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Microsatellite instability (MSI) is an important diagnostic and prognostic cancer biomarker.
In colorectal, cervical, ovarian, and gastric cancers, it can guide the prescription of
chemotherapy and immunotherapy. In laboratory diagnostics of susceptible tumors,
MSI is routinely detected by the size of marker polymerase chain reaction products
encompassing frequent microsatellite expansion regions. Alternatively, MSI status is
screened indirectly by immunohistochemical interrogation of microsatellite binding
proteins. RNA sequencing (RNAseq) profiling is an emerging source of data for a wide
spectrum of cancer biomarkers. Recently, three RNAseq-based gene signatures were
deduced for establishing MSI status in tumor samples. They had 25, 15, and 14 gene
products with only one common gene. However, they were developed and tested on the
incomplete literature of The Cancer Genome Atlas (TCGA) sampling and never validated
experimentally on independent RNAseq samples. In this study, we, for the first time,
systematically validated these three RNAseq MSI signatures on the literature colorectal
cancer (CRC) (n � 619), endometrial carcinoma (n � 533), gastric cancer (n � 380), uterine
carcinosarcoma (n � 55), and esophageal cancer (n � 83) samples and on the set of
experimental CRC RNAseq samples (n � 23) for tumors with known MSI status. We found
that all three signatures performed well with area under the curve (AUC) ranges of 0.94–1
for the experimental CRCs and 0.94–1 for the TCGACRC, esophageal cancer, and uterine
carcinosarcoma samples. However, for the TCGA endometrial carcinoma and gastric
cancer samples, only two signatures were effective with AUC 0.91–0.97, whereas the third
signature showed a significantly lower AUC of 0.69–0.88. Software for calculating these
MSI signatures using RNAseq data is included.
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INTRODUCTION

Microsatellite instability (MSI) results from and is a marker of
defective DNA mismatch repair (dMMR). Tumors accumulate
multiple mutations across the genome (Ryan et al., 2017). Short
tandem repeats are particularly frequent targets to mismatch
errors, and dMMR-linked mutations are prone to be present in
microsatellite regions (tandem repeats of up to six nucleotides
short stretches of DNA) (Johansen et al., 2019). Detectable
expansion or shrinkage of microsatellite repeats is referred to
as MSI (Marcus et al., 2019).

MSI was the second clinically approved predictive biomarker
for the PD1-specific immunotherapy in adult and pediatric
advanced cancer patients. In 2017, the approval of the PD1-
specific checkpoint inhibitor antibody pembrolizumab for
patients with high MSI was based on the evidence of clinical
efficacy from five clinical trials (Marcus et al., 2019). This was the
first time when a cancer drug was approved based on a general,
not a tumor type-specific biomarker.

Tumors with dMMR also have more mutations in non-
microsatellite DNA and thus have more neoantigens. For
example, an average figure of ∼1,800 mutations and ∼580
neoantigens was detected in colorectal cancers (CRCs) with
dMMR compared with only ∼70 mutations and ∼20 predicted
neoantigens in CRCs with normal MMR (Le et al., 2015). An
increased amount of neoantigens in dMMR tumors promotes
tumor infiltration by lymphocytes (Dudley et al., 2016; Giannakis
et al., 2016), which may cause a more effective response to
immunotherapy (Luchini et al., 2019). This provides a
theoretical basis for MSI/dMMR biomarker effectiveness for
the treatment response to immune checkpoint inhibitors
targeting PD-1, PD-L1, and CTLA-4 proteins (Le et al., 2015).

The Food and Drug Administration did not specify which
assay should be used to measure MSI. Currently, there are three
basic options available for determining MSI status in clinical
practice: immunohistochemistry (IHC) for testing dMMR,
polymerase chain reaction (PCR), and genomic/exome/panel
sequencing for detecting MSI (Ryan et al., 2017; Baretti and
Le, 2018; Waalkes et al., 2018).

IHC test interrogates expressions of four proteins: MLH1,
MSH2, MSH6, and PMS2. dMMR is diagnosed when there is
detected loss of expression of one ormore such proteins (Danaher
et al., 2019). IHC tests for dMMR/MSI is simple and cost-
effective, but it has a downside of relatively low analytic
accuracy due to technical inconsistencies such as tissue
fixation issues (Engel and Moore, 2011) and biological reasons
such as missense mutations in MMR genes that can functionally
inactivate protein without altering its IHC-tested expression level
(Shia, 2008).

