC and its crosstalk with
other signaling networks are far from being fully understood. In this review, we focus on the
cardioprotective properties of APC in ischemic heart disease and heart failure with a special emphasis
on recent discoveries related to the modulatory effect of APC on AMP-activated protein kinase
(AMPK), PI3K/AKT, and mTORC1 signaling pathways. The cytoprotective properties of APC might
provide a novel strategy for future therapies in cardiac diseases.

Keywords: activated protein C; endothelial protein C receptor; heart failure; ischemic heart
disease; cardioprotection

1. Protein C System

1.1. Protein C Zymogen and Its Activation Mechanism

Protein C (PC) is a vitamin K-dependent serine protease zymogen that is primarily synthesized
by the liver and circulates in plasma with a concentration of 4–5 µg/mL [1]. The gene for PC is located
on chromosome 2, encoding 9 exons with 419 amino acids in length [2]. The mature protein contains
two chains linked together by a single disulfide bond between Cys141 and Cys277 [2]. The N-terminal
light chain contains the gamma-carboxyglutamic acid (Gla) domain and two epidermal growth factor
(EGF-1, EGF-2) domains while the C-terminal heavy chain contains the trypsin-like serine protease
domain [3]. Protein C through its Gla-domain binds with a high affinity to endothelial protein C
receptor (EPCR) and is converted to activated protein C (APC) through a limited proteolytic process by
the thrombin-thrombomodulin (TM)- complex on the surface of endothelial cells [4–6]. TM is a single
chain transmembrane type-1 receptor glycoprotein composed of an N-terminal lectin-like domain,
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six EGF-like domains, and a short cytoplasmic tail [7–9]. The EGF-5 and -6 domains of TM bind to
thrombin to change the substrate specificity of thrombin from a procoagulant to an anticoagulant
enzyme by rendering it inactive toward fibrinogen but enabling it highly active toward PC [4,10].
The EGF-4 domain of TM binds the PC to facilitate the presentation of the PC zymogen into the
catalytic pocket of thrombin [10,11]. The Gla-domain of PC has a high-affinity binding site for EPCR
and this interaction on the endothelial cell surface enhances the activation of PC by the thrombin-TM
complex approximately 20-fold [6].

1.2. Anticoagulant Mechanism

Upon activation by the thrombin-TM complex, APC can dissociate from its membrane-bound
receptor cofactor, EPCR, and bind to its circulating vitamin K-dependent plasma cofactor, protein S,
on a negatively charged membrane surface, to initiate its anticoagulant function by proteolytically
inactivating factors Va and VIIIa, the essential procoagulant cofactors for thrombin generation in both
intrinsic and extrinsic pathways of the blot clotting cascade [12–14]. Inactivation of factor Va by APC
is mediated through cleavages at three Arg306, Arg506, and Arg679 protease recognition sites [15,16].
The cleavage at the Arg306 site induces the dissociation of factor Va from the negatively charged
membrane surface, thereby leading to the complete inactivation of the cofactor [17]. The APC-protein
S complex proteolytically inactivates factor VIIIa by a similar manner through the cleavage of the
cofactor at Arg336 and Arg562 recognition sites [18]. A defect in the protein C anticoagulant pathway
is associated with a hypercoagulable state that increases the clotting propensity of the blood, thereby
resulting in pathological vascular thrombosis with variable severity due to uncontrolled thrombin
generation [19,20]. The classic example is a clinical-pathological condition referred to it as “APC
resistance” which was used to describe the phenomenon of a poor response to the anticoagulant activity
of APC [21]. It was later discovered that APC resistance is mainly due to a mutation in the APC’s
target gene factor V in which Arg506 of the cofactor is replaced with a Gln [22]. The mutant cofactor
was then named Factor V-Leiden which predisposes the carriers to a hypercoagulable phenotype due
to the poor recognition and inactivation of the variant cofactor by APC [22]. APC resistance has been
demonstrated as a cardiovascular risk factor for atherosclerosis and arterial thrombosis among patients
with stroke and venous thrombosis [23,24].

