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Abstract

Background: Neural activation patterns proceed often by schemes or motifs distributed across the involved cortical
networks. As neurons are correlated, the estimate of all possible dependencies quickly goes out of control. The complex
nesting of different oscillation frequencies and their high non-stationariety further hamper any quantitative evaluation of
spiking network activities. The problem is exacerbated by the intrinsic variability of neural patterns.

Methodology/Principal Findings: Our technique introduces two important novelties and enables to insulate essential
patterns on larger sets of spiking neurons and brain activity regimes. First, the sampling procedure over N units is based on
a fixed spike number k in order to detect N-dimensional arrays (k-sequences), whose sum over all dimension is k. Then k-
sequences variability is greatly reduced by a hierarchical separative clustering, that assigns large amounts of distinct k-
sequences to few classes. Iterative separations are stopped when the dimension of each cluster comes to be smaller than a
certain threshold. As threshold tuning critically impacts on the number of classes extracted, we developed an effective cost
criterion to select the shortest possible description of our dataset. Finally we described three indexes (C,S,R) to evaluate the
average pattern complexity, the structure of essential classes and their stability in time.

Conclusions/Significance: We validated this algorithm with four kinds of surrogated activity, ranging from random to very
regular patterned. Then we characterized a selection of ongoing activity recordings. By the S index we identified unstable,
moderatly and strongly stable patterns while by the C and the R indices we evidenced their non-random structure. Our
algorithm seems able to extract interesting and non-trivial spatial dynamics from multisource neuronal recordings of
ongoing and potentially stimulated activity. Combined with time-frequency analysis of LFPs could provide a powerful
multiscale approach linking population oscillations with multisite discharge patterns.
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Introduction

In the last twenty years, studies on information encoding in the

nervous system have provided fundamental insights into the nature of

neural inner dynamics and of sensorimotor representation and coding

of the external world. Powerful and flexible statistical techniques have

grown in time [1–5], improving the analyses of stimulus-response

experimental paradigms along with their corollary complexities.

Scant attention has been paid to other dynamic features such as

spontaneous or ongoing activity. Nevertheless, this feature

represents 90% percent of the whole metabolic exertion of the

brain [6]. An exhaustive description of ongoing activity as a kind

of substrate intermingling with signals generated by external

sources, could provide fundamental insights into nervous system

dynamics.

Spontaneous neuronal population activities from many sites in

the central nervous system present complex combinations of

different oscillation frequencies [7–9]. Regular and repetitive

motifs nest within the frames of these global rhythms. Further-

more, stereotyped patterns of specific neuron subsets have been

evidenced in many different experimental conditions such as at the

onset of UP states [10] or in in vitro recordings with calcium

imaging [11,12].

Because of the surging number of items, the statistical

evaluation of all possible discharge patterns in multisite recordings

of even a few channels quickly goes out of control. Nevertheless,

pioneering studies and further advancements have developed

algorithms capable of recognizing small, repetitive and well-timed

patterns in tonic activity regimes [13–17]. Still, timing is likely not

the only encoding means valid in the CNS.

Repetitive spontaneous and evoked neuronal activation patterns

evidenced time warping features, namely duration independent

activity episodes, in most diverse behavioral conditions [18–20].

These features may represent an additional piece of the
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multifarious presence of noise, a pervasive trait throughout the

bottom-up (or top-down) scaling of brain analyses [21], that affects

the immediate detection of accessible regular and repetitive

patterns. In any case the crucial role of noise in brain operations,

as it has become evident in recent years, has gone largely unknown

and is a current subject of wide debate.

In the context of a lack of comfortable theoretical background

for the present scenario, we tried to design an efficient algorithm to

detect the presence of regular motifs in all ongoing activity regimes

and for most variable numbers of spikes or recording traces. We

then developed and evaluated a set of measures to characterize

such motifs in terms of spatial structure, complexity and temporal

evolution.

Our approach is conceptually different from previous works as

we introduced several important novel features. First, in addition

to constant time bin sampling, we introduced a conditional

sampling based on keeping the number of spikes constant in each

sample. This procedure allows the rejection of common mode

frequency modulations. Second, we applied a clustering procedure

in order to extract a reasonable number of classes from the wide

variety of distinct patterns and to reduce the effect of noise. Then,

following a cost criterion, we extracted a selection of the most

frequently occurring classes that we called essential classes (EC).