Alternatively, several PCRMSI panels have been designed, and
two are most frequently used in practice: (1) two mononucleotide
(BAT-25 and BAT-26) and three dinucleotide (D5S346, D2S123,
and D17S250) repeat panel (Boland et al., 1998) and (2) five poly-
A mononucleotide (BAT-25, BAT-26, NR-21, NR-24, and NR-27)
repeat panel. The latter has greater sensitivity and specificity
compared with the (1) panel (Suraweera et al., 2002). Moreover,
unlike (1), panel (2) has no requirement of having both tumors

and paired healthy tissue for the test (Shemirani et al., 2011). If at
least two biomarkers in either panel lose stability, the tumor is
diagnosed as MSI-positive.

As PCR testing is based on a limited number of specific
microsatellite sites, this approach cannot capture full
microsatellite profiles and thus cannot detect ∼0.3–10% of MSI
cases (16). Furthermore, MSI prevalence and type are markedly
different across the different cancer types. For example, lung,
breast, and prostate cancers have only ∼1–2% MSI incidence
(Luchini et al., 2019; Marcus et al., 2019). This proportion is
higher for gastric, ovarian, and cervical cancers and is maximal
for CRC. These observations are reflected in specific diagnostic
guidelines, and MSI testing is not routinely recommended for
most tumor types. These factors limit the use of the PCRMSI test
on a broad scale (Wang et al., 2021).

DNA sequencing tests use either whole-exome sequencing
(WES) or cancer gene panels. For targeted gene panels, the
number of genes varies from around 200 to >5,000 genes
(Waalkes et al., 2018). Thus, the analytic sites for testing MSI
are strongly different among the different targeted panels,
whereas the WES approach can provide more objective data,
as evidenced by ∼100% agreement with gold standard IHC and
PCR MSI testing methods for 130 CRC patients when using the
MSI sensor method (Johansen et al., 2019).

As opposed to IHC- or PCR-based MSI testing, which are
most suitable for CRC and other cancers belonging to the
spectrum of Lynch syndrome, the sequencing MSI approach
can be used for more tumor types. It can provide an
advantage of combining MSI analysis with mutation screening
and tumor mutation burden analysis (Wang et al., 2021).
However, genomic deep sequencing-based testing has major
challenges of high cost and lack of wide availability (Waalkes
et al., 2018).

On the other hand, RNA sequencing (RNAseq) can provide
another type of data for MSI assessment. In turn, the RNAseq
approach has several serious advantages that make it another
candidate for an emerging method of choice for MSI testing.
RNAseq is a well-established technology for tumor specimens,
including formalin-fixed, paraffin-embedded (FFPE) tissue
samples (Buzdin et al., 2020). Typically, one RNAseq analysis
is less expensive than for WES or panel genomic sequencing
(Bossel Ben-Moshe et al., 2018). It can be informative for the
assessment of IHC biomarkers (Sorokin et al., 2020c; 2020b),
expression of cancer drug target genes (Buzdin et al., 2020;
Sorokin et al., 2020d), tumor-specific molecular pathway
activation (Buzdin et al., 2018; Borisov et al., 2020a), for
personalized modeling of tumor drug response (Kim et al.,
2020; Tkachev et al., 2020), and even for tumor mutation
burden assessment (DiGuardo et al., 2021). Furthermore,
RNAseq data that inform on total gene expression profiles can
also be applicable for generating MSI gene signatures. Three such
signatures were recently developed (Danaher et al., 2019;
Pačínková and Popovici, 2019; Li et al., 2020) based on TCGA
project (Tomczak et al., 2015) publicly available RNAseq data for
CRC samples annotated with MSI status by gold standard IHC
and/or PCR methods. A signature established by Li et al. (2020)
includes 25 genes, a signature by Pačínková and Popovici (2019)
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includes 15 genes, and a double signature by Danaher et al.
(2019)—14 genes. Interestingly, those signatures are mostly
different by gene content and have only one common gene
(Figure 1).

However, these signatures were developed and validated on
the same TCGA samplings and were never validated
experimentally on independent RNAseq profiles. In this study,
we, for the first time, systematically validated these three RNAseq
MSI signatures on the literature CRC (n � 619), endometrial
carcinoma (n � 533), gastric cancer (n � 380), uterine
carcinosarcoma (n � 55), and esophageal cancer (n � 83)
samples and on the set of experimental CRC RNAseq samples
(n � 23) for the tumors with known MSI status. As the gold
experimental standard, we used seven PCR MSI biomarkers.

