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Abstract

Next-generation sequencing technologies have made RNA sequencing (RNA-seq) a popu-

lar choice for measuring gene expression level. To reduce the noise of gene expression

measures and compare them between several conditions or samples, normalization is an

essential step to adjust for varying sample sequencing depths and other unwanted technical

effects. In this paper, we develop a novel global scaling normalization method by employing

the available knowledge of housekeeping genes. We formulate the problem from the

hypothesis testing perspective and find an optimal scaling factor that minimizes the devia-

tion between the empirical and the nominal type I error. Applying our approach to various

simulation studies and real examples, we demonstrate that it is more accurate and robust

than the state-of-the-art alternatives in detecting differentially expression genes.

Introduction

In recent years, next-generation sequencing methods, for instance, ChIP-seq and RNA-seq,

due to their distinct advantages in increasing specificity and sensitivity of gene expression,

they have become a poular choice in biological studies. Such sequence-based methods have

evoked a wide range of novel applications, for instance, splicing variants [1, 2] and single

nucleotide polymorphisms [3]. Specifically, RNA-seq has become an attractive alternative to

microarrays in the inference of differential expression (DE) between several conditions or tis-

sues, for it gives more accurate detection and measure of gene expression.

We first map the RNA-seq reads to the reference genome and then summarize them as

“counts”. That is, we use a count number to measure the expression level of each gene. Under

different conditions/tissues, the experiments will result in different total read counts, that is,

sequencing depths. In order to make the expression levels of genes comparable and further

conduct differential expression analysis, normalization is a crucial step in data processing. The

normalization step aims to adjust the systematic technical effects and reduce the noise on the

data as well.
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Considering the essential difference in technology between microarray and RNA-seq, we

can not normalize RNA-seq data with the normalization methods of microarray data directly.

A conventional way of RNA-seq analysis is to standardize the data between samples by scaling

their total number of reads to a common value. More sophisticated normalizaiton methods

could be divided into two groups, which are referred to as the library size concept adjustment

and distribution of read counts adjustment. In the first group, several researchers have devel-

oped some normalization methods such as modifying the mean expression of a gene with a

global factor [4–7]. For instance, Hoen et al. [8] used the square root of scaled counts to analy-

sis LONGSAGE-seq data, and Mortazavi et al. [9] modified sequencing data to reads per kilo-

base per million mapped (RPKM). Robinson et al. [10] proposed a scale normalization

method (TMM), which is a weighted trimmed mean of log-ratios between the test sample and

the reference sample. However, TMM method could not normalize the data satisfactorily well

for asymmetric data, especially, for large proportion of DE genes. Zhou et al. [11] used an iter-

ating median fold changes to estimate the scale factor and showed that it is more rubust than

the TMM method for asymmetric data. In the second group, the standard procedure is to first

compute the proportion of each gene’s reads relative to the total number of reads in each

library. Assuming there are similarities between the distributions of read counts, the methods

[12] [13] match the distributions of all genes across all libraries, either on a single quantile or

on all the quantiles. Nontheless, the RNA repertoires may change diversely under different

experimental conditions, thus the proportions of gene expressions are not comparable in such

case. Some authors proposed to use the housekeeping genes as pivot points and match the dis-

tributions of those housekeeping genes, instead of all of genes, for inter-sample normalization.

Bullard et al. [13] used a single housekeeping gene in normalization. Chen et al. [14] proposed

a method to select a subset of housekeeping genes by analyzing experimentally related GO

terms and the stability of gene expression.

The key of normalization problem is to choose an appropriate metric of expression to com-

pare across samples. We propose a novel normalization method by exploiting the knowledge

of housekeeping genes. We address the problem from the hypothesis testing perspective, by

matching the observed and the nominal false discovery rate. The estimated normalization scal-

ing factor is expected to be stable for different confidence level in the hypothesis testing. Thus

it can normalize the samples without trimming the data and avoids the problem of the TMM

like methods.

The remainder of the paper is organized as follows. In Section 2, we propose a hypothesis

testing based method for normalization and detection of DE genes. Subsequently we carry out

extensive simulation studies in Section 3. In Section 4, we evaluate the merits of our approach

by applying it to a liver and kidney dataset, and demonstrate that it outperforms the alterna-

tives. Finally, some conclusions and suggestions are made.

Materials and Methods

A hypothesis testing based normalization scaling factor method

We propose a new normalization procedure, called hypothesis testing based normalization

(HTN), to reduce the bias of normalization by employing the available knowledge of house-

keeping genes. We first introduce some notations. Let Ygk be the observed count and μgk be the

true expression level of gene g in library k, where k = 1, 2 and g = 1, . . ., G. The length of gene g
is denoted by Lg and the total number of reads for library k is denoted by Nk. Assuming the

observed count is proportional to the product of the true expression level and the gene length,
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the expected value of Ygk is formulated as

E½Ygk� ¼
mgkLg

Sk
Nk; ð1Þ

where Sk ¼
PG

g¼1
mgkLg is the total RNA expression of sample k. For two samples or libraries,

we test

H0g : mg1 ¼ mg2 vs H1g : mg1 6¼ mg2 for all g: ð2Þ

Under Eq (1), the above test is equivalent to

H0 : E½Yg1� ¼
S2

S1

�
N1

N2

� �

E½Yg2� vs H1 : E½Yg1� 6¼
S2

S1

�
N1

N2

� �

E½Yg2� for all g: ð3Þ

Let c = S2/S1 be the scaling factor of sample 2 relative to sample 1. Assuming that the counts

mapping to a gene are Poisson-distributed, that is, Ygk * Pois(λgk), the test could be specified

as

H0g : lg1 ¼ c
N1

N2

lg2 vs H1g : lg1 6¼ c
N1

N2

lg2 for all g: ð4Þ

Conditioning on Yg1 + Yg2 = ng, we can derive that Yg1 follows a binomial distribution, that

is,

PðYg1 j Yg1 þ Yg2 ¼ ngÞ ¼
ng !

Yg1!ðng � Yg1Þ!
pYg1

0 ð1 � p0Þ
ng � Yg1 ; ð5Þ

where p0 = λg1/(λg1 + λg2) = (cN1/N2)/(1 + cN1/N2). The p-value for testing H0g is then calcu-

lated as

pgðcÞ ¼ P Yg1 � c
N1

N2

ðng � Yg1Þ

�
�
�
�

�
�
�
� � yg1 � c

N1
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�
�
�

�
�
�
�

� �
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� �

Yg1 � c
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�
�
�
�

�
�
�
� � 1þ c

N1

N2

� �

yg1 � c
N1

N2

ng

�
�
�
�

�
�
�
�

� � ð6Þ

where yg1, yg2 are the observed counts of gene g in these two samples, respectively, and ng = yg1

+ yg2. Note that pg(c) is a function of unknown c. Once c is determined, we could calculate the

p-values for all genes and hence determine which genes are differentially expressed.

In our method, we are supposed to have a set of housekeeping genes in priori, which could

be reported in published studies or selected based on certain biological information, for exam-

ple, the GO terms of the genes [14]. Assume we have m housekeeping genes in total and denote

the set of housekeeping genes as H. Given the true value of c, the p-values of housekeeping

genes are supposed to follow a uniform distribution on (0, 1). Therefore given the significance

level α, the false discovery rate of those genes is supposed to be around the nominal level if c is

correctly specified. In other words, we find the optimal value of c, denoted as ĉ, by minimizing

the following objective function

1

m

X

g2H

IðpgðcÞ < a j H0; cÞ � a

�
�
�
�
�

�
�
�
�
�
: ð7Þ
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Note that theoretically ĉ does not depend on the chosen α. In practice, we observe that ĉ is

almost the same for varying α. To reduce the arbitrariness of choosing α, we set the final value

of ĉ as its mean value when α = 0.1, 0.2, . . ., 0.9.

Simulation studies

In this section, we assess the performance of the proposed method by a number of simulation

studies. To evaluate the overall effectiveness of HTN, we also compare it with recent methods,

including library size, TMM [10], IMM [11], Bull [13] and NHKS [14]. Both Bull and NHKS

employ the information of housekeeping genes to determine the global scaling factor. In simu-

lation studies, we have no prior biological information of the genes. Chen et al. [14] suggested

to use a statistic called coefficient of variation, which measures the stability of gene expression,

to select the most stable housekeeping genes. As in their studies [13, 14], we select a single and

15 housekeeping genes for Bull and NHKS, respectively. Note that for the sample with a single

point, we can not calculate its coefficient of variation statistic. Therefore, we will not compare

the methods with Bull and NHKS in such case.

In the simulation studies, we generate a synthetic data according to the method described

in Robinson et al. [10]. We set different values for the number of genes expressed uniquely to

each sample, the proportion, the magnitude and the direction of DE genes between samples

under two conditions. We randomly draw data from a given empirical distribution of real

counts. We set the expectation of Poison distribution from the sampled read counts by divid-

ing the sum Sk and multiplying a specified library size Nk. With the given mean, we randomly

draw data from the corresponding Poisson distribution. Some DE genes are inserted in the

data, therefore, we use different statistics to rank the genes and calculate the number of false

discoveries [15, 16] for each ranking. In this simulation, we consider two cases: no-repeat sam-

ple for each condition and repeat samples for each condition. In each case, we have 500 house-

keeping genes by default. We replicate the simulation studies for 100 times and report the

average performance of those normalization methods.

In Study 1, we simulate data from only one sample for each condition. We consider two

conditions and each is at a rate of 0.1 and 0.5 DE genes at a 1.5-fold level, respectively, and

90% of DE genes are higher in the second condition. In both conditions, let the expression of

10% of genes equal to zero in the first sample and the expression of the corresponding genes in

the second sample not equal to zero. Fig 1 shows the scaling factor for each p-value cutoff in

the simulation, which demonstrates that the scaling factor is stable for any p-value cutoff. Fig 2

shows M versus A plots for different rates of DE genes, and the scales of the HTN normaliza-

tion and the TMM normalization. From the left panel of Fig 2, that two scaling factors of nor-

malization are very close for 10% differential expression of total genes. However, as shown in

the right panel of Fig 2, when the rate of differentially expressed genes increases to 50%, the

red line (HTN) is much closer to the center of non-DE genes than the blue line (TMM). It sug-

gests that HTN gives a more accurate estimate of the normalization factor in this substantive

asymmetric setting, that is, for large DE rate.

For no-repeat sample in Study 1, we compare the false discovery rate (FDR) of all normali-

zation methods with different numbers of selected genes. The FDR curves are shown in Fig 3

for DE genes at the rates of 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6, given 1.5-fold level, respectively. From

upper panels of Fig 3, we can see that HTN, TMM and IMM have almost the same perfor-

mance and they are much better than other normalization methods. However, when the rate

of DE genes is larger than 0.3, HTN outperforms other methods. Therefore, we can draw the

conclusion that HTN performs robustly well for varying rates of DE genes, and has better per-

formance than other methods in the case of a large rate of DE genes.

Hypothesis Testing Normalization for RNA-Seq Data

PLOS ONE | DOI:10.1371/journal.pone.0169594 January 10, 2017 4 / 11



In addition, we further check the robustness of HTN with respect to the signal strength of

housekeeping genes. In the above simulation setting, when the rate of DE genes equals 0.4 at a

1.5-fold level, we consider two scenarios: (1) a varying number of housekeeping genes from 50

to 1000; and (2) a varying rate of housekeeping genes that are actually DE genes, which are ran-

domly drawn from all of DE genes. As shown in Fig 4, the numbers of false discovery genes are

almost the same in those cases, indicating that HTN is indeed quite robust.

In Study 2, we consider the replicate samples for each condition with different rates of DE

genes and compare the proposed method with several popular methods. Here, we consider the

performance of the following methods: length-normalized count (Cloonan et al. [17]), Poisson

exact test [7] with library size, TMM [10], IMM [11], Bull [13], NHKS [14] and HTN normali-

zation. The essence of virtual length [1] and RPKM [9] are the same as library size normaliza-

tion and we do not compare them here. Fig 5 shows the false discovery curves of those

methods when the genes have different rates of DE genes. The left panel of Fig 5 shows that the

FDRs of HTN are similar as those of TMM and IMM with Poisson likelihood ratio statistic or

Poisson exact statistic, when the DE rate equals 0.1. However, as the DE rate increases to 0.5,

HTN outperforms the alternatives with a lower false discovery rate.

Application to real examples

We apply the proposed HTN method to two real data sets, including several technical repli-

cates of a liver and kidney RNA source [5] (S1 File) and the mouse embryoid bodies versus

embryonic stem cells dataset [17], and compare it with other methods. We download human

housekeeping genes from [18](S2 File), which is described in [19], and then use the biomaRt

package [20] in Bioconductor [21] to match them to the Ensembl gene identifiers. Robinson

et al. [10] has also analyzed those real data. For the first real application, Chen et al. [14]

Fig 1. The scaling value for each p-value cutoff in Study 1.

doi:10.1371/journal.pone.0169594.g001
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specified 15 housekeeping genes for the liver and kidney dataset normalization in their study.

Those genes are also found in the above housekeeping genes, thus we directly use them for

Bull and NHKS in this example. For the second real application, given that there is no replicate

data in each condition, we will not compare the methods with Bull and NHKS.

We use the exact Poisson statistic to obtain p − values by testing two different conditions

and regard the genes as differentially expressed between liver and kidney if their p − value is

smaller than 0.0001. Table 1 shows the number of DE genes reported by different normaliza-

tion methods. From Table 1, we can see that HTN detects 8083 DE genes, 46% of which are

significantly higher in liver. The total DE genes and the ratio of DE genes significantly higher

in liver (or kidney) by using HTN are similar to those of TMM and IMM. Note that the library

size normalization method and NHKS report a much larger number of DE genes that are sig-

nificantly higher in kidney, while Bull reports more significant genes in liver, and this leads to

a larger number of total DE genes in their results. For housekeeping genes, there are 330 DE

genes reported by HTN, which is also similar to the results of TMM (329) and IMM (329).

Fig 2. M versus A plots of different rates of DE genes. The left panel and right panel are the MA plots for DE genes at a rate

of 0.1 and 0.5, respectively. The blue line is the scale of TMM normalization and the red line is the scale of HTN normalization.

doi:10.1371/journal.pone.0169594.g002
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However, there are more DE genes out of 538 housekeeping genes for the other three normali-

zation methods, which suggests a much larger number of false positive than that of HTN.

The second dataset is comparing mouse embryoid bodies versus embryonic stem cells,

which is downloaded from [17], sequenced on the SOLiD system. In this dataset, there are

19005 genes in total, 495 of which are “housekeeping” genes as we know [22]. We get p − value
for each gene by using the amended sage.test function [23]. Table 2 shows the results of DE

genes output by different normalization methods. The number of DE genes significantly

higher in EB is about 22.5%, which is much lower than that of ES (77.5%) by using the HTN

normalization. There are 362 DE genes out of 495 housekeeping genes reported by HTN,

which is much lower than that of library size normalization (411), TMM (397), IMM (402).

Thus, based on the available knowledge of housekeeping genes, HTN tends to have a lower

false discovery rate than alternatives in this case. However, as we note, HPN reports 9896 DE

genes in total, which is much more than that of library size normalization (9295), TMM (9328)

and IMM (9383).

Conclusion

In order to compare the genes expression and thus to detect differently expressed genes

between samples, normalization is a crucial step for downstream analysis. In this paper,

Fig 3. The panels are the false discovery number of test for DE genes at the rates of 0.1, 0.2, 0.3, 0.4,

0.5 and 0.6, respectively.

doi:10.1371/journal.pone.0169594.g003
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assuming the information of housekeeping genes is known, we propose a novel normalization

method called HTN, which is based on a hypothesis testing, and show it is more effective and

robust for normalizing the RNA-seq depth between different samples. The estimated scaling

factors between samples can be incorporated into currently used statistical test methods for

differential gene expression analysis. The knowledge of housekeeping genes is essential for

using our method. To obtain housekeeping genes, users may check the relevant published

studies, such as [14, 19].

In the simulation studies, we assess the performance of the proposed method by consider-

ing varying ratios of DE genes and varying signal strength of housekeeping genes. We observe

that when the ratio is high, the HTN normalization method significantly outperforms the

state-of-the-art methods with a lower false discovery rate. The real data analysis also shows

that our new method has better performance when judging from the available knowledge of

housekeeping genes. Compared with Bull [13] and NHKS [14], which also utilize housekeep-

ing genes, our method seems to be more robust and better, at least as well as, due to that we

use all housekeeping genes and the type I error statistic evaluates the overall change of the

Fig 4. False discovery number for different numbers of housekeeping genes and different rates of noise in

housekeeping genes with HTN method.

doi:10.1371/journal.pone.0169594.g004
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Fig 5. False discovery number for different normalization methods. The left panel and the right panel are the false

discovery plots for DE genes at the rates of 0.1 and 0.5, respectively.

doi:10.1371/journal.pone.0169594.g005

Table 1. The number of DE genes between liver and kidney at a cutoff p-value < 10−4 for different normalization methods.

Library size TMM IMM HTN Bull NHKS Overlap

Higher in liver 2082 3759 3797 3680 7248 2836 2082

Higher in kidney 7496 4310 4273 4403 2094 5679 2083

Total 9578 8069 8070 8083 9342 8515 4165

House keeping genes (538)

Higher in liver 39 120 123 119 287 82 14

Higher in kidney 358 209 206 211 93 276 44

Total 397 329 329 330 380 358 58

doi:10.1371/journal.pone.0169594.t001
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expression of housekeeping genes more efficiently. In conclusion, our empirical studies sug-

gest that the HTN method is a competing alternative for the normalization and differential

expression analysis of RNA-seq data.

Supporting Information

S1 File. This is the real data of a liver and kidney RNA source.

(TXT)

S2 File. This is the housekeeping genes of human.

(TXT)
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