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RNA-binding proteins (RBPs) have been shown to be involved in posttranscriptional
regulation, which plays an important role in the pathophysiology of intracerebral
hemorrhage (ICH). Peroxiredoxin 1 (Prdx1), an RBP, plays an important role in
regulating inflammation and apoptosis. On the basis that inflammation and apoptosis
may contribute to ICH-induced brain injury, in this study, we used ICH models
coupled with in vitro experiments, to investigate the role and mechanism of Prdx1
in regulating inflammation and apoptosis by acting as an RBP after ICH. We first
found that Prdx1 was significantly up-regulated in response to ICH-induced brain
injury and was mainly expressed in astrocytes and microglia in ICH rat brains. After
overexpressing Prdx1 by injecting adeno-associated virus (AAV) into the striatum of rats
at 3 weeks, we constructed ICH models and found that Prdx1 overexpression markedly
reduced inflammation and apoptosis after ICH. Furthermore, RNA immunoprecipitation
combined with high-throughput sequencing (RIP-seq) in vitro revealed that Prdx1 affects
the stability of inflammation- and apoptosis-related mRNA, resulting in the inhibition
of inflammation and apoptosis. Finally, overexpression of Prdx1 significantly alleviated
the symptoms and mortality of rats subjected to ICH. Our results show that Prdx1
reduces ICH-induced brain injury by targeting inflammation- and apoptosis-related
mRNA stability. Prdx1 may be an improved therapeutic target for alleviating the brain
injury caused by ICH.

Keywords: RNA-binding protein, peroxiredoxin 1, intracerebral hemorrhage, inflammation, apoptosis,
posttranscriptional regulation

INTRODUCTION

Intracerebral hemorrhage (ICH) is a common type of stroke, with increasing incidence and
mortality worldwide (Krishnamurthi et al., 2013). Increasing evidence shows that inflammation and
apoptosis contribute to the brain injury seen in ICH, which is closely related to the severity of the
patient’s symptoms and prognosis (Zheng et al., 2016). However, although the treatments of these
therapeutic targets are effective in animal models (Chang et al., 2018; Fang et al., 2019), there are still
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no effective drugs used in the clinic (Chang et al., 2017).
Therefore, improved therapeutic targets that could inhibit both
inflammation and apoptosis need to be developed for the
treatment of ICH.

Accessing posttranscriptional regulation is important to
influence the occurrence and development of diseases, such
as ICH (Dykstra-Aiello et al., 2015, 2016; Stamova et al.,
2019). Posttranscriptional regulation includes various processes,
such as alternative splicing (AS) (Paschalis et al., 2018),
alternative polyadenylation (APA) (Tian and Manley, 2017),
gene expression regulation (Roundtree et al., 2017), and RNA
methylation (Zhao et al., 2017). Among the components of these
regulative processes, RNA-binding proteins (RBPs) are critical
for posttranscriptional regulation because they can influence
the other regulative processes by binding to RNA and because
they play vital roles in RNA modification (Hentze et al., 2018).
Moreover, posttranscriptional regulation can be controlled via
RBPs (Zhang et al., 2015; Fei et al., 2017). Therefore, targeting
posttranscriptional regulation via RBPs may alleviate the brain
injury caused by ICH, as the progression of ICH has been
shown to be closely regulated by posttranscriptional regulation
(Dykstra-Aiello et al., 2015, 2016; Stamova et al., 2019).

Although Prdx1, an RBP (Baltz et al., 2012; Castello et al.,
2012; Kim et al., 2012; Kwon et al., 2013; Sebestyén et al., 2016),
has been shown to be elevated after ICH (Nakaso et al., 2000),
its roles in brain injury after ICH are still largely unknown.
Prdx1 is a member of the peroxiredoxin family (Wood et al.,
2003) and has been shown to be involved in regulating many
pathological processes, such as redox reactions (Yamaguchi
et al., 1993), inflammatory responses, apoptosis (Liu et al., 2014,
2018; Min et al., 2018; Lu et al., 2019), and tumorigenesis
(Hoshino et al., 2005; Cao et al., 2009). These findings suggest
that Prdx1 may also play important roles in regulating the
above-mentioned pathological processes to influence the brain
injury caused by ICH.

In this study, we thus created ICH models and coupled
them with in vitro experiments to investigate the role that
Prdx1 might play in regulating inflammation and apoptosis by
acting as an RBP as well as the underlying mechanism. We
found that elevated expression of Prdx1 can significantly reduce
inflammation and apoptosis after ICH, and that the protective
effects of Prdx1 against brain injury may be related to the binding
of inflammation- and apoptosis-related mRNAs, as revealed by
RIP-seq technology.