We found that all three signatures performed well with area
under the curve (AUC) ranges of 0.94–1 for the experimental
CRCs and 0.94–1 for the TCGA CRC, esophageal cancer, and
uterine carcinosarcoma samples. However, for the TCGA
endometrial carcinoma and gastric cancer samples, only two
signatures were effective with AUC 0.91–0.97, whereas the
third signature showed a significantly lower AUC of 0.69–0.88.
Finally, we provide software for calculating these MSI signatures
using RNAseq data.

RESULTS

Microsatellite Instability Data Curation and
Analysis
For the literature (TCGA) dataset, we extracted MSI statuses for
1,670 available RNAseq samples from the Broad Firehose
webpage. These MSI statuses obtained using IHC or PCR
profiling were then considered as the gold standards for the
assessment of transcriptomic signatures. As only MSI-high
tumors are considered for specific therapeutic options, we
pooled MSI-low and MSS (microsatellite stable) samples in a
single class for further analyses. Totally, we obtained 1,340 MSI-
low/MSS and 330 MSI-high profiles. These samples represented

CRC, endometrial carcinoma, gastric cancer, uterine cancer, and
esophageal cancer (Table 1). This was higher than the samplings
used previously to validate Li, Pacinkova and Popovici, and
Danaher signatures in the original studies (a total of 1,302,
626, and 689 samples, respectively; Table 1). We checked
RNAseq gene signatures in binary classifier mode.

For the experimental group, we profiled gene expression by
RNAseq using FFPE tumor tissue blocks for a total of 23 CRC
patients. In addition, we also analyzed a control group of 13 non-
CRC tumor blocks to assess MSI signature performance on these
samples as well. Among them, five patients had cervical cancer,
two had breast cancer, two had gastric cancer, two had
glioblastoma, one had ovarian cancer, and one had
endometrial carcinosarcoma (Supplementary Table S1). In
total, the experimental group (n � 36) represented 27 female
and nine male patients. The patient age varied from 31 to
84 years; the mean patient age in the experimental group was
60.36 years. More detailed patient information is given in
Supplementary Table S1.

We performed RNAseq for each tumor sample and obtained
∼3.75–78.02 million reads uniquely mapped on known human
Ensembl genes (genome version GRCh38 and transcriptome
annotation GRCh38.89), on the average ∼15.5 million gene-
mapped reads per library.

FIGURE 1 | Overlap between gene composition of MSI expression
signatures developed by Li et al. (2020), Pačínková and Popovici (2019), and
Danaher et al. (2019).

TABLE 1 | Characteristic of literature and experimental cancer patient groups.

Validation set MSI-high MSI-low/MSS Total

Colorectal cancer (CRC)

Current experimental 6 17 23
Current TCGA 85 534 619
Li TCGA 55 320 375
Pacinkova and Popovici TCGA 35 140 175
Danaher TCGA 27 126 153

Endometrial cancer (UCEC)

Current TCGA 170 363 533
Li TCGA 123 244 367
Pacinkova and Popovici TCGA 52 64 116
Danaher TCGA 71 176 247

Gastric cancer (STAD)

Current TCGA 71 309 380
Li TCGA 80 335 415
Pacinkova and Popovici TCGA 54 281 335
Danaher TCGA 64 225 289

Uterine carcinosarcoma (UCS)

Current TCGA 2 53 55
Li TCGA 2 87 89
Pacinkova and Popovici TCGA — — —

Danaher TCGA — — —

Esophageal cancer (ESCA)

Current TCGA 2 81 83
Li TCGA 2 54 56
Pacinkova and Popovici TCGA — — —

Danaher TCGA — — —

Control

Current experimental 1 12 13
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For these samples, “gold standard” MSI statuses were
determined by PCR test for seven marker microsatellite loci:
BAT25, BAT26, BAT40, NR21, NR24, NR27, and CAT25 that are
included in a routinely used clinical panel that requires no healthy
tissue control (Suraweera et al., 2002). When there were ≥2
marker loci with detected unstable microsatellite length, these
samples were considered MSI-high. Otherwise, the samples were
put to the common MSI-low/MSS group. In the experimental
group, there were a total of seven MSI-high and 29 MSI-low/MSS
samples (Table 1, Supplementary Table S2).