1.3. Anti-Inflammatory and Cytoprotective Mechanism

In addition to functioning as an essential anticoagulant protease in the clotting cascade, APC also
exhibits potent anti-inflammatory and cytoprotective signaling activities when it remains associated
with EPCR on the membrane surface [25]. It has been demonstrated that the Gla-domain of PC and APC
binds EPCR with a similar affinity [26]. The protective cellular signaling activity of APC is mediated
through the EPCR-bound protease-activating protease-activated receptor 1 (PAR1) on endothelial or
other cell types (Figure 1) [27]. The PAR1-dependent anti-inflammatory activity of the APC-EPCR
complex mediates the inhibition of expression of inflammatory genes including the inhibition of key
transcription factors like the activator protein 1 (AP-1) family c-Fos and FosB [28–30]. The protective
signaling also results in inhibition of the release of inflammatory cytokines (such as IL-1β, IL-6 and
TNF-α), the inhibition of the nuclear translocation of NF-κB and the down-regulation of endothelial
cell adhesion molecules such as ICAM-1, VCAM-1 and E-selectin (Figure 1), thereby limiting the
leukocyte infiltration through the vascular system [28–30]. PAR1 is a G-protein coupled receptor
(GPCR) which was first identified as a specific receptor for thrombin on platelets [31]. However,
later studies showed that other coagulation proteases can cleave the receptor through different
recognition sites on the extracellular domain of the receptor to initiate distinct intracellular signaling
responses [32–34]. Thrombin cleaves PAR1 at the Arg41 site of the receptor to elicit pro-inflammatory
responses in endothelial cells by mediating the phosphorylation of ERK1/2 and activation of the
RhoA signaling pathway, thereby leading to disruption of the endothelial barrier function and edema
formation [25,35,36]. On the other hand, the APC-EPCR complex cleaves the Arg46 site of PAR1
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to initiate anti-inflammatory and cytoprotective signaling responses that culminate in activation of
Rac1 signaling that counteracts the barrier disruptive effect of RhoA signaling in vascular endothelial
cells [34,36]. Interestingly, it has been found that the occupancy of EPCR by the Gla-domain of
PC/APC plays a key role in determining the signaling specificity of PAR1 [34]. Thus, when EPCR
is occupied by its natural ligand, the PAR1-dependent signaling specificity of coagulation proteases
is cytoprotective independent of the proteases cleaving either Arg41 or Arg46 cleavage sites [37,38].
It has been demonstrated that the receptors of protein C activation (TM) and APC signaling (EPCR
and PAR1) are all colocalized in lipid-rafts of endothelial cells, [39] and that the occupancy of
EPCR by the Gla-domain of protein C recruits GPCR kinase-5 (GRK-5) to the membrane, thereby
phosphorylating the cytoplasmic domain of PAR1 and favoring its interaction with β-arrestin-2 rather
than with a G-protein (Figure 1) [38]. Thus, a β-arrestin-2 biased EPCR-dependent PAR1 signaling by
either thrombin and APC initiates anti-inflammatory and cytoprotective and anti-apoptotic signaling
responses in vascular endothelial cells [34,36,38].
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Figure 1. The protein C activation by the thrombin-thrombomodulin complex and the cytoprotective
function of Activated Protein C (APC) in ischemic heart disease and heart failure. The Endothelial
Protein C Receptor (EPCR)-dependent cleavage of Protease-Activated Receptor 1 (PAR1) by APC
initiates β-arrestin-2 biased signaling that results in the activation of Rac1 GTPase, Akt, and AMPK
by the Ca2+/calmodulin-dependent protein kinase-kinase β (CaMKKβ) pathway. The PAR1-biased
signaling also inhibits the activation/nuclear translocation of NF-κB and mTORC1 signaling network.
E1, E2 . . . represent EGF-like domains. See the text for more details. The figure was prepared by
software provided by Biorender.com.

The EPCR- and PAR1-dependent anti-apoptotic activity of APC is partially mediated through
the down-regulation of expression of the typical intrinsic apoptosis pathway genes including p53 and
Bax and up-regulation of the expression of the oppositely functioning gene Bcl-2 [40]. Additionally,
APC has been found to counteract apoptosis by inhibiting caspase-8 activation, which is the typical
extrinsic apoptosis pathway gene [41]. Moreover, APC was reported to regulate both the inflammation

Biorender.com


Int. J. Mol. Sci. 2019, 20, 1762 4 of 12

and apoptosis processes by regulating the endoplasmic reticulum calcium flux and reducing the
reactive oxygen species (ROS) accumulation [42]. Even though the anti-apoptotic effects of the
APC pathway has been confirmed both in vitro and in vivo systems, additional future studies are
required to clarify the mechanism through which APC exerts anti-apoptotic effects under different
pathophysiological conditions.