Finally, we developed three indexes, labeled C, S and R, evaluating

respectively the average pattern complexity (C), the structure of

the ECs (S) and their stability in time (R). We applied such indexes

both to simulated and to real data. We mainly focused on the

results obtained by using conditional sampling. However the

results obtained with constant time bin sampling will be reported

as well and commented for comparison.

In the Methods we describe the whole algorithm flow obtained

by cascading constant time bin sampling or conditional sampling,

the clustering procedure and the extraction of ECs (respectively

subsections 1,2 and 3). We then describe the indexes C, R and S

(subsection 4) and provide a detailed explanatory example of the

whole procedure (subsection 5), in order to clarify the most critical

steps of the algorithm. In the Results we evaluate the cost criterion

performances (subsection 1) and apply the indexes C, R and S to

several kinds of simulated activities (subsection 2) and to real data

(subsection 3)

In subsections 2 and 3 we also compare the results obtained on

simulations and on real data and the information provided by

constant time bin and conditional sampling. In the Discussion we

briefly discuss advantages and drawbacks of the techniques

developed.

Materials and Methods

The sampling procedure
Given k spikes and N sources, we define a k-sequence as an N-

dimensional vector whose values, on each dimension, are the

number of spikes counted on each source, the sum over all

dimensions being k. By fixing k and N it is possible to extract a

finite set of k-sequences from each multisite recording (Fig. 1A).

Consider a set of N spiking sources and let x1, …, xN be the

number of spikes emitted by them in a variable time period. Then

setting a constant sum Sn xn = k and collecting sets of k-sequences,

we sample from the conditional probability distribution

P x1, . . . ,xN

XN

n~1
xn~k

���
� �

K-sequences are sampled along the multichannel recording raster-

plot on adjacent non-overlapping windows of variable duration

(Fig. 1A). Conditional sampling does not rely on an ‘‘external’’

clock-the time of recording, but simply on the spike occurrences

across the multiple emitting sources. This peculiar property makes

this procedure, to a great extent, insensitive to the common mode

frequency modulations that affect all the sampled spiking sources

in the same way. A simple example of this property is provided in

Document S1.

Unlike the classical constant time-bin sampling (reported in

Fig. 1B for comparison), conditional sampling is robust relative to

the time-warp, enabling us to consider patterns of different

duration and equal spatial distribution just like a same pattern (see

red circled samples in Fig. 1A). In analogy with k-sequences, we

also define t-sequences as samples collected by using the classical

constant time bin sampling procedure. In this context t represents

the number of time-units Dt, being this term the largest time

interval in which a source can emit at most one spike (typically

Dt = 1 ms). More generally, when we will refer to both k-sequences

and t-sequences, we will simply write sequences.

The clustering procedure
The clustering procedure follows a bisecting divisive partition-

ing algorithm. At each iteration, the cluster bisection is obtained

by applying in cascade the Principal Direction Divisive Partition-

ing (PDDP, see [22]) and the Bisecting K-means (BK) algorithms.

Iterative separations are stopped when the dimension of each

cluster is smaller than a predefined threshold Dmax. The cluster

dimension Dj of a jth cluster, is computed as

Dj~PN
i~1 maxj Xið Þ{minj Xið Þz1
� �

and Xi is the set of values of the ith dimension associated with the

sequences belonging to the jth cluster. For each cluster j, Di can be

Figure 1. Two different sampling procedures. A) Conditional
sampling. This procedure may provide adaptive time windows and
detect as equal time-warped patterns with the same spatial distribu-
tions over the spiking sources. In this case note that by setting k = 8
three equal k-sequences are detected, as evidenced by the red ellipse).
B) Constant time bin sampling applied to the same pattern. This is the
most classical sampling procedure and is draw for comparison.
doi:10.1371/journal.pone.0004299.g001
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interpreted as the number of all its possible distinct sequences and

Dmax as the maximum number for any cluster.

At the first step the whole dataset is bisected. Then, before any

successive bisection, clusters are ranked by their dimension D and

bisection is performed on the largest cluster. This criterion allows

the obtaining of clusters which are roughly comparable in their

cluster dimension.

Once we have chosen the cluster to bisect, we apply PDDP with

the following steps. First, we subtract to each ith dimension (of the

chosen cluster) its mean value. Then, we compute the covariance

matrix of the k-sequences belonging to the chosen cluster and we

extract the eigenvector v associated with the largest eigenvalue.