MATERIALS AND METHODS

Animals
Male Sprague-Dawley (SD) rats (8–10 weeks old, 250–300 g)
were purchased from the Animal Center of Daping Hospital,
Third Medical Military University, Chongqing, China. All rats
were raised in a clean environment and maintained at 25 ± 2◦C
under a 12 h light/12 h dark cycle and free access to food and
water. All procedures and animal experiments were performed
in agreement with the Provision and General Recommendation
of Chinese Experimental Animals Administration Legislation

and the Animal Management Committee of the Third Military
Medical University.

ICH Model
The ICH model was established as described in previous studies
(Xu et al., 2019). Briefly, autologous blood (70 µL) without
anticoagulant or the same volume of saline was injected into the
right striatum (0.2 mm anterior and 3.5 mm lateral of bregma at a
depth of 5.5 mm) with a syringe pump (KD Scientific, Holliston,
MA, United States), at a rate of 10 µL/min. The needle was left in
for 10 min after the injection and then slowly withdrawn, and the
skin was sutured. The success rate of the model was 90%; failed
models and dead rats were excluded from this study.

Construction of the Prdx1
Overexpression Rat Model
The Prdx1-overexpressed adeno-associated virus (AAV2/9-r-
Prdx1-3 × flag-mCherry) was named Prdx1-OE-AAV, and
vector (AAV2/9-CMV-mCherry) was purchased from Hanbio
Biotechnology (Hanbio, China). Five microliters (1.2 × 1012
vg/mL) of Prdx1-OE-AAV or the same volume of vector was
injected at 1 µL/min into the right striatum (0.2 mm anterior
and 3.5 mm lateral of bregma at a depth of 5.5 mm). Three
weeks after the operation, the ICH model was established. The
expression effect of the virus was verified by western blot analysis
and quantitative real-time PCR (qRT-PCR).

Immunofluorescence Staining
As described in our previous report (Xiong et al., 2016), the
brain tissue was fixed with 4% paraformaldehyde. After gradient
dehydration, the tissue was embedded and cut into 30 µm thick
sections. The sections were permeated at 37◦C for 1 h with 0.5%
Triton-X-100, blocked with 5% BSA for 2 h, and then incubated
with the following primary antibodies overnight at 4◦C: anti-
NeuN (1:500, Abcam, Cambridge, United Kingdom), anti-GFAP
(1:200, Abcam), anti-Iba1(1:200, Abcam) and anti-Prdx1 (1:200,
Abcam). The sections were then incubated with fluorescent
secondary antibody for 2 h at 37◦C. Fluorescent secondary
antibodies including Alexa Fluor 647 (1:200, donkey anti-
goat), Alexa Fluor 647 (1:200, donkey anti-mouse), and Alexa
Fluor 488 (1:200, donkey anti-rabbit), were all obtained from
Invitrogen (Carlsbad, CA, United States). Next, 4′,6-diamidino-
2-phenylindole (DAPI, 1:3000) was applied for 10 min, and
samples were rinsed in PBS. All images were captured using a
confocal fluorescence microscope (Leica TCS Sp5, Mannheim,
Germany). Number of positive cells were counted using ImageJ
software and analyzed in three different arbitrary units that can
be defined as the average number of positive cells.

Immunohistochemistry Staining
Following our previous methods (Fang et al., 2014), the brain
tissue was fixed with 4% paraformaldehyde, embedded in
paraffin and cut into 3.5 µm thick sections. The tissues were
dewaxed in xylene, rehydrated in alcohol, placed in 100◦C
sodium citrate buffer for antigen retrieval for 20 min, and
immersed in 3% hydrogen peroxide at 37◦C for 10 min to
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block peroxidase activity. The sections were blocked with 5%
BSA for 2 h, and then incubated with the anti-Prdx1 (1:200,
Abcam) overnight at 4◦C. The sections were then incubated with
a rabbit polyclonal secondary antibody (Maravai LifeSciences,
San Diego, CA, United States) at 37◦C for 2 h, incubated with
SABC (Maravai) at 37◦C for 1 h, and the color reaction was
developed with diaminobenzidine (Zsbio, Beijing, China). All
images were captured using a light microscope (BX51, Olympus,
Tokyo, Japan). Numbers of positive cells were calculated using
ImageJ software and analyzed in three different arbitrary units
that can be defined as the average number of positive cells.

Quantitative Real-Time PCR
Using our previously described method to isolate total RNA
and perform qRT-PCR (Meng et al., 2017), tissue and cellular
RNA were extracted using TRIzol (Invitrogen, Carlsbad, CA) and
RNA was reverse transcribed into cDNA (Takara, Dalian, China).
Quantitative RT-PCR was performed on an ABI PCR instrument
(ABI, CA, United States) using iQ SYBR Green reagent. Primers
were synthesized by Shanghai Shenggong Biotechnology Co.,
Ltd. The primer sequences used in this study are shown in
Supplementary Table S1. Relative gene expression levels were
determined using the 2−11CT method.