Performance of Microsatellite Instability
RNAseq Gene Signatures
By performing PubMed and Google Scholar literature search with
keywords “gene signature,” “gene expression,” “RNA
sequencing,” “microsatellite instability,”and “MSI” in March
2021, we extracted 73 hits that were manually processed and
returned three recent original publications. These three unrelated
research papers authored by Li et al. (2020), Pačínková and
Popovici (2019), and Danaher et al. (2019) communicated
different gene signatures of MSI status. All these signatures
were deduced and initially validated on TCGA CRC samples
available at the date of research (Table 1). For all the signatures
identified, the initial bioinformatic validation cohorts were
smaller than those extracted from TCGA in the current study
(Table 1).

The signatures included 15 genes (Li), 25 genes (Pacincova
and Popovici), and 14 genes (Danaher) (Figure 1). We compared
gene compositions of different signatures and found that they
were largely different and shared only one common gene,MLH1,
which encodes for mutL homolog 1 that can heterodimerize with
mismatch repair endonuclease PMS2 to formMutL alpha, part of
the DNA mismatch repair system (Figure 1). Li signature shared
four other genes with Danaher signature: EPM2AIP1, RNLS,
SMAP1, and TTC30A. These genes encode for EPM2A
interacting protein 1, renalase, small ArfGAP 1, and
tetratricopeptide repeat domain 30A, respectively. Pacincova
and Popovici signature also had two other common genes
with Li signature: RPL22L1 and SHROOM4 encode for
ribosomal protein L22 like 1 and shroom family member 4,
respectively. Pacincova and Popovici signature had no other
common genes with the Danaher signature (Figure 1).

The experimental and literature samples were then used to
assess the performances of those three signatures. All signature
values were calculated as described in the original papers. We
created and made publicly available the code for signature
calculation at Gitlab: https://gitlab.com/ef.viktor/msi_signatures.

The signatures were validated using TCGA RNAseq datasets
for tumor samples annotated by MSI status: CRC (n � 619),
endometrial carcinoma (n � 533), gastric cancer (n � 380),
uterine carcinosarcoma (n � 55), and esophageal cancer (n �
83) datasets and on the set of experimental CRC RNAseq samples
(n � 23) and control experimental dataset for non-CRC cancer
samples (n � 13). To assess signature biomarker quality, we used
area under the ROC curve (ROC AUC) value as the measure.
AUC reflects biomarker robustness and depends on its sensitivity

and specificity (Borisov et al., 2020b). It varies between 0.5 and 1,
and the typical discrimination threshold is 0.7, where greater
values denote high-quality biomarkers and vice versa (Boyd,
1997). AUC is often used for scoring different types of
molecular biomarkers in oncology (Liu et al., 2018; Tanioka
et al., 2018; Chen et al., 2019; Sorokin et al., 2020a). AUC and
95% confidence intervals were calculated using DeLong’s method
implemented in pROC R-package. The entire experimental

FIGURE 2 | Performance test of MSI RNAseq gene signatures. All
signatures were tested for assessment of MSI status on CRC experimental
dataset, non-CRC experimental dataset, TCGA CRC dataset, TCGA UCEC
dataset, TCGA STAD dataset, and joint TCGA UCS + ESCA dataset.
Results for Li et al. (2020) (A), Pačínková and Popovici (2019) (B), and
Danaher et al. (2019) (C) gene signatures are shown.
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dataset contained different cancer types; therefore, AUC was
calculated only for the CRC subgroup of the experimental
samples.

In our analysis, Li MSI signature (Figure 2A) scored AUC �
1.0 for the experimental CRC dataset, AUC � 0.9462 for the
TCGA CRC, AUC � 0.9397 for the TCGA uterine corpus
endometrial carcinoma (UCEC), AUC � 0.9664 for the TCGA
STAD dataset, and AUC � 0.9981 for the TCGA joint dataset of
UCS + ESCA samples. Pacincova and Popovici signature
(Figure 2B) performed as high as AUC � 0.9412 for the
experimental CRC dataset, AUC � 0.9583 for the TCGA CRC

dataset, AUC � 0.6946 for the TCGA UCEC, AUC � 0.8827 for
the TCGA STAD dataset, and AUC � 0.9515 for the TCGA joint
dataset of UCS + ESCA samples. In turn, Danaher signature
(Figure 2C) showed AUC � 0.9902 for the experimental CRC
dataset, AUC � 0.9396 for the TCGA CRC dataset, AUC � 0.9442
for the TCGAUCEC, AUC � 0.9589 for the TCGA STAD dataset,
and AUC � 1 for the TCGA joint dataset of UCS + ESCA samples
dataset.