Finally, given two subclusters G1 and G2, we assign each sequence x to

one of them by evaluating the score A = xTv. When A is larger than 0,

we assign x to G1. Otherwise we assign x to G2. After preliminary

bisection by PDDP we compute the centroids w1 and w2 on,

respectively, G1 and G2, and use them to initialize the BK algorithm.

The BK algorithm is iterative and is composed of two steps.

First, each item is assigned to the nearest centroid. Then, the

centroids are recalculated on the base of the last assignment stage.

K-means always converge so that after a number of iterations

centroids no longer change their positions. For a more detailed

treatment of PDDP and BK refer to [22–24].

As shown by Savaresi and Boley [23], the PDDP algorithm

provides a wise centroid initialization while the BK algorithm

refines the partitioning. The distinct clusters obtained by the

clustering procedure constitute the sequence classes. Decreasing

the values of Dmax we obtain a more detailed description of the

dataset, with a larger number of lower dimension sequence classes.

However, too small Dmax values may lead to overfitted descriptions

failing to capture the salient properties of the noisy discharge

patterns. A solution to this problem is proposed in the following

paragraph.

Dmax selection and essential pattern extraction
In the present subsection and in the next we propose a general

evaluation method applicable to both k-sequences and t-sequences.

Thus, although we will always refer to k and k-sequences, the same

analysis could be applied to t-sequences simply by k to t label

substitution.

To choose the best Dmax value we associate each Dmax with a

cost. The cost is evaluated taking into account the encoding length

(in bits) needed to represent a selected model and, using a model-

dependent encoding, the data. Being cmin(k,Dmax) the smallest cost

associated with a selected Dmax value, we define

cmin kð Þ~minDmax
c k,Dmaxð Þf g

as the smallest cost, given k, of a k-sequence dataset.

The encoding algorithm relies on a re-elaboration of a scheme

proposed by Willems [25] and is described in detail in Document

S1. This scheme has a simple and direct interpretation in terms of

information theory, being straight on implementable as a true

compression algorithm.

In brief, the k-sequence classes are ordered in a database by the

number of their occurrences. The database represents the model.

Among the possible subsets constituted by the first M classes, the

one accomplishing the shortest encoding length is selected. To

exploit the model knowledge about an ith class we need first

2Nlog(k+1) bits to store the class in the model and then

log(i)+log(Dmax) bits at each occurrence of a k-sequence belonging

to that class (for details see Document S1). Because log(i) is an

increasing function of the class position in the database, classes

occurring at high frequency have a smaller cost than rare ones.

Not all classes are necessarily stored in the model. Some of them

may not occur enough times to be conveniently stored. The classes

contained in the model constitute the essential patterns we are

looking for to describe the most regular part of our finite dataset.

The total cost of encoding the data without the database is

c0 k,Dmaxð Þ~ntot tð ÞN log kz1ð Þ~c0 kð Þ

and ntot(k) is the overall number of k-sequences. Nlog(k+1)

represents an upper limit for the number of possible k-sequences

not accounting for the fact that the spike sum over all dimensions

is k. This is done for the sake of generality. In fact, in the present

form, the cost criterion can be used with any kind of sampling

procedure (like constant time bin sampling). This approach is

equivalent to the use of a common encoder without any a priori

knowledge on the sampling procedure used.

To select the best model we start to test the first class by

computing

Dc1,0 k,Dmaxð Þ~c0 kð Þ{c1 k,Dmaxð Þ

and, iteratively, test an increasing class number. At each iteration i,

we evaluate the differential cost Dci,i21(k,Dmax) of adding a new ith

class. Such cost is divided into three components

Dc1,i,i{1 k,Dmaxð Þ~2N log kz1ð Þ

Dc2,i,i{1 k,Dmaxð Þ~ log Dmaxð Þzlog ið Þ{N log kz1ð Þð Þn ið Þ

Dc3,i,i{1 k,Dmaxð Þ~ log log iz1ð Þz1ð Þ{log log ið Þz1ð Þð Þntot

and n(i) indicates the number of the ith class occurrences in the

dataset.

Dc1,i,i21(k,Dmax) represents the differential database cost, that is

the number of bits we need to store a class in the database.