2. Ischemic Heart Disease and APC Cardioprotection

2.1. Ischemia/Reperfusion (I/R) Injury and Cell Death

In the ischemic phase of heart disease, the ischemic injury is primarily caused by the blockage
of the oxygen supply to heart tissues [43]. Insufficient oxygen supply results in a decrease in ATP
synthesis by the mitochondria through oxidative phosphorylation. The energy and oxygen deficiency
enhances the glycolytic rate and elevates H+ production, which eventually decreases the cytosolic
pH. Meanwhile, the cytosolic Ca2+ channel is disturbed because the cell compensatory pH regulating
system leads to an increase in Ca2+/Na+ exchange [43]. The accumulated Ca2+ would increase
the plasma membrane permeability, increase the activity of cell-damaging proteases, and increase
mitochondrial permeability by opening the mitochondrial permeability transition pore (mPTP). Such
damage occurring in the mitochondrial membrane leads to the leakage of the electron transport chain
and generation of ROS, primarily in the superoxide forms [43]. The oxidative stress is the main factor
contributing to the intracellular injury that leads to necrotic cell death [43,44].

The re-entry of oxygen supply to myocytes is responsible for altering the intracellular metabolism
and environment, thereby inducing further cellular damage called reperfusion injury [45,46].
The damage is mainly caused by the oxygen in the mitochondrial respiratory chain due to the activation
and excessive activity of electron transferring enzymes leading to accumulation of ROS, oxidative
stress and intracellular damage [47]. ROS is also involved in the activation of several pathogenetic
networks including further increasing Ca2+ concentration, activating hydrolases and increasing mPTP
that ultimately culminates in cell death [43,48,49]. Various signaling pathways have been reported to
be significantly elevated or activated in the reperfusion phase, such as the mitogen-activated protein
kinase family (MAPK), c-Jun N-terminal kinase (JNK), NF-κB, and apoptotic pathways [43,46,48,49].
The damaged cells from the I/R injury initiate inflammatory responses that result in the activation
of macrophages, endothelial cells, neutrophils, lymphocytes, as well as the complement system,
altering the expression levels of pro- and anti-inflammatory cytokines and inducing further cardiac cell
death [43–54]. Three cell death mechanisms are involved in cardiac I/R injury. Apoptosis, a process
of programmed cell death that is induced in I/R injury by the hypoxic stress and excessive oxidative
stress from reperfusion [43]. It can be induced through the activation of the pro-apoptosis Bcl-2 family
and other apoptotic protease-activating factors that compromise the integrity of the mitochondrial
membrane, leading to caspase cascade activation and the degradation of mitochondria which is called
mitoptosis [44,55,56]. Another type of programmed cell death, known as necroptosis in I/R injury
could induce intensive local inflammation in ischemic tissue [56]. The key regulators of necroptosis
are the RIP1 and RIP3 complex and the phosphorylated form of RIP3 can recruit RIP1 to activate
the necrosome-induced necroptosis [57]. Additionally, the overexpression of RIP3 has been found to
accompany excessive ROS generation and enhanced NF-κB transcription factor accumulation which is
involved in the initiation of inflammation [58]. A compensatory cardioprotective signaling mechanism
that is initiated in the stressed heart to cope with ischemic stress and ensuing energy depletion is
the AMP-activated protein kinase (AMPK) signaling pathway [59–62]. The AMPK signaling can
supply energy to the stressed heart through glycolysis and alternative metabolic pathways including
autophagy through the process of degrading intracellular damaged organelles and macromolecules by
lysosomal pathways [59–65]. In addition to providing ATP through alternative metabolic pathways,
the AMPK signaling also exerts a cardioprotective effect in the I/R-induced stressed heart through
inhibition of inflammatory MAPK and NF-kB signaling pathways [59].
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2.2. Cardioprotective Effect of APC against I/R Injury