Similar to variations in AUC metrics for the three signatures
tested, their extents related differently to the true-positive or true-
negative MSI statuses (Figures 3A–C).

FIGURE 3 | Distribution of scores for MSI RNAseq gene signatures. X-axis shows MSI signature score, Y-axis—number of samples. All signatures were tested for
assessment of MSI status on CRC experimental dataset, experimental non-CRC (control) dataset, TCGA CRC dataset, TCGA UCEC dataset, TCGA STAD dataset, and
joint TCGA UCS + ESCA dataset. Results for Li et al. (2020) (A), Pačínková and Popovici (2019) (B), and Danaher et al. (2019) (C) gene signatures are shown.
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In the experimental CRC group, there were 6 MSI-high and
17MSI-low samples. However, in the experimental control group
that included non-CRC cancers, there was only one MSI-high
sample for endometrial carcinosarcoma, whereas all other
samples were MSI-low (Supplementary Table S2). All three
signatures supported the true MSI status of samples in the
control group (Figures 3A–C).

Assessment of MSI signatures is summarized in Table 2. It can
be seen that Li signature showed the highest AUC in the
experimental CRC group, followed by Danaher and Pacincova
and Popovici signatures, respectively (Table 2). Also, all three
signatures performed accurately on TCGA CRC, esophageal
cancer, and uterine carcinosarcoma samples with AUC 0.94-1
and highly overlapping 95% confidence intervals. However, in the
endometrial carcinoma (UCEC) cohort of TCGA data, Pacincova
and Popovici signature showed low AUC below 0.7 threshold,
whereas two other signatures showed AUC of at least 0.94. The
latter also showed lower performance for TCGA gastric cancer
samples (AUC � 0.88 vs. 0.96–0.97 in the other two signatures).

Thus, we conclude that in our tests, all three signatures were
equally effective for the CRC, esophageal cancer, and uterine
carcinosarcoma samples, whereas for the endometrial carcinomas
and gastric cancer samples, the Danaher and Li signatures were
found more effective.

We also separately analyzed only early-stage (stages I, IA, and
IB) cancer patients from TCGA. In this case, statistical analysis
could be performed only for CRC and gastric cancer groups
because there were no early-stage MSI-high patients in the other
groups. There were 16/13 MSI-high and 89/42 MSI-low samples
in CRC and gastric cancer groups, respectively (Supplementary
Figure S1). All three signatures performed accurately on early-
stage TCGA CRC with AUC 0.966–0.997 and highly overlapping
95% confidence intervals (Supplementary Figure S2). AUC for
Li signature was the highest for predicting MSI status in gastric
cancer (AUC � 0.956), followed by Danaher (AUC � 0.934) and
Pacincova and Popovici (AUC � 0.919) signatures
(Supplementary Figure S2).

DISCUSSION

In this study, we, for the first time, systematically compared and
validated RNAseq gene signatures of MSI status in human solid
tumors. All the signatures performed well on both literature and
experimental samplings with the MSI statuses determined using
the gold standard techniques routinely used in cancer molecular
diagnostics. Interestingly, these three signatures were developed

by different teams using different logical rationale and were
mostly nonoverlapping with only one common gene, MLH1,
which protein product heterodimerizes to form MutL alpha
(Lindner et al., 2021; Pannafino and Alani, 2021), important
actor of the DNA mismatch repair system that is widely
associated with the Lynch syndrome known as hereditary
nonpolyposis CRC, and MSI (Yamamoto and Imai, 2019;
Lindner et al., 2021; Stinton et al., 2021).

However, the functions of most other genes in the three MSI
signatures strongly differ. We used Gene Ontology (GO) analysis
to identify GO term “biological processes” enriched among the
genes forming each signature. Of note, we found 23 enriched
biological processes in Li gene signature (Figure 4), 30 in
Danaher signature (Figure 5), and no significantly enriched
processes in Pacincova and Popovici signature.

Themost significant terms in Li signature were associated with
meiosis, mismatch repair, and (unexpectedly) with glycogen
biosynthesis (Figure 4). Interestingly, there were previously
only indirect links reported for the glycogen metabolism and
Lynch syndrome (Kato, 2020) or MSI (Krausova and Korinek,
2014; Oh et al., 2016), e.g., through the Wnt signaling pathway
(Krausova and Korinek, 2014). In Danaher signature, the most
significant terms were associated with mismatch repair and with
somatic hypermutation of immunoglobulin genes and
physiologically related processes: somatic diversification of
immune receptors and immunoglobulins (Figure 5). The latter
feature is widely associated with Lynch syndrome and MSI
(Anghileri et al., 2021; Mäki-Nevala et al., 2021). Among the
signatures by Li and Danaher, “Mismatch repair” was the only
common GO term (highlighted in italic on Figures 4 and 5), and
mismatch repair deficiency is one of the most obvious reasons for
MSI (Jin and Sinicrope, 2021). However, analysis of Pacincova
and Popovici signature returned no enriched functional terms,
thus evidencing that it contains quite a functionally
heterogeneous gene set.