Dc2,i,i21(k,Dmax) represents the gain, achievable by encoding n(i) k-

sequences once stored the ith class in the database. Dc3,i,i21(k,Dmax)

represents the differential flag cost (see Document S1). The

database cost constitutes a regret term for too short datasets and

fades away for long sequences, while the flag cost increases linearly

with the length of the dataset thus constituting a constant regret

term for the number of classes.

For increasing values of i, the ith class will be accepted if the

differential cost Dci,i21(k,Dmax) is negative.

Iterations are stopped when this is not verified. The ith class is

rejected and, setting M = i21, cmin(k,Dmax) = cM(k,Dmax).

The asymptotic upper bound for the average cost of a k-

sequence is (for details see Document S1)

limntot kð Þ??
cmin k,Dmaxð Þ

ntot kð Þ

~H pð Þzlog Dmaxð Þzlog log kz1ð ÞN z1
� �

z1
� �

where p is the probability distribution of the class occurrence (all

classes, not only the essentials), H(p) its entropy and lo-

g(log((k+1)N+1)+1) an upper limit for the flag cost log(log(M+1)+1).

Characterization of essential patterns
The application of the cost criterion described in the previous

paragraph enables us to extract, for any k, distinct classes of

essential patterns. Such patterns are associated with the Dmax value

for which cmin(k,Dmax) = cmin(k).

Extracting Neuronal Patterns
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To characterize the ECs we use three measures: C(k), S(k) and

R(k).

C(k) stands for complexity, is a general descriptor of a k-

sequence dataset and is given by the ratio

C kð Þ~ cmin kð Þ
c0 kð Þ

S(k) stands for segregation and is computed as follows

S kð Þ~
P

z[Ek

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1 xi zð Þ{ k

N

� �2
q

ness kð Þ

being xi(z) the ith dimension of the zth k-sequence in the dataset

and, respectively, Ek and ness(k) the set of indexes and the number

of k-sequences belonging to ECs. S(k) enables us to discriminate k-

sequences where spikes are significantly segregated in some subset

of sources, from k-sequences where spikes are homogeneously

distributed among them.

Finally, R(k) (reiteracy) concerns the way successive k-sequences

shift among different classes. By the evaluation of R(k) we can

detect the presence of stable patterns. Namely, given a symbol

string associated with a multichannel recording, we estimate the

probability PR(k) that successive k-sequences belong to the same

EC

PR kð Þ~
X

y[Ak~ a,b,...,y,...f g
P s zð Þ~y,s z{1ð Þ~yð Þ

where z is the zth symbol of a string associated with the zth k-

sequence of the dataset and Ak is the set of symbols representing all

the distinct ECs (only the essential, not all classes). If PR(k) is

significantly higher than expected by chance, reiteracy is detected

and we set R(k) = 1, otherwise R(k) = 0.

An approximated PR0(k) distribution under the null hypothesis is

obtained by NS shuffles on the original symbol sequence. We call

N, the number of estimates for which PR0(k),PR(k). The null

hypothesis is rejected at level a if a.(12N,/NS).

The indexes C, R and S may be meaningfully applied to both k-

sequences and t-sequences. In case of k-sequences, C(k) represents

the spatial complexity connected to the number and the diversity

of all the possible configurations collected from a multichannel

recording regardless of their duration. R(k), the shift indicator

between two different k-sequence classes, determines the switching

properties of the system. Positive reiteracy on k-sequences may be

due to small reverberant circuits, to intrinsic single neuron spiking

dynamics or, more generally, to any stable differential activity that

emerges over common mode modulations of the considered

channels. Finally, S(k) represents the average euclidean distance

from the homogeneous sequence, i.e. that sequence where all

spikes are equally distributed among the sources.

The significance of C,R and S, when dealing with t-sequences

(respectively C(t),R(t) and S(t)) is less unambiguous. In fact, while

C(k),R(k) and S(k) values simply evaluate spatial regularities, C(t),

R(t) and S(t) values mix spatial and temporal information. Thus, a

t-sequence may have a low C(t) because of either stereotyped

spatial configurations or regular frequency modulations (or both).

The same remark holds true for R(t) and S(t). Although positive

reiteracy may be due to stable spatial patterns and significant

segregation to a sparse source recruitment, both R(t) and S(t) may

be substantially affected by frequency modulations slower than the

sampling frequency.