The observation that APC exhibits potent anticoagulant, anti-inflammatory and cytoprotective
properties in conjunction with knowledge of the pathogenic mechanism of I/R injury which is
associated with the up-regulation of pro-inflammatory and pro-apoptotic pathways as described
above, providing the rationale for evaluating the cardioprotective function of APC in a couple of rat
and mouse models of myocardial I/R injury [66,67]. The results indicated that treatment with APC
during I/R restores the mean arterial pressure after a short time occlusion and reduces the mortality rate
in experimental animals [66,67]. To understand the mechanism by which APC exerts a cardioprotective
effect, we investigated this question by using human recombinant APC and its two signaling-selective
and anticoagulant-selective derivatives in a mouse model of acute I/R injury [68]. The effect of
APC derivatives was assessed on myocardial infarction size, post-ischemic cardiac function recovery
and the modulation of inflammatory responses on cardiomyocytes [68]. We discovered that APC
attenuates acute ischemic injury in the heart via stimulating the AMPK signaling and the inhibition of
NF-κB and JNK signaling pathways by a mechanism(s) that is largely independent of its anticoagulant
activity [68]. Thus, the administration of both APC and the signaling-selective APC-2Cys [69], but not
the anticoagulant-selective and signaling-defective APC-E170A [70], reduced myocardial infarction
and restored cardiac function in the ischemic mouse heart by activating AMPK in both in vivo and
ex vivo model systems [68]. Further studies revealed that cardiomyocytes express EPCR and that
both APC and APC-2Cys directly trigger AMPK phosphorylation in cardiomyocytes by enhancing the
Ca2+/CaMKKβ activity by EPCR- and PAR1-dependent mechanisms (Figure 1) [68].

AMPK is a stress and energy sensitive kinase that can be activated by ATP depletion under
ischemic stress [59,71]. AMPK is also an energy sensor and key regulator of metabolism mainly
through glucose and fatty acid metabolism to maintain the homeostasis [59]. In myocardium,
the AMPK-dependent activity of APC was found to stimulate glucose uptake through increasing the
fusion of glucose transporter 4 (GLUT4) to the cell membrane and upregulating the glucose oxidation in
the ischemic heart [72]. Interestingly, the upregulation of GLUT4 by the signaling-selective APC-2Cys
variant was significantly higher than that of wild-type APC (72). In contrast to the upregulation
of glucose uptake, APC-2Cys reduced fatty acid oxidation during I/R injury. This is an interesting
observation since it is thought that the I/R-induced acceleration of cardiac fatty acid oxidation creates
more ROS as compared to glucose oxidation. These results appear to suggest that APC-mediated
reduction in fatty acid oxidation may lead to a decrease in ROS generation, thereby improving the
intracellular redox status in the heart during I/R. Further support for this hypothesis was provided
by the observation that APC-2Cys significantly increased the ratio of reduced glutathione (GSH) to
oxidized glutathione (GSSG) in an ex vivo working heart perfusion system after 10 min of global
ischemia and 20 min of reperfusion [72]. This method has been commonly used as an indicator of the
intracellular redox status in the heart tissue.

Interestingly, both wild-type APC and the signaling-selective APC-2Cys also increased the
autophagic flux in the heart following I/R [72]. This was demonstrated by measuring the LC3
II/LC3 I ratio as an indicator of autophagy during I/R, which was significantly enhanced with both
the wild-type APC and APC-2Cys treatment groups [72]. The increase in the autophagic activity
of APC is likely mediated through its activation of AMPK since it has been demonstrated that
AMPK is involved in inducing autophagy in the heart during I/R [73]. The activity of APC-2Cys
in modulating these metabolic pathways was significantly higher than wild-type APC during I/R
since it uniquely enhanced glucose oxidation and attenuated the I/R-initiated fatty acid oxidation by
80% [72]. The mechanism by which the signaling-selective APC-2Cys variants exhibits these unique
AMPK-dependent cardioprotective properties is not known and warrants further investigation. It is
known that, in addition to EPCR and PAR-1, APC exerts its cytoprotective signaling activities through
crosstalk with other G-protein (i.e., PAR-3 [74] and sphingosine 1-phosphate receptor 1 [25]) and
a number of non-G-protein coupled (i.e., apolipoprotein E receptor 2 [75], Tie2 [76] and Mac1 [77])
receptors. Thus, it is possible that differences in interaction and/or crosstalk by APC and APC-2Cys
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with one or more of these receptors participate in their differential modulatory effect on substrate
metabolism in the I/R-stressed heart.