We then performed Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment and gene set
enrichment (GSEA) analyses. The analyses returned three
common statistically significantly enriched pathways for
Danaher signature: “Mismatch repair,” “Platinum drug
resistance,” and “Colorectal cancer” (Supplementary
Figures S3 and S4). Thus, GSEA and KEGG analyses
confirmed our previous finding that Danaher signature is
enriched by mismatch repair genes. However, neither
KEGG pathway enrichment nor GSEA provided
significantly enriched pathways for both Pacincova and
Popovici and Li signatures.

TABLE 2 | AUC scores and (95% confidence interval) for three RNAseq MSI gene signatures.

Signature Li et al. (2020) Pacinkova and Popovici (2019) Danaher et al. (2019)

Experimental (CRC), n � 23 1.0 (1–1) 0.9412 (0.8506–1) 0.9902 (0.963–1)
TCGA (CRC), n � 619 0.9462 (0.9129–0.9795) 0.9583 (0.9313–0.9854) 0.9396 (0.9011–0.9782)
TCGA (UCEC), n � 533 0.9397 (0.9161–0.9633) 0.6946 (0.6487–0.7404) 0.9442 (0.9202–0.9682)
TCGA (UCS + ESCA), n � 138 0.9981 (0.993–1) 0.9515 (0.8771–1) 1.0 (1–1)
TCGA (STAD), n � 380 0.9664 (0.9405–0.9922) 0.8827 (0.839–0.9263) 0.9589 (0.9261–0.9918)
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This apparent gene content diversity among the signatures
demonstrates that MSI can be associated with several or many
processes that are not exclusively linked with DNA
hypermutation and repair. This gives hope for building
next-generation MSI signatures with even better
performance/classifier scores.

Our results also imply that the Li and Danaher signatures may
be effective for the CRCs, esophageal cancers, uterine
carcinosarcomas, endometrial carcinomas, and gastric cancers.
However, the overall effectiveness of Pacincova and Popovici
signature in our tests was lower and limited to the first three
among the cancer types discussed earlier. Moreover, all three
signatures performed well for predicting MSI status in early-stage
CRC and gastric cancer. Interestingly, the Li and Danaher
signatures that were significantly enriched by genes for certain
biological processes (Figures 3 and 4) were effective for more
cancer types than Pacincova and Popovici signature that lacked
enriched GO terms.

In addition, the current experimental dataset may serve for
validating new such signatures. Finally, we implemented here all

the MSI signatures assessed as the free code ready to use with the
user RNAseq data. In the future and after careful clinical
validation, this may have a practical significance for
establishing MSI statuses by screening, when available,
RNAseq data for the cancers not necessarily strongly
associated with the Lynch syndrome.

MATERIALS AND METHODS

Patients and Samples
In this study, we investigated MSI status-annotated RNAseq
profiles for a total of 1,693 cancer samples (one sample per
individual patient). Among them, there were 619 literature
CRC samples from TCGA cohort, 533 TCGA UCEC samples,
380 TCGA gastric cancer samples, 55 TCGA uterine
carcinosarcoma samples, 83 TCGA esophageal cancer samples,
and 36 experimental samples profiled by RNA sequencing in this
study. TCGA RNAseq samples were extracted from five source
datasets: COAD (colon cancer, n � 389) and READ (rectal cancer,

FIGURE 4 | Biological process GO terms for genes included in Li signature. Visualized using R package enrichplot (http://bioconductor.org/packages/release/
bioc/html/enrichplot.html). All terms passed Benjamini–Hochberg adjusted p-value threshold of 0.05.
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n � 230) for “CRC,” UCEC (endometrial carcinoma, n � 533),
STAD (gastric cancer, n � 380), UCS (uterine carcinosarcoma,
n � 55), and ESCA (esophageal cancer, n � 83). MSI annotated
TCGA data were downloaded from https://gdac.
broadinstitute.org/.