Western Blot Analyses
As described in our previous report (Wang et al., 2014), protein
was extracted and separated on 12% SDS-PAGE (Beyotime
Biotechnology, Shanghai, China), and then transferred onto
polyvinylidene fluoride membranes (Merck Millipore, Temecula,
CA, United States) by electroblotting. The membranes were
blocked with 5% BSA for 2 h at room temperature and incubated
with the following primary antibodies overnight at 4◦C: prdx1
(1:1000, Bosterbio, Pleasanton, CA, United States), Bcl2 (1:1000,
Abcam), Bax (1:1000, Abcam), and β-actin (1:1000, Santa Cruz
Biotechnology, Dallas, TX, United States). The membranes were
washed with TBS-T washing buffer and incubated with HRP-
conjugated goat anti-rabbit secondary antibodies (1:10000, Zsbio,
Beijing, China) or anti-mouse secondary antibodies (1:10000,
Zsbio) at 25◦C for 2 h. Bound antibodies were visualized using
an enhanced chemiluminescence (ECL) substrate and gray values
were evaluated with ImageJ software.

Brain Water Content
We demonstrated in our previous study (Xiong et al., 2016)
that the brain water content (BWC) reflects the degree of brain
edema. The rats were anesthetized by intraperitoneal injection
with pentobarbital, and cerebral tissues were removed, and the
hematoma and contralateral brain tissue were preserved by
heating to 100◦C for 24 h. The BWC was calculated using the
formula ((wet weight – dry weight)/wet weight)× 100%.

Nissl and Fluoro-Jade B (FJB) Staining
We performed Nissl staining as previously described (Li Q. et al.,
2018). Briefly, the tissues were dewaxed in xylene, rehydrated
in alcohol, incubated with Nissl staining solution (Beyotime) at
62◦C for 1 h and rinsed in PBS. The procedure also followed

our previously reported method (Wang et al., 2018). Tissue was
adhered to the slide and rinsed in PBS, soaked in a solution
containing 1% sodium hydroxide in 80% alcohol for 5 min,
and then transferred to 0.06% potassium permanganate for
10 min. The samples were incubated with Fluoro-Jade B (FJB)
dye (Chemicon International, Temecula, CA, United States)
at 37◦C for 30 min. All images were captured using a light
microscope (BX51, Olympus, Japan). The number of positive
cells were calculated by ImageJ software and analyzed in three
different arbitrary units that can be defined as the average number
of positive cells.

RNA Immunoprecipitation,
High-Throughput Sequencing (RIP-seq),
and Data Analysis
The cell sample was suspended in a cell culture dish with
precooled PBS, and the dish was irradiated with a UV cross-
linker. Collected cells were added to the lysate at a ratio of
1:10 to lyse and digest the DNA. The lysate was incubated with
the RIP antibodies overnight at 4◦C for immunoprecipitation.
The magnetic beads were resuspended with the antigen-antibody
complex solution for 1 h, and the magnetic beads resuspended
in MNase were placed on a hot mixer for 10 min and eluted.
After removal of MNase, the sample was dephosphorylated with
FastAP enzyme, treated with T4 PNK enzyme, and then treated
with proteinase K to digest protein, and the RNA was extracted.
The Illumina ScriptSeqTM v2 RNA-Seq Library Preparation Kit
(Li et al., 2017; Song et al., 2018) was used for the library
construction and sequencing. The quality of the RIP library was
judged according to the mapping result. Quality-qualified data
were entered for the downstream analysis to obtain valid reads
for the genomic location distribution, peak calling, and motif
analysis, which revealed the type and pattern of mRNA and
ncRNA that Prdx1 binds at the genome-wide level.

Construction of cDNA Library and Data
Analysis
The DNA was digested by RQ1 DNase (Promega) enzyme in total
RNA. A total of 5 µg of total RNA was taken for the polyA library
construction. The PCR product with a fragment size of 300–
500 bp was selected for sequencing. The results of the library were
sequenced using an Illumina HiSeq X Ten sequencing platform
for sequencing at 150 bp. The systematic evaluation of the data
included the extraction and quality assessment of effective reads,
the length distribution of effective reads, sequencing saturation
statistics, and base content statistics. Differentially expressed
genes (DEGs) were identified in different samples using the edgeR
software system (Pan et al., 2017; Sun et al., 2017) and submitted
to a DAVID function GO analysis.

Survival Analysis
Following methods described in the literature (Meng et al., 2017),
the number of dead rats was counted once every hour after
ICH. To calculate the survival rate, the following equation was
used: (number of ICH rats per group – number of dead rats per
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group)/number of ICH rats per group. A Kaplan-Meier survival
analysis was then conducted to evaluate survival rates.