An Explanatory Example
To gain a better understanding of the whole procedure let’s

consider the example data shown in Fig. 1A. After conditional

sampling, the associated k-sequence set, given k = 5, is displayed in

Fig. 1A (bottom). As this dataset is a bit too short for our analysis

we build a larger one simply by repeating six times each item.

Then, we add some noise deleting one spike from each k-sequence

and reassigning it randomly to one of the 3 channels of the same k-

sequence. The resulting set is

2 2 1 1 1 2 4 2 3 3 3 0 0 1

0 1 3 4 2 2 1 0 0 0 1 3 3 1

3 2 1 0 2 1 0 3 2 2 1 2 2 3

2 4 1 3 2 3 0 0 0 1 3 1 2 2

2 1 2 0 0 0 3 4 2 3 2 2 1 0

1 0 2 2 3 2 2 1 3 1 0 2 2 3

2 1 1 1 2 3 3 3 1 3 0 0 0 3

1 3 3 1 2 2 0 1 1 1 3 4 3 1

2 1 1 3 1 0 2 1 3 1 2 1 2 1

3 2 2 2 2 0 1 1 2 4 2 3

2 2 1 0 1 4 4 2 1 0 2 1

0 1 2 3 2 1 0 2 2 1 1 1

We apply the clustering algorithm with three different values of

Dmax, respectively 4,12,48,75.

By associating a symbol with each distinct cluster we get the

following strings:

abcdefgahhillafgehahldecmebabccafmhiaildlimfbabddebgfi

aabbccdaaadbbacdcaaabbcbdcaaabbacdadadbbbddcaaabbcadcd

aabbbbaaaaabbababaaabbbbabaaabbabaaaaabbbaabaaabbbaaba

aabbbbaaaaabbababaaabbbbabaaabbabaaaaabbbaabaaabbbaaba

Because Dmax value is critical, we select the best description by

using the evaluation criterion described in paragraph 3 and in

Document S1.

The description associated with Dmax = 12 is selected as the most

synthetic, by our criterion, being the complexity C(5) = 0.95.

The dimension of the clusters a,b,c,d are respectively 12,12,9,12.

The cost c0(5) is 418.76 bits, while cmin(5) = 398.84 bits, being the

differential database cost Dc1,3,0(5,12) = 2MNlog(k+1) = 2*3*

3*log(6) = 46.53 bits, the differential gain Dc2,3,0 =Si(Nlog(k+1)2

log(i)2log(Dmax))n(i) = 2152.34 bits and the differential flag cost

Dc3,3,0(5,12) = t(k)log(log(M+1)+1) = 85.59 bits.

K-sequence classes a,b,c are defined by our criterion as essential,

while d does not occur enough times. Writing ‘-’ for non-ECs the

final string is

aabb--daaadbba-d-aaabb-bd-aaabba-dadadbbbdd-aaabb-ad-d

On this string we finally compute, on ECs, reiteracy and

segregation (S = 2.24). To evaluate R(5), we calculate PR = 0.31 on

the original final string, then we shuffle the final string NS = 10000

times in order to obtain PR0 (Fig. S1). Having set a = 0.05, and

being (12N,/NS) = 0.046 we conclude that reiteracy is significant

(R = 1) at level 0.05 (but not at level 0.01).

We can repeat the same procedure with constant time bin

sampling. To obtain a reasonable dataset we replicate 6 times the data

in Fig. 1B and add noise as in the previous case. The resulting set is

2 2 1 0 2 2 0 4 3 2 3 0 0 1

0 2 1 5 2 1 1 1 0 1 2 3 6 1

3 2 1 3 1 2 0 2 2 2 1 0 2 3

2 0 4 4 1 3 1 0 1 1 0 4 4 2

1 0 0 0 1 1 1 5 3 3 1 0 0 1

2 1 3 1 3 2 1 3 1 1 0 3 1 2

2 0 0 1 2 0 4 3 2 2 0 1 1 2

2 1 5 1 3 1 0 1 1 2 3 6 3 3

2 2 3 3 0 0 3 1 2 2 0 1 1 0

1 3 4 1 3 0 0 0 2 0 4 2

0 2 0 0 0 3 5 2 3 1 1 0

Extracting Neuronal Patterns
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0 2 1 4 3 0 3 3 0 0 2 3

Then we apply the whole algorithm again. With

Dmax = 4,12,48,75 we obtain the following strings:

abcdbbefgbhjkiblgmifcdjjegmbbndioeghbbjkjolhmagjdnoefa

abcdbbefgbfhdabcgfafcdhhegfbbedahegfbbhdhhcffaghdehefa

aaabaacddadcbaaaddadabcccddaacbaccddaacbccaddadcbcccda

aaabaabaaaabbaaaaaaaabbbbaaaabbabbaaaabbbbaaaaabbbbbaa

Because of the larger number of possible t-sequences in respect

to k-sequences, we expect the optimal Dmax value to increase. In

fact the final string is associated with Dmax = 75

aaa-aa-aaaa--aaaaaaaa----aaaa--a--aaaa----aaaaa-----aa

being the dimension of the class a equal to 75 and the values of

C,S equal to respectively 0.9966, 1.6016. To use the cost criterion

described, we set k at the largest value collected on a single channel

during constant time bin sampling (k = 6).

Being (12N,/NS) = 0.0406 we conclude that reiteracy is

significant at level a = 0.05.

Cost criterion performances
In this paragraph we analyze the relation between Entropy (H)

and our cost criterion evaluation. We test the cost criterion on two

different sources. We then compute cmin(kmax) as a function of the

message length ntot. A source is composed of a regular and a

random part. The regular part is constituted by few sequences that

are repeated a number of times. The random part is constituted by

random sequences generated by N independent extractions from a

homogeneous distribution: namely, all integers ranging from 0 to

kmax have probability 1/(kmax+1) of occurrence.

Each message is composed of r ntot and (12r) ntot sequences

belonging, respectively, to the regular and to the random part.

We define nr the number of distinct sequences of the regular

part. Each of them occurs rntot/nr times in a message.

If N and kmax are not too small

H^ 1{rð ÞN log kmaxz1ð Þzrlog nrð Þ

For an infinitely long message of ntot sequences, H represents the

smallest possible average description length of a sequence. The

asymptotic evaluation of our cost criterion, cmin(kmax), in Document

S1, provides a significantly less parsimonious description. This

holds true also for finite length messages, as can be observed in

Fig. 2A,B,G,H, where the average values of H/(Nlog(kmax+1)C(k))

are plotted as a function of ntot. The difference between entropy

and cmin(kmax) descreases as ntot increases. Conversely, it strongly

increases as a function of r.

The more regular the message, the worse cmin(kmax) approximates

H. The differential database cost Dc1,M,0 = 2Nlog(kmax+1), account-

ing for the lowest H/(Nlog(k+1)C(k)) values at low ntot, fades away

for increasing values of this parameter (see Methods section). The

differential flag cost Dc3,M,0 is independent of message length and

accounts for the non-optimality at large ntot values. Dc3,M,0 plays a

key role in the choice of the EC number, typically leading to a

conservative selection that prevents from overfitting. The contri-

bution of Dc3,M,0 could be reduced by modifying and expanding

the flag and the database structures, in order to use a single flag to

encode several sequences. This possibility, under current exper-

imental check, can effectively reduce Dc3,M,0 and the number of

flags, and will be presented in a forthcoming paper. The

differential flag cost Dc3,M,0 is sometimes too large and may

impair the detection of regular patterns that are significantly

present in the message. To avoid the problem, the cost criterion

can be evaluated starting from M = 1 instead than from M = 0.

Results obtained with this modification are drawn in

Fig. 2B,D,K,H,J,L while those relative to the original algorithm

Figure 2. Cost criterion performances. Upper row (plots A,B,C,D,E,F) related to the first source. kmax = 10, N = 5. A) The function H/
(C(kmax)Nlog(kmax+1)) is estimated, as a function of ntot, at different r values ranging from 0 to 1. B) The same as in A). Here the cost criterion is
modified to start evaluation from Dc2,1 instead of Dc1,0. C,D) M values estimated with the original (C) and the modified (D) criterion. E,F) Dmax

estimated with the original (C) and the modified (D) criterion. Lower row (plots G,H,I,J,K,L) related to the second source (kmax = 10, N = 5).
doi:10.1371/journal.pone.0004299.g002
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are presented in Fig. 2A,C,E,G,I,K. The values of M and Dmax are

reported, respectively, in Fig. 2C,D,I,J and in Fig. 2E,F,K,L.

The regular part of the first source (Fig. 2A–F) is composed of

the following sequences

1 10 5 1

3 5 5 2

10 0 5 3

10 2 5 10

2 9 6 10

having set kmax = 10. For short r or ntot values no ECs are detected

from our algorithm (white region in Fig. 2E,F). Instead, increasing

these parameters, the algorithm always extracts four distinct ECs

with Dmax = 1(blue region in Fig. 2E,F). The sharp transition

between 0 and 4 ECs can be expected because the regular

sequences we introduced are really different from each other.

The following sequences

1 0 1 0 2 0 0 2

3 4 4 4 3 3 4 4

10 10 9 10 10 10 10 10

10 9 10 10 10 10 10 9

2 3 2 2 1 3 2 1

are used to generate the regular part of the second source (Fig. 2G–

L). No ECs are detected for low r or ntot values (white region in

Fig. 2K,L). With slight increments of these parameters, a single EC

is detected containing 7 or 8 distinct sequences of the regular part

(violet region in Fig. 2I,J and red region in Fig. 2K,L). When the

EC contains all 8 sequences Dmax = 72. In comparison with those of

the first source, these sequences are very similar to each other.

Accordingly, when the number of their occurrence is not too high,

the algorithm detects them as different noisy versions of a unique

essential pattern. For further increments of ntot or r, our algorithm

returns, as ECs, 7 of the 8 sequences composing the regular part of

the message (red region in Fig. 2I,J and blue region in Fig. 2K,L).

As expected, when the repetition of single sequences becomes

significant, the regular sequences cannot be seen as a single noisy

pattern. In fact, if it is true, the occurrence of the distinct 72

sequences represented in the EC should roughly follow a

homogeneous distribution. This is not the case because only 8

out of 72 sequences occur with high probability (r/8) while the

remaining ones have probability (12r)/115.

A number of other sources have been tested, by varying kmax and

N, with matching results. In general, the non optimality of the cost

criterion leads to conservative choices about the number of the

ECs. Moreover, by slightly modifying the cost criterion, the

selection of ECs becomes more inclusive. The algorithm typically

achieves good performances in the separation of regular

components from noise. These include well-tuned generalization

capabilities to avoid noise-induced multiplication of the ECs for

messages that are too short.

Results

Simulations
We used four different simulation groups to validate the

algorithm.

1. We generated independent geometric processes with the

parameter pa = [pa1 … paN] for a wide range of N sources and

spiking frequencies fa = pa\Dt.

2. We generated M independent geometric processes with the

parameter pa, given M#N. We called these events activation

processes (Fig. 2A). At each event of activation, processes were

assigned to a random subset of N\M sources (Fig. 2B). Then,

for a period of T time-bins (the length of the activation period),

the activated sources were driven by independent geometric

processes with parameter pb = fb Dt.

3. We used the same strategy as simulation group 2, but we

assigned the M activation processes to M predefined subsets of

N\M sources.

4. All predefined M subsets were driven by a common trigger

following a geometric process with parameter pa. When an

event took place all subsets were activated at successive lags of

T time-bins.

Activation processes embody the strong non-stationarity of

neuronal activity typical both of conscious and unconscious states.

In particular, they closely mimic the transition between ‘up’ and

‘down’ states recorded both intracellularly and extracellularly

during recordings of ongoing activity in sleep or anesthesia [26].

The term ‘up’ states commonly indicates a depolarized state of

intracellular potential typically constituting the substrate for high

frequency discharges. Conversely, the term ‘down’ states indicates

a hyperpolarized state of intracellular potential leading the cell

firing activity to very low frequency regimes.

Homogeneous poisson-like activity is simulated by group 1

(Fig. 3A). Multisite activation processes can randomly distribute

over the spiking sources (like in group 2, Fig. 3B), repeat on

stereotyped subsets of sources (group 3, Fig. 3C) and even exhibit

precise serial patterns among the different subsets (group 4,

Fig. 3D). Such serial patterns were effectively observed in

hippocampal place cells of rats [19] in recordings performed both

during spatially constrained tasks and, soon after that, during

sleep. Task-related serial patterns expressed during asleep could be

time-compressed up to a factor of 20.

Constant time bin sampling was obtained by dividing each

simulation into constant periods containing, on average, k spikes.

The x axes in plots H–J represent these progressively augmenting

periods called, for brevity, ,k..

When applied to k-sequences, the evaluation criterion, described

in subsection 2 of Methods, works quite well for large k values,

typically for k.5, while fpr k, = 5, the flag cost Dc3,1,0 is often

much higher than the gain Dc1,M,0 and the overall minimum cost is

c0(k). In these cases, as suggested in Methods, R(k) and S(k) have

been computed by skipping Dc1,0(k).

A number of simulations were performed for a wide range of fa,

fb, M, N values. On each simulated dataset we applied the whole

algorithm flow described in Methods. Some typical outcomes are

displayed for k-sequences in Fig. 4E–G,5E–G and for t-sequences

in Fig. 4H–J,5H–J. The results obtained with conditional and

constant time bin sampling can be similar (Fig. 4E–J) or very

different (Fig. 5E–J).

These two conditions were obtained by keeping fixed fa, fb, M, N

values and setting, respectively, M = 3 (Fig. 4) and M = 1 (Fig. 5).

In Fig. 4 it is easy to see how, by using C(k),R(k) and S(k) and

given the same values of fa, fb, M and N, the different groups 2, 3

and 4 are effectively discriminated and suitably different from the

simulations belonging to group 1. The distinction between groups

2 and 3–4 and between groups 4 and 2–3 is evident respectively

for mean C(k) and R(k) or S(k) values, while group 1 is clearly

separated from the others in all the plots. In a way, also C(t), R(t)

and S(t) allow for a net discrimination among the different kinds of

simulations.

Strong discharge pattern segregation is present in small channel

subsets in simulation groups 2,3 and 4 (Fig 4B–D). Accordingly,

segregation values S(k) and S(t) (Fig. 4E and 4H) in these

simulations are much larger than in group 1 (Fig 4A), where

spiking discharges contained in the sequences are, on average,

more homogeneously distributed over all the spiking sources.
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Figure 4. Some typical results from simulations. Time-bin resolution Dt was set at 1 ms while the total number of spikes on each simulation
was 5000. A) Sample plot of a group 1 simulation given N = 6, fa = 2 Hz. B,C,D) Sample plot of simulation belonging to group 2,3,4. We set N = 6,
fa = 5 Hz, fb = 50 Hz, M = 3, T = 50 ms. E,F,G) Estimation of S(k) (E),R(k) (F) and C(k) (G). H,J,K) Estimation of S(t) (H),R(t) (J) and C(t) (K). Blue, red gree and
black lines respectively represent group 1,2,3,4.
doi:10.1371/journal.pone.0004299.g004

Figure 3. Structure of simulations 2,3,4. A) Structure of a single simulated source. Spikes are displayed as blue points. (*) Represent an inter-
spike interval during an active state, having set at fb the mean frequency during the active periods. (**) Represent a period between two successive
activation given fa the mean frequency of activation occurrence. B) Given N = 4 channels, we can observe three successive activations of overlapping
subsets of N/M = 2 channels.
doi:10.1371/journal.pone.0004299.g003
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In group 2, the subsets of N/M = 2 sources are randomly

assigned across the N = 6 channels, so that one among the N!/

(N2N/M)!(N/M)! = 15 different subsets may be selected at each

activation occurrence. Instead, in simulation groups 3 and 4, the

subsets are predefined and only 3 non-overlapping subsets may be

activated. The different spatial complexity between simulation

group 2 and simulation groups 3 and 4 is reliably detected by C(k)

and C(t) values (Fig. 4F,I).

Reiteracy R(k), like S(k), enables us to distinguish between

simulation group 4 and simulation groups 2 and 3. Simulation

group 1 displays negligible reiteracy (Fig. 4G,J). The non-null values

are due to the decay of the significance level a, caused by multiple

comparisons. Simulation groups 2 and 3 exhibit substantive reiteracy

along the considered k interval. The sharp R(k) decay in simulation

groups 4 reflects the regular transition between non-overlapping

source subsets. The k value coupled with the decay is proportional to

the product NTfb/M, as shown by additional simulations in Fig. S2.

Given that NTfb/M is the average number of spikes occurring during

a subset activation, this last result is not surprising.

Unlike R(k), R(t) decays in simulation groups 4 is faster than in

simulation groups 2 and 3. The higher reiteracy R