The experimental dataset included 23 colon cancer samples,
five cervical cancer samples, two breast cancer, two gastric cancer
samples, two glioblastoma samples, one ovarian cancer sample,
and one endometrial carcinosarcoma sample. All experimental
specimens were stored in the form of FFPE tissue blocks.

Gene Expression Profiling
To isolate RNA, 10-µM thick paraffin slices were trimmed from
each FFPE tissue block using a microtome. RNA preps were
extracted using QIAGEN RNeasy FFPE Kit. RNA 6000 Nano or
Qubit RNA Assay kits were used to measure RNA concentration.
RNA integrity number was measured using Agilent 2100 bio-
Analyzer. For depletion of ribosomal RNA and library
construction, KAPA RNA Hyper with rRNA erase kit (HMR
only) was used. Different adaptors were used for multiplexing
samples in one sequencing run. Library concentrations and

quality were measured using Qubit ds DNA HS Assay kit (Life
Technologies) and Agilent Tapestation (Agilent). RNA
sequencing was done using Illumina NextSeq 550 equipment
for single-end sequencing, 50-bp read length, for approximately
30 million (mln) raw reads per sample. Data quality check was
done on Illumina SAV. De-multiplexing was performed with the
Illumina Bcl2fastq2 v 2.17 program. Sequencing data were
deposited in National Center for Biotechnology Information
Sequencing Read Archive under accession ID PRJNA744404.

Processing of Experimental RNAseq Data
RNAseq FASTQ files were processed with STAR aligner (Dobin
et al., 2013) in “GeneCounts” mode with the Ensembl human
transcriptome annotation (Build version GRCh38 and transcript
annotation GRCh38.89). Ensembl gene IDs were converted to
HUGO Gene Nomenclature Committee (HGNC) gene symbols
using the Complete HGNC dataset (https://www.genenames.org/,
database version from July 13, 2017). Totally, expression levels were
established for 36,596 annotated genes with the corresponding
HGNC identifiers. Quantile normalization (qnorm python
package) was used to normalize gene expression values.

FIGURE 5 | Biological process GO terms for genes included in Danaher signature. Visualized using R package enrichplot (http://bioconductor.org/packages/
release/bioc/html/enrichplot.html). All terms passed Benjamini–Hochberg adjusted p-value threshold of 0.05.
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Calculating Li et al. Signature Values
MSI RNAseq signature described by Li et al. (2020) was calculated
according to the original paper. This signature defines LYG1,
MSH4, and RPL22L1 genes as “plus”-genes and DDX27,
EPM2AIP1, HENMT1, MLH1, NHLRC1, NOL4L, RNLS,
RTFDC1, SHROOM4, SMAP1, TTC30A, and ZSWIM3 as
“minus”-genes. The final score is a sum of log10-transformed
normalized gene expression levels with consideration of each
gene sign.

Calculating Pacincova and Popovici
Signature
MSI RNAseq signature described by Pacincova and Popovici was
calculated according to the original paper (Pačínková and
Popovici, 2019). This signature defines AGR2, TNNT1, VNN2,
TNFSF9, TRIM7, and RPL22L1 genes as “plus”-genes and ACSL6,
ARID3A, ASCL2, AXIN2, EPDR1, GGT7, GNG4, KHDRBS3,
KRT23, MLH1, NKD1, PLAGL2, PRR15, RUBCNL,
SHROOM2, SHROOM4, TFCP2L1, TNNC2, and VAV3 genes
as “minus”-genes. The final score is a sum of log10-transformed
gene expression levels with consideration of each gene sign.

Calculating Danaher et al. Signature
MSI RNAseq signature described by Danaher et al. (2019)was
calculated according to the original paper. This signature
includes MLH1, MSH2, MSH6, and PMS2 genes for
calculating MMR loss score (MLS). First, a minimal Z-score
(Zmin) of log2-transformed gene expressions was found. The
final MLS � (Zmin + 1.03)/0.69, where 1.03 and 0.69 are the
theoretical expectation and standard deviation of the
minimum of four standard normal random variables,
respectively.

Hypermutation predictor score was calculated by multiplying
log2-transformed expressions of EPM2AIP1, TTC30A, SMAP1,
RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, and WDR76
genes by coefficients from the table given in the original article.
The final hypermutation predictor score is a Z-score of the
calculated value. The resulting MSI predictor score was
calculated as follows:

�������������������������
min(MLS, 0)2 +max(HPS, 0)2

√

The MSI predictor score is further used as a predictor of MSI-
high status.