APC has been shown to induce the activation of AKT1 in the myocardium, thereby improving
the endothelial function of the coronary artery in a global ischemic reperfusion rat model [78]. AKT
is a serine/threonine kinase also known as protein kinase B (PKB) which activates mTOR, thereby
playing multifaceted roles in the cellular metabolism, proliferation, inflammation, transcription and
protein synthesis [79–81]. It has been recently found that the cytoprotective effects of APC in I/R injury
are associated with the inhibition of mTORC1 signaling network, leading to inhibition of the NLRP3
inflammasome pathway [82]. It was demonstrated that the mTORC1 inhibitory effect of APC was
mediated through APC, reducing the expression of the regulatory component of the mTORC1 complex
(Raptor) [82], thereby inhibiting the phosphorylation of p70S6K, one of the downstream targets of the
mTORC1 signaling pathway [83]. The mTROC1 signaling network is a target for down-regulation
by the AMPK signaling pathway as well [59]. Thus, the exact cardioprotective mechanism of APC in
the I/R injury and the possible elaborate and complex crosstalk between different signaling networks
warrants further investigation.

2.3. Cardioprotective Function of APC in Heart Failure

Mounting evidence in the literature assigns a key cardioprotective role for AMPK in various
cardiovascular disease models [84]. It has been established that the activation of AMPK plays a
protective role during the initiation and progression of heart failure (HF) by regulating the metabolism
and maintaining the homeostasis [84–88]. The activity of AMPK has been found to regulate substrate
metabolism/utilization in a rat model of pressure overload-induced cardiac hypertrophy, indicating a
critical role for AMPK in cardiac adaptive response under pathological conditions [84]. It has been
also found that the AMPKα2 activity protects the heart against pressure overload-induced HF through
mediating estrogen-related receptor α (ERRα) using the AMPKα2 deficient mice [89]. In a recent
study, both APC and the signaling-selective non-anticoagulant APC-2Cys were shown to protect
against pressure overload-induced hypertrophy through the AMPK signaling pathway [90]. AMPK
has been found to reduce ROS accumulation by inhibiting NADPH oxidase activation in various
cardiac disease models including HF [91,92]. In the pressure overload model, the AMPK-dependent
cytoprotective signaling function of APC was found to be critical in the inhibition of ROS accumulation
and inflammation through the down-regulation of the activity of p66shc and expression of 4-HNE
in the hypertrophic model [90]. Similar cytoprotective effects for APC have been reported in the
diabetic nephropathy model through the protease down-regulating p66shc by a PAR1-dependent
mechanism [93]. The cardioprotective function and mechanism of APC in HF patients requires further
investigation. Whether the protective signaling function of APC is beneficial in HF models with
preserved ejection fraction (HFpEF) or reduced ejection fraction (HFrEF) remains to be determined.

In addition to its cardioprotective properties, APC exhibits potent cytoprotective and
anti-inflammatory effects in a number of other acute and chronic diseases including sepsis [94],
ischemic stroke [95], acute kidney injury [96], type-1 diabetes [97], wound healing [98], Plasmodium
falciparum malaria [99], post-surgical adhesion band formation [100] and other inflammatory disorders
that have been nicely reviewed in recent review articles [101,102]. There are several ongoing pre-clinical
and clinical trials evaluating the potential therapeutic utility of APC in animals and humans [101,102].
The future studies with the signaling-selective APC derivatives which do not exhibit significant
anticoagulant activities and thus are not associated with an increased risk of bleeding may provide
APC-based therapeutic strategies for some of these inflammatory diseases.

3. Conclusions

Ischemic heart disease and heart failure are the leading causes of morbidity and mortality
worldwide. There is an urgent need for developing new therapeutic strategies for heart diseases.
Results of studies with APC in I/R and HF models are encouraging and warrant further investigation.
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Because of its potent anticoagulant activity, APC-therapy has been found to also be associated with
an increased risk of bleeding. The findings that the signaling-selective APC, lacking anticoagulant
function, has a similar cardioprotective function in the I/R injury and HF models may open a new
avenue for further investigating the life-saving effects of APC in heart disease without increasing the
risk of bleeding.
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