Flow Cytometry
An Annexin V/Dead Cell kit was purchased from BD Biosciences
(San Jose, CA, United States), and apoptosis staining was
performed according to the manufacturer’s instruction. The cells
were divided into normal cells, early apoptosis cells, late apoptosis
cells, and dead cells using flow cytometry, and the proportion of
the four types of cells was calculated.

Hematoma Measurement
According to our previous methods (Meng et al., 2017), the
rats were sacrificed at 3 d after ICH, and brain tissues were
taken and frozen at −20◦C for 30 min. Coronal sections of
the brain were made with a thickness of 1mm. The area of
hematoma in each section was determined using Image-Pro Plus
5.0 image processing software (Media Cybernetics, Bethesda,
MD, United States) and the hematoma volume was measured
according to the formula V = t × (A1 + A2 + · · · + An), where
V is the hematoma volume, t is the slice thickness, and A is
the hematoma area.

Modified Neurological Severity Score
The modified neurological severity score (mNSS) was calculated
according to previous methods (Li et al., 2019), and the detailed
scoring rules are shown in Supplementary Table S2. The score
is based on an evaluation of the neurological defects, according
to aspects of movement, sensation, balance, etc. Higher scores
indicate more obvious neurological defects. The score in the
current study were determined by three experienced laboratory
researchers who were unaware of the group assignments of
the rat. The final score for each rat was the average of all
scores for that rat.

Primary Astrocyte Sorting
SD rats aged 8–12 weeks were anesthetized with 1% pentobarbital
and perfused with pre-cooled PBS. The brain was isolated,
then the brain tissue was cut into pieces of 1–3 mm with
surgical scissors, and 4 mg/mL Papain(Worthington, Lakewood,
United States) was added to digest the brain tissues at 37◦C for
1 h; the tissues were slightly shaken every 5 min, followed by
repeated pipetting of the cell suspension; then, the supernatant
was used for centrifugation and cells were deposited at the
bottom of the tube, using Alexa Fluor 488 GFAP antibody
(1:20, BD Biosciences) combined with flow sorting to separate
astrocytes for RIP.

Experimental Design
First, 67 rats were randomly divided into two groups: a sham
group and an ICH group, 20 rats of each group were used to
calculate mortality and sacrificed at 5 days after ICH. 12 ICH
rats were sacrificed at 12, 24, 72, and 120 h, respectively (n = 3
each timepoint), and RNA were extracted to detect the Prdx1
mRNA level. Three rats in each group sacrificed at 72 h for
immunofluorescence and immunohistochemistry staining, and

three rats in each group sacrificed at 72 h for western blotting
(Figure 1A). Second, 132 rats were randomly divided into four
groups (n = 43 each group): a sham group and three ICH groups
(WT, Vector, Prdx1-OE); three rats of each group were used for
qRT-PCR and western blotting, three rats of each group were
used for FJB and Nissl staining, six rats of each group were used
to detect BWC, five rats of each group were used for functional
assessments, and six rats of each group were used to calculate
hematoma volume, these rats all sacrificed at 3 days after ICH.
Twenty rats of each group were used to calculate mortality and
sacrificed at 5 days after ICH (Figure 1A and Supplementary
Figures S3A,B). Finally, for the in vitro experiments, Prdx1-
overexpressing plasmids were transfected into HeLa cells, Prdx1-
overexpressing HeLa cell and the cells from control group were
collected for RIP-seq, RNA-seq and flow cytometry analysis. The
primary astrocytes were extracted and subjected to RIP-qRT-
PCR, to verify the RIP-seq data (Figure 1B).

Statistical Analysis
All data are expressed as the mean ± SEM or percentage.
Student’s t-tests were used to evaluate the differences between
independent samples, and comparisons among multiple groups
were examined using one-way ANOVA. Two-way ANOVA
was used to evaluate the differences in BWC between groups.
A Kaplan Meier survival analysis was applied to evaluate survival
rates. Differences were considered to be significant at P < 0.05.

RESULTS

Prdx1 Expression Was Significantly
Upregulated After ICH
Before investigating the role of Prdx1 in ICH-induced
brain injury, we first detected its expression profiles in the
perihematomal tissue of ICH rat models. Our results indicated
that Prdx1 mRNA level increased at 24 h, peaked at 72 h and
then gradually declined (Figure 2A). Because Prdx1 expression
peaked at 72h, and at same timepoint, there was a statistical
difference in mortality between the two groups (Figure 2B),
so we chose this timepoint for the current experiments. Using
western blotting, we found that Prdx1 protein levels (Figure 2C)
in model rats were significantly increased compared to the level
in the sham group at 3 days after ICH. Next, we performed
immunohistochemical and immunofluorescence staining, and
found that in the striatum, the number of Prdx1-positive
cells was significantly higher in the model rats than in the
sham group (Figure 2D and Supplementary Figures S1A,B),
and in the cortex, there was no significant difference in
two groups (Supplementary Figures S1C,D). Furthermore,
immunofluorescence staining was used to explore the cellular
resource of Prdx1 in normal brain tissue and perihematomal
brain tissues in the striatum (Supplementary Figure S2B),
and we found that Prdx1 was mainly colocalized with GFAP+
astrocytes and Iba1+ microglia (Figure 2E and Supplementary
Figure S2A). Together, these results suggest that enhanced Prdx1
expression is mainly derived from astrocytes and microglia in
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FIGURE 1 | Conceptual illustrations of the experimental design. Flow diagram of in vivo (A) and in vitro (B) experiments.

the striatum and may be involved in the regulation of brain
injury after ICH.

Prdx1 Suppressed ICH-Induced
Apoptosis and Inflammation
Next, we investigated the role of Prdx1 in brain injury after
ICH. Prdx1-overexpressing AAV or empty vector was injected in
rats 3 weeks before ICH surgery (Supplementary Figure S3E),
and the overexpression of Prdx1 in the brain was confirmed
by qRT-PCR (Supplementary Figure S3C) and western blot
analysis (Supplementary Figure S3D). First, we found that
the mortality rate (Figure 3A) and BWC (Figure 3B) were
significantly decrease in the Prdx1-OE rats compared to the WT
and Vector rats after ICH. The hematoma volumes (Figure 3C)
and mNSS (Figure 3D) were also significantly lower in the
Prdx1-OE rats. Then, we performed Nissl staining to detect
the surviving cells around the hematoma and found that the
number of Nissl-positive cells in perihematomal brain tissue
was higher in the Prdx1-OE group than in the WT and Vector
groups (Figure 4A); in contrast, the number of damaged cells
detected by FJB staining was significantly decreased in Prdx1-
OE rats (Figure 4B). Furthermore, we used western blotting to
investigate the expression levels of the apoptosis-related proteins
Bax and Bcl2 and found that Bcl2/Bax was significantly increased
in Prdx1-OE ICH rats compared with the WT and Vector
groups (Figure 4C). We also assessed inflammatory factors in
perihematomal brain tissue after ICH, and our results show that
mRNA levels of TNF-α, IL-10, and IL-6 were markedly decreased
in the Prdx1-OE group in contrast to the levels in the WT and
Vector groups (Figure 4D). Together, these data indicate that
Prdx1 can alleviate acute brain injury after ICH by reducing
inflammation and apoptosis.

We also injected shPrdx1 AAV into rats to generate
Prdx1-knockdown rats. However, most Prdx1-knockdown rats

died within 3 days after ICH surgery (data not shown), and the
related experiments in Prdx1-knockdown ICH rats are difficult
to perform. This also illustrates the protective effect of Prdx1 in
brain injury after ICH.

Characterization of Prdx1 Binding to
Target RNA in vitro
To further delineate the underlying mechanism of Prdx1
in reducing inflammation and apoptosis, we used RNA
immunoprecipitation coupled with next-generation sequencing
(RIP-seq) to identify all RNAs that interact with Prdx1. We
chose HeLa cells for these experiments for the following reasons:
studies have shown that HeLa cells are model cells for studying
RBPs (D’Amico et al., 2019; Loughlin et al., 2019; Wilbertz
et al., 2019) and HeLa cells are good for gene regulation studies
in the central nervous system (Chu et al., 2013). In addition,
Prdx1 also shows anti-apoptotic and anti-inflammatory effects in
HeLa cells (Nassour et al., 2016) (Supplementary Figure S4A),
suggesting that Prdx1 may play a similar role in the central
nervous system. First, we tested the consistency of two biological
replicates of Prdx1 RIP-seq data and found 10466 consensus
genes, showing that our results were reproducible (Figures 5A,B
and Supplementary Data S1). Next, we analyzed the regions of
the Prdx1-bound RNAs. By comparison with the whole genome,
we found the regions where the Prdx1-bound RNAs were mainly
concentrated in the coding sequence (CDS) region, the 5′ UTR
and the 3′ UTR (Figures 5C,E). Furthermore, de novo motif
analysis showed that the Prdx1-bound motif was mainly in
the AG-enriched region (Figure 5D), and GO Ontology (GO)
analysis of Prdx1-bound RNAs revealed significantly enriched
terms in RNA/mRNA processing and splicing (Supplementary
Figure S4B), which is consistent with our prediction. Our Prdx1
RIP-seq results revealed that Prdx1 bound to mRNA transcripts
was associated with the inflammatory response (BCL6 and
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FIGURE 2 | Prdx1 expression was significantly increased in rats after ICH. (A) Prdx1 expression in the perihematomal area was detected by qRT-PCR (df = 4,
F = 35.945, ∗P < 0.05 versus sham, ∗∗P < 0.01 versus sham, n = 3). (B) Survival statistics of the sham group and WT group (χ2 = 10.457, df = 1, ∗∗P = 0.01,
n = 20). (C) Prdx1 expression in the perihematomal area was detected by western blot analysis (F = 2.014, t = –3.432, ∗∗P < 0.01 versus sham, n = 3). (D) Prdx1
expression in perihematomal tissue was detected by immunohistochemistry (scale bars, 100 µm, F = 1.225, t = –7.288, ∗∗P < 0.01 versus sham, n = 3). (E) Prdx1
expression in perihematomal tissue was determined by immunofluorescence, and the percentage of positive Prdx1/NeuN, Prdx1/Ibα-1 and Prdx1/GFAP in three
randomly chosen fields within the perihematomal area was counted (scale bars, 25 µm, F = 10.964, t = –11.790, ##P < 0.01 versus Prdx1/NeuN. F = 12.000,
t = –60.228, ∗∗P < 0.01 versus Prdx1/NeuN, n = 3).

TLR6) and the apoptotic process (PTEN and FOS) (Figure 5F),
consistent with the RIP-qPCR result for these mRNAs in
astrocytes (Figure 5G), suggesting that Prdx1 plays a role in
inflammation and apoptosis.

Prdx1 Affects Inflammation- and
Apoptosis-Related mRNA Stability
Prdx1 mainly binds to the 3′ UTR, CDS, and 5′ UTR of the
RNAs, indicating that its function may be related to the stability

of RNA and AS (Mayr, 2016; Yee et al., 2019). To obtain
a comprehensive view of Prdx1-dependent DEGs, control or
Prdx1-overexpressing vector was transfected into HeLa cells
(Figure 6A and Supplementary Figure S5A) and RNA-seq
was performed. The RNA-seq data showed good reproducibility
(R = 0.994, Figure 6B). A total of 863 Prdx1-dependent DEGs
were identified; among them, 471 were upregulated genes, and
392 were downregulated genes (Figure 6C, Supplementary
Figure S5B, and Supplementary Data S2). Next, we performed
GO analysis on these DEGs and found that these genes were
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FIGURE 3 | Prdx1 overexpression alleviated the symptoms of rats after ICH. (A) Survival statistics of the sham group, WT group, Vector group, and Prdx1-OE group
(χ2 = 14.310, df = 3, ∗P < 0.05 versus Vector, #P < 0.05 versus WT, n = 20). (B) Brain water content of the four groups (df = 3, F = 9.324, ∗P < 0.05 versus Vector,
##P < 0.01 versus WT, n = 6). (C) Hematoma volume of the sham group, the WT group, the Vector group, and the Prdx1-OE group (df = 3, F = 151.467, ∗P < 0.05
versus Vector, #P < 0.05 versus WT, n = 6). (D) The mNSS was determined for four groups 3 days after ICH (df = 3, F = 75.196, ∗∗P < 0.01 versus Vector,
##P < 0.01 versus WT, n = 5).

mainly associated with redox reactions, cytokine pathways, and
inflammatory responses, as well as with apoptosis and DNA
repair (Figure 6D). Further, we screened for genes involved
in inflammation and apoptosis in these DEGs (Figure 6E and
Supplementary Data S3), verified their changing profiles using
qRT-PCR, and found similar trends of these mRNAs in ICH rats
when Prdx1 overexpression was compared with RNA-seq data in
HeLa cells (Figure 6F and Supplementary Figure S5C).

Coupling RIP-seq and RNA-seq, we found that Prdx1 can
combine with inflammation- and apoptosis-related RNAs, such
as ANGPTL4, GADD45A, and THBS1, and cause differential
expression of these mRNAs in HeLa cells (Figure 7A and
Supplementary Data S2). We validated these results in astrocytes
and ICH models, and found that Prdx1 also combined with these
mRNAs in astrocytes (Figure 7B); similar trends of these mRNA
levels were confirmed in the rat ICH model (Figure 7C).

DISCUSSION

RNA-binding protein-mediated posttranscriptional regulation
plays an important role in the pathophysiological processes
of diseases (Wurth et al., 2016; Bar-Ziv et al., 2019;
Baser et al., 2019). Recent studies have shown that
posttranscriptional regulation is also associated with ICH
(Dykstra-Aiello et al., 2015; Stamova et al., 2019). However, what

roles RBPs play in ICH is still largely unknown. In this study,
we found that Prdx1, an RBP, was significantly increased in
astrocytes and microglia in response to brain injury after ICH,
that is regulated inflammation- and apoptosis-related mRNA
stability, and that is reduced inflammation- and apoptosis-
related molecular production and release, thereby inhibiting
the inflammatory response and reducing apoptosis after ICH,
suggesting that Prdx1 could serve as an improved therapeutic
target to inhibit both inflammation and apoptosis after ICH.

In this study, we first found that Prdx1 expression in
perihematomal brain tissues was markedly increased, which
in line with previous studies (Nakaso et al., 2000; Liu et al.,
2014). Immunofluorescent staining revealed that elevated Prdx1
was mainly expressed in astrocytes and microglia but not in
neurons in the striatum of ICH rats. Interestingly, we also
found that Prdx1 colocalized with NeuN+ neurons in the cortex
(Supplementary Figure S6), differential cellular localization of
Prdx1 indicate that Prdx1 expression in the CNS may exert
functional diversity. In addition, our results show that Prdx1
can reduce the hematoma volume after ICH, its mechanism
needs further study, we speculate that Prdx1 inhibits the release
of inflammatory factors such as TNF-α, thereby promoting the
expression of CD36 and causing the absorption of hematomas.

While previous studies investigated the roles of Prdx1 in
other diseases, our study is the first to demonstrate that Prdx1
can reduce inflammation and apoptosis after ICH. Liu et al.
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FIGURE 4 | Prdx1 overexpression inhibited inflammation and apoptosis after ICH. (A) Representative Nissl staining in sham, WT, Prdx1-OE and Vector rats. The
number of Nissl-positive cells was assessed (scale bars, 50 µm, df = 3, F = 174.206, ∗∗P < 0.01 versus Vector; ##P < 0.01 versus WT, n = 3). (B) Representative
FJB staining in sham, WT, Prdx1-OE, and Vector rats. The number of FJB-positive cells was assessed (scale bars, 50 µm, df = 3, F = 435.050, ∗∗P < 0.01 versus
Vector; ##P < 0.01 versus WT, n = 3). (C) Western blotting was used to detect Bcl2 and Bax expression in the four groups (df = 3, F = 32.759, ∗P < 0.05 versus
Vector; #P < 0.05 versus WT, n = 3). (D) Comparison of the expression of inflammatory factors in the four groups using qRT-PCR: IL-6 (df = 3, F = 27.046,
∗P < 0.05 versus Vector; ##P < 0.01 versus WT, n = 3), IL-10 (df = 3, F = 79.041, ∗∗P < 0.01 versus Vector, ##P < 0.01 versus WT, n = 3), TNF-α (df = 3,
F = 10.274, ∗∗P < 0.01 versus Vector; #P < 0.05 versus WT, n = 3).

showed that Prdx1 exacerbate brain injury after ICH (Liu et al.,
2016). However, the study did not use Prdx1 overexpression
or interference models to verify the effect of Prdx1 after ICH,
but only inferred its role in ICH based on the function of
Prdx1 in macrophages. In fact, Prdx1 performs different and
even opposite functions in different cell types, thus the study
failing to fully elucidate the role and mechanisms of Prdx1

in ICH. In our study, we first overexpressed Prdx1 in rat
brain and established ICH model, found that the symptoms
of Prdx1-OE group was significantly alleviated compare with
WT or Vector group, our study provided direct evidence of its
role in ICH.

However, the roles of Prdx1 in regulating inflammation and
apoptosis are currently controversial. For example, Liu et al.

Frontiers in Neuroscience | www.frontiersin.org 8 March 2020 | Volume 14 | Article 181

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00181 March 6, 2020 Time: 18:58 # 9

Yang et al. Prdx1 Reduces Brain Injury After ICH

FIGURE 5 | The genome-wide landscape of Prdx1 binding sites on RNA. (A) Venn diagram of Prdx1 RIP-seq genes from two biological replicates. (B) Heat map
showing the correlation coefficient of two biological replicates. (C) The Prdx1 RIP-seq peaks are predominantly enriched in the CDS region, the 3′ UTR and the 5′

UTR. All RIP-seq peaks were classified according to their distribution on the RNA elements and compared to the genomic background. (D) De novo motif analysis
identified GA repeat and GA-enriched sequences as Prdx1 binding motifs. (E) Prdx1 RIP-seq peak distribution proportion. (F) Prdx1 RIP-seq peaks are shown as
track signals. The peak area is indicated by the black frame. (G) RIP-qPCR analysis of Prdx1 binding RNAs, IgG RIP was negative RIP control (BCL6: F = 3.745,
t = –6.708, ∗∗P < 0.01 versus IgG, n = 3; TLR6: F = 1.668, t = –7.065, ∗∗P < 0.01 versus IgG, n = 3; FOS: F = 5.224, t = –10.432, ∗∗P < 0.01 versus IgG, n = 3;
PTEN: F = 0.000, t = –6.998, ∗∗P < 0.01 versus IgG, n = 3).

reported that Prdx1 can promote the release of inflammatory
mediators by activating macrophages (Liu et al., 2014; He
et al., 2019), and Riddell et al. declare Prdx1 could activate
the TLR4/MyD88 signaling pathway (Riddell et al., 2010, 2012),
thereby enhancing inflammation and apoptosis. However, Lu
et al. showed that Prdx1 reduces the inflammatory response

by inhibiting the activation of NF-κB and oxidative stress
(Min et al., 2018; Lu et al., 2019), and studies have also shown
that Prdx1 inhibits the activity of the ubiquitin ligase TRAF6
(Min et al., 2018), thereby producing an anti-inflammatory
effect. Our data suggests that Prdx1 inhibits inflammation
and apoptosis by regulating the posttranscriptional regulation
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FIGURE 6 | Prdx1 affects inflammation- and apoptosis-related mRNA stability. (A) Prdx1 expression in control HeLa cells and in the Prdx1-OE group was detected
by qRT-PCR (F = 8.494, t = 40.635, ∗∗P < 0.01 versus Control). (B) Scatter plots and correlation coefficients of two biological replicates of RNA-seq. (C) Volcano
map: red dot indicates a gene that is upregulated after Prdx1 overexpression, black dot indicates a gene with no significant change, and blue dot indicates a
downregulated gene. (D) Gene ontology (GO) analysis of Prdx1-dependent DEGs. Significantly enriched GO terms of genes. The x-axis indicates the enrichment
P-value on a −log10 scale; the y-axis indicates terms. (E) Heat map showing that apoptosis- and inflammation-related genes were significantly decreased after
Prdx1 was upregulated in HeLa cells. (F) qRT-PCR was performed in four groups 3 days after ICH (BMP2: F = 8.949, df = 3, ∗P < 0.05 versus Vector, #P < 0.05
versus WT, n = 3; CCL2: F = 33.103, df = 3, ∗∗P < 0.01 versus Vector, ##P < 0.01 versus WT, n = 3; TLR3: F = 39.330, df = 3, ∗∗P < 0.01 versus Vector,
##P < 0.01 versus WT, n = 3).

of inflammation- and apoptosis-related mRNAs, and thus
provides new evidence and insights into the anti-inflammatory
effects of Prdx1.

Kim et al. (2012) first reported that Prdx1 can act as an
RBP to bind RNAs, which has also been demonstrated in a
number of recent studies (Baltz et al., 2012; Castello et al., 2012;
Kwon et al., 2013; Sebestyén et al., 2016). However, it is still
not clear what kinds of RNAs Prdx1 can combine with and
what the effects of such couplings are. In the current study,
we first investigated the properties of Prdx1 as an RBP from
a genome-wide perspective and found that Prdx1 can regulate
mRNA stability because Prdx1 is mainly combined with the
CDS region, the 3′ UTR and 5′ UTR in AG-enriched RNA

motifs. For example, we found that Prdx1 can combine with
ANGPTL4, GADD45A, and THBS1 mRNAs, and it upregulated
these mRNAs when Prdx1 was overexpressed. Previous studies
showed that ANGPTL4 can significantly inhibit the inflammatory
response (Guo et al., 2015) and alleviate neurological deficits
and cerebral edema after ICH (Qiu et al., 2018). GADD45A
is a DNA damage-inducing protein and has been shown to
inhibit oxidative stress and inflammatory responses (Tanaka
et al., 2017; Li F. H. et al., 2018). THBS1 is also an anti-
inflammatory molecule (Cursiefen et al., 2011) and accelerates
synaptogenesis (Xu et al., 2010). These earlier findings, together
with our current results, demonstrate the anti-inflammatory
and anti-apoptotic effects of Prdx1 and suggest Prdx1 as an
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FIGURE 7 | Prdx1 plays similar roles in vitro and in vivo. (A) Prdx1 RIP-seq peaks are shown as track signals of ANGPTL4, GADD45A and THBS1. The peak area is
indicated by the black frame. (B) RIP-qPCR analysis of Prdx1 binding RNAs in astrocytes with IgG RIP as a negative RIP control (ANGPTL4: F = 4.297, t = –13.551,
∗∗P < 0.01 versus IgG, n = 3; GADD45A: F = 12.277, t = –8.909, ∗∗P < 0.01 versus IgG, n = 3; THBS: F = 4.072, t = –20.619, ∗∗P < 0.01 versus IgG, n = 3).
(C) qRT-PCR was performed in four groups of ANGPTL4, GADD45A, and THBS1 mRNA (ANGPTL4: F = 87.049, df = 3, ∗P < 0.05 versus Vector, #P < 0.05 versus
WT, n = 3; GADD45A: F = 73.252, df = 3, ∗∗P < 0.01 versus Vector, ##P < 0.01 versus WT, n = 3; THBS: F = 20.553, df = 3, ∗∗P < 0.01 versus Vector, ##P < 0.01
versus WT, n = 3).

improved therapeutic target to inhibit both inflammation and
apoptosis after ICH.
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