Functional Gene Set Enrichment Analysis
KEGG and GO analyses were performed using the R clusterProfiler
package. EnrichKEGG and enrichGO functions were used to
implement enrichment analysis. GSEA analysis was performed
using the web service http://www.webgestalt.org. The following
non-default parameters were selected: KEGG pathways were used
as a functional database, and the minimum number of genes for a
category was set to 3. We used Benjamini–Hochberg false discovery
rate correction method and applied a p-value threshold of 0.05 as a
cutoff value for filtering pathways and GO terms.

Experimental Microsatellite Instability
Assessment by Polymerase Chain Reaction
Genomic DNA was isolated from FFPE tissue sections using
the QIAamp DNA FFPE Tissue Kit (Qiagen, Valencia, CA).

We performed MSI analysis using a set of five so-called “main”
mononucleotide repeat markers: BAT25, BAT26, NR21, and NR24
selected from the revised Bethesda panel (Suraweera et al., 2002) and
NR27 selected from the modified pentaplex panel (Buhard et al.,
2006). Two additional mononucleotide repeat markers were also
included: BAT40, as it was shown to improve the sensitivity of MSI
testing in both CRC and extra-colonic tumors (Hartmann et al.,
2002; Pagin et al., 2013) andCAT-25, which was reported to increase
the sensitivity for identifying dMSH6 tumors (Takehara et al., 2018).

The primer sequences were taken from previous reports
(Hartmann et al., 2002; Suraweera et al., 2002; Buhard et al.,
2006; Takehara et al., 2018). The sequences of fluorescently
labeled oligonucleotides are listed in Table 3.

The marker DNA products were PCR amplified using the
qPCRmix-HS (Evrogen, Russia). PCR was carried out in a 20-
μl final volume containing 1× qPCRmix-HS, 2 pmoles of each
primer, and approximately 20 ng of DNA template.

The marker sets (1) BAT25, BAT26, NR21, and NR27 and
(2) BAT-40 and CAT-25 were co-amplified in one PCR tube

TABLE 3 | Oligonucleotide sequences and fluorescent labels used.

Marker Gene Primer sequence and fluorescent labels (59-39) Length (bp)

BAT26 hMSH2 Forward FAM-CTGCGGTAATCAAGTTTTTAG 183
Reverse AACCATTCAACATTTTTAACCC

BAT25 c-kit Forward R6G-TACCAGGTGGCAAAGGGCA 153
Reverse TCTGCATTTTAACTATGGCTC

NR24 Zinc finger 2 (ZNF-2) Forward TAMRA-GCTGAATTTTACCTCCTGAC 131
Reverse ATTGTGCCATTGCATTCCAA

NR21 SLC7A8 Forward FAM-GAGTCGCTGGCACAGTTCTA 109
Reverse CTGGTCACTCGCGTTTACAA

NR27 Inhibitor of apoptosis Protein-1 (IAP1) Forward R6G-AACCATGCTTGCAAACCACT 87
Reverse CGATAATACTAGCAATGACC

BAT40 3-β-hydroxysteroid dehydrogenase (HSD3B1) Forward ROX-AGTCCATTTTATATCCTCAAGC 145
Reverse GTAGAGCAAGACCACCTTG

CAT25 Caspase 2 Forward ROX-CTTCCCAACTTCCCTGTTCTTT 109
Reverse TGAGCTGAGATCGTGCCACT
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per set. The marker NR-24 was amplified in a separate
PCR tube.

PCR conditions for the tetraplex and duplex assays consisted
of an initial 2-min denaturation step at 94C, followed by 37 cycles
at 94°C for 20 s, 54°C for 10 s, and 72°C for 12 s, with a final
extension at 72°C for 2 min. Conditions for monoplex reaction
differed in annealing temperature: 53°C.

AmplifiedPCRproductswere analyzed by capillary electrophoresis
performed on ABI prism 3130 × l System (Applied Biosystems,
United States). The microsatellite marker lengths were detected by
Sequence Scanner software (Applied Biosystems, United States).

The cutoff for MSI status classification was chosen on the basis of
the threshold of approximately 40%, according to Umar A. et al.
(2004). Tumorswith instability atP2 of thefivemainmononucleotide
markers were defined as MSI-H. Samples with instability at one main
marker were further tested with the additional markers. Tumors with
at least one unstable additional marker were defined as MSI-high.
Otherwise, tumors were classified as MSI-low/MSS.
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