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ABSTRACT: We report a one-step enantioselective synthesis of
mechanically planar chiral [2]rotaxanes. Previous studies of such
molecules have generally involved the separation of enantiomers from o:

racemic mixtures or the preparation and separation of diastereomeric ¢
intermediates followed by post-assembly modification to remove ¢ % m ° | - ,
other sources of chirality. Here, we demonstrate a simple asymmetric .z.o up to 50% e.e.
metal-free active template rotaxane synthesis using a primary amine,

an activated ester with a chiral leaving group, and an achiral crown

ether lacking rotational symmetry. Mechanically planar chiral rotaxanes are obtained directly in up to 50% enantiomeric excess. The
rotaxanes were characterized by NMR spectroscopy, high-resolution mass spectrometry, chiral HPLC, single crystal X-ray diffraction,
and circular dichroism. Either rotaxane enantiomer could be prepared selectively by incorporating pseudoenantiomeric cinchona
alkaloids into the chiral leaving group.

-

B INTRODUCTION Metal-free active template reactions have recently been
developed in which rotaxanes'® are spontaneously assembled
under kinetic control in a single step by combining a primary
amine, electrophile, and crown ether'* in apolar solvents.
Crown ethers stabilize the transition states of various
nucleophilic substitution reactions through the cavity by C—
H hydrogen bonding, thereby favoring the formation of
rotaxanes over the unthreaded axle. Different reactions, amines,
and leaving groups result in different degrees of accelerated

Mechanical planar chirality arises in rotaxanes with achiral
components when an unsymmetrical axle is threaded through a
. . . 1—4
macrocycle lacking rotational symmetry (Figure 1).
Although lacking classical elements of chirality, studies on
mechanically planar chiral rotaxanes suggest their asymmetry
can be well expressed for applications.”~’ However, despite
mechanically planar chiral rotaxanes being known for nearly 50

years, their enantioselective synthesis remains Challenging-ld’s reaction through the ring, affording different rotaxane:thread
Most studies on these systems rely on the separation of selectivities. We chose crown ether-stabilized N-acylation for
enantiomers from racemic mixtures by chiral stationary phase the present study (Scheme 1), as this active template reaction
HPLC, limiting the scale of enantioenriched material that can often results in a particularly high ratio of rotaxane:thread.'*
readily be obtained.” This suggested the reaction might be tolerant of the additional
Goldup et al. have addressed this synthetic problem through functionality necessary in the macrocycle (to break rotational
a chiral auxiliary approach that forms intermediate diastereo- symmetry) and axle building blocks (to provide a chiral leaving
meric rotaxanes having both point chirality and mechanically group).
planar chirality."”"" Separation of these diastereomeric An example of an active template N—acylation is the reaction
intermediates by flash chromatography, followed by removal of 24-crown-8 1, primary amine 2, and electrophile 3 in
of the point chirality by either substitution'® or symmetriza- toluene at room temperature, producing amide [2]rotaxane 4
tion,'" afforded enantioenriched mechanically planar chiral in 84% yield (Scheme 1a)."*" The rate-determining step of
rotaxanes. The only single-step synthesis of enantioenriched crown ether catalyzed N-acylation reactions is the collapse of
mechanically planar chiral rotaxanes to date used a chiral the tetrahedral intermediate formed on addition of the amine
catalyst to resolve the interconverting enantiomers of a crown
ether-ammonium pseudorotaxane by capping.12 Despite Received: March 29, 2020
attempts to optimize this method, it produced rotaxanes in Published: May 1, 2020

just 4% enantiomeric excess (e.e.). Here we report a simple,
single-step, enantioselective synthesis of mechanically planar
chiral rotaxanes that produces either enantiomer in up to 50%
e.e.
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Figure 1. Enantioselective synthesis of mechanically planar chiral
rotaxanes through metal-free active template N-acylation using a
macrocycle lacking rotational symmetry and an electrophile with a
point-chiral leaving group.

to the activated ester.'” The nitro-phenol ester used in the
reaction of 1, 2, and 3 thus provides an opportunity for a chiral
directing group to be incorporated into the leaving group that
could interact with a rotationally unsymmetrical macrocycle in
the transition state (Figure 1).'¢

B RESULTS AND DISCUSSION

Development of an Enantioselective Rotaxane Syn-
thesis. To establish that functionalized crown ethers could
take part in the active template reaction, amine 2 and activated
ester 3 were treated with commercially available dibenzo-24-
crown-8 (5) in toluene, yielding the corresponding [2]-
rotaxane, 6, in 73% yield (Scheme 1a). However, although the
rotaxane axle is unsymmetrical, dibenzo-24-crown-8 (5) is D,
symmetric and so rotaxane 6 is achiral." Macrocycle 7,
containing two different aromatic rings, lacks rotational
symmetry (it has C;; symmetry, alternatively referred to as
C,). Reaction of 7 with 2 and 3 furnished racemic mechanically
planar chiral rotaxane 8 in 78% vyield (Scheme 1b). The
enantiomers of 8 could be separated by chiral stationary phase
HPLC (see Supporting Information).

Next, we investigated the structure and location for an
effective chiral leaving group in the electrophile. Preliminary
screening studies identified nitrophenol ester 9, in which the
chiral information stems from an O-alkylated cinchonidine unit
adjacent to the nitro-group (Scheme 1b). This electrophile was
reactive under the rotaxane-forming conditions despite the
introduction of the deactivating electron-donating ether
linkage. Combining 2, 7, and 9 in a 1:1:1 stoichiometry in
toluene at room temperature afforded rotaxane 8 in 43% yield
(Scheme 1b). Under similar conditions, electrophiles based on
alkyl (thio)esters or with the cinchonidine unit positioned at
the ortho position of the nitrophenol ring were either
unreactive or generated less rotaxane (see Supporting
Information). HPLC analysis of rotaxane 8 (isolated by flash
chromatography) obtained from electrophile 9 revealed that
the (+)-enantiomer (determined by polarimetry) had been
formed in 12% e.e, confirming that a point-chiral leaving
group was able to induce enantioselectivity of a mechanically
planar rotaxane product.

Scheme 1. : (a) Achiral Rotaxane Synthesis by Active Template N-Acylation Using Rotationally Symmetrical Crown Ethers;
(b) Racemic and Unoptimized Enantioselective Synthesis of a Mechanically Planar Chiral Rotaxane

1 = 24-crown-8

5 = dibenzo-24-crown-8
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Figure 2. (a) Enantioselective synthesis of mechanically planar chiral rotaxane 11. Reaction conditions: 2 equiv of amine 2, 1 equiv each of
electrophile and crown ether 10, toluene, [0.14 M], —40 °C, 24 h. (b) Partial '"H NMR spectra (600 MHz, CDCls, 295 K) of macrocycle 10 (top),
rotaxane 11 (middle) and the corresponding unthreaded axle (bottom).

Increasing the electronic difference between the two
aromatic substituents within the macrocycle improved the
enantioselectivity of the active template reaction. Macrocycle
10, with a nitro group on the catechol unit (see Supporting
Information for its synthesis), afforded rotaxane (+)-11 in 23%
e.e. at room temperature, which increased to 40% e.e. (55%
yield) when the rotaxane-forming reaction was performed at
—40 °C (Figure 2a). Lowering the reaction temperature
beyond —40 °C did not result in further improvements in
enantioselectivity.'”

The opposite enantiomer of the rotaxane, (—)-11, could be
selectively accessed using electrophile 12, derived from
(+)-cinchonine, a pseudoenantiomer of cinchonidine (see
Supporting Information for synthesis).'® Combining 2, 10, and
12 at —40 °C gave rotaxane (—)-11 in 50% e.e. and 51% yield
(Figure 2a). The difference in enantioenrichment is a
consequence of electrophiles 9 and 12 being diastereomers
rather than true enantiomers.

Characterization of Rotaxanes. Comparison of the 'H
NMR spectra of macrocycle 10, rotaxane 11, and the
unthreaded axle (see Supporting Information for synthesis)
in CDCl; at 298 K (Figure 2b) confirmed the interlocked
structure of 11. The geminal protons of the crown ether

9805

display twice the number of environments in rotaxane 11 as in
unthreaded 10 due to desymmetrization of the two macrocycle
faces upon rotaxane formation, while H; and Hg of the axle
(hydrogen labeling shown in Figure 2a), which are situated
either side of the amide group, display significant diaster-
eotopic splitting (AS = 0.39 and 0.22 ppm respectively) within
the chiral environment of rotaxane 11 which, as would be
expected, is absent for the corresponding achiral non-
interlocked axle. Upfield shifts of Hg and H, (AS = —0.32
and —0.34 ppm) in the threaded axle and H,, Hy, and H¢ (AS
—0.49, —0.21, and —0.37 ppm) of the nitrocatechol unit of
the threaded macrocycle result from sn—n interactions
involving these moieties. These intercomponent interactions
may play a role in rigidifying the transition state of the
collapsing tetrahedral intermediate. The large downfield shift
of the amide N—H proton H, (A5 = +1.74 ppm) in 11 is
indicative of intercomponent hydrogen bonding between the
amide and the glycol chain of the macrocycle. An upshield shift
of Hp (A8 = —1.29 ppm) results from hydrogen bonding with
the amide oxygen atom.'*"

Enantioenriched samples of rotaxane 11 (40% e.e. for the
(+) enantiomer and 50% e.e. for the (—) enantiomer) were
compared by circular dichroism (Figure 3a). The CD spectra

https://dx.doi.org/10.1021/jacs.0c03447
J. Am. Chem. Soc. 2020, 142, 9803—9808
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Figure 3. (a) Circular dichroism spectra (1.0 X 10™* M, CH,Cl,, 298
K) of (+)-11 (red) and (—)-11 (blue), baseline corrected. (b)
Chemical structure of racemic rotaxane 13. (c) X-ray crystal structure
of racemic rotaxane 13, side-on view showing intercomponent
hydrogen bonds (in green). Hydrogen bond lengths: N47H—O16,
2.20 A; 049—HC6, 2.63 A. Hydrogen bond angles: N47—H—-016,
158.4% 049—H—C6, 161.8°. (d) X-ray crystal structure of 13 viewed
along the axle showing #-stacking between the macrocycle 1,2-
dihydroxynaphthalene and axle bis(trifluoromethyl)phenyl rings.
Centroid—centroid distance, 3.67 A. Angle described by C40 and
centroids, 97.6°. Solvate molecules and other hydrogen atoms omitted
for clarity.

of the mechanically planar chiral rotaxane enantiomers are
symmetrical in terms of curve shape and have exciton
couplings of opposite sign with maxima at 243 nm. The
difference in intensity (normalized for absorption) of the
spectra in Figure 3a corresponds to the difference in
enantioenrichment of the samples.

Although we were unable to obtain high quality single
crystals of 11, single crystals of a racemic sample of 13 suitable
for analysis by X-ray diffraction were grown by slow
evaporation of an isopropanol/hexane solution of 13 (Figure
3b). Rotaxane 13 contains the same macrocycle as 11 and an
axle derived from amine 2 and a different acyl stopper. The X-
ray crystal structure of 13 (Figure 3c), containing both
rotaxane enantiomers in the unit cell, shows similar
intercomponent interactions to those observed by 'H NMR
for 11 in solution (Figure 2b). Hydrogen bonds are present
between an oxygen of the macrocycle glycol chain and the
amide hydrogen atom of the axle and between the amide
oxygen and a macrocycle C—H hydrogen atom (analogous to
Hp in 11)."* The di(alkoxyl)naphthalene ring of the
macrocycle and bis(trifluoromethyl)benzene unit of the axle
m-stack (Figure 3d, closest centroid-centroid distance = 3.67
A),"” with the nitro-catechol moiety positioned so as to cover
one face of the amide group. A similar arrangement in the
transition state of the active template reaction would orient the
macrocycle with respect to the axle building blocks such that
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one mechanically planar chiral enantiomer would be favored
over the other.

Origin of Enantioselectivity. A preliminary indication of
the origin of chiral transduction in these systems comes from
the relative energies of the tetrahedral intermediates preceding
(+)- and (=)-11, calculated at the PM6 level” using the
Gaussian 09 software package21 (Supporting Information and
Figure 4). The collapse of similar tetrahedral intermediates has

a

Figure 4. Tentative rationale for the transfer of chirality from
Euclidean point-chirality (of the leaving group) to mechanical planar
chirality (of the rotaxane). The lowest energy tetrahedral
intermediates were modeled (see Supporting Information) using (a)
electrophile 9 or (b) electrophile 12. The di(alkoxyl)naphthalene ring
of the macrocycle and bis(trifluoromethyl)benzene unit originating
from the nucleophile 7-stack, causing the nitro-catechol ring to be
positioned so as to cover one face of the tetrahedral center of the
intermediate. This thermodynamically favored arrangement of
components ensures the different handedness of the pseudoenantio-
meric leaving groups is well-expressed in the diastereomeric transition
states, resulting in enantioselectivity in the mechanically planar chiral
rotaxane product. Hydrogen bonds are indicated by black dotted
lines.

previously been shown'** to be the rate-determining step for
the glyme catalysis of ester aminolysis. Following the
Hammond postulate, the differences between the diastereo-
meric tetrahedral intermediates to (+)- and (=)-11 from 9 and
12 may resemble those between the transition states. The
lowest energy intermediate calculated for both pseudoenantio-
meric leaving groups featured an (S) stereocenter adjacent to
the ammonium unit, but with the macrocycle orientation
inverted for the two pseudoenantiomers (Figure 4), meaning
changing between the leaving groups of 9 and 12 favors the
formation of a different enantiomer of 11, as observed
experimentally. The somewhat surprising indication that the
two chiral leaving groups both favor an (S)-tetrahedral
intermediate may reflect why the pseudoenantiomers do not
generate equal and opposite e.e’s in the active template
reaction. The noncovalent interactions in the intermediate
(e.g., the stacking of the electron-rich naphthalene unit with
the electron-poor aryl group of the nucleophile, and the
hydrogen bonding of the glycol oxygens to the H—N atoms)
are reminiscent of those present in the X-ray crystal structure
of rotaxane 13.

https://dx.doi.org/10.1021/jacs.0c03447
J. Am. Chem. Soc. 2020, 142, 9803—9808


http://pubs.acs.org/doi/suppl/10.1021/jacs.0c03447/suppl_file/ja0c03447_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.0c03447?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c03447?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c03447?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c03447?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c03447?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c03447?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c03447?fig=fig4&ref=pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.0c03447/suppl_file/ja0c03447_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.0c03447?fig=fig4&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://dx.doi.org/10.1021/jacs.0c03447?ref=pdf

Journal of the American Chemical Society

pubs.acs.org/JACS

Also consistent with the stacking of the electron-rich
naphthalene unit with the electron-poor aryl group of the
nucleophile providing the driving force for organization of the
transition state is the experimental evidence that decreasing the
electron density of the other aromatic ring of the macrocycle
increases the enantioselectivity of rotaxane formation (i.e., 12%
e.e. for (+)-8; 40% e.e. for (+)-11). The less electron-rich the
catechol ring is, the less it competes with the naphthalene
group for 7-stacking with the bis(trifluoromethyl)benzylamine
and so the greater the enantiodiscrimination in the transition
state.

B CONCLUSIONS

The examples presented demonstrate that mechanically planar
chiral rotaxanes can be directly accessed in up to 50% e.e. in a
single synthetic step. The chirality of the point-chiral leaving
group is transferred into mechanically planar chirality in the
rotaxane through metal-free active template N-acylation.
Pseudoenantiomeric cinchona alkaloids allow either rotaxane
enantiomer to be accessed. X-ray crystallography and
molecular modeling suggest that the origin of the enantiose-
lectivity lies in 7-stacking of an electron-rich aromatic ring on
the macrocycle with an electron-poor aryl group originating
from the nucleophilic axle building block. This positions the
second aromatic ring of the macrocycle in an orientation that
blocks one face of the electrophile. Simple methods for
accessing enantioenriched mechanically planar chiral rotaxanes
should improve their availability for investigation in
applications such as asymmetric catalysis,” chiral (bio)-
molecule sensing,l’é’22 and novel designs23 of molecular
machinery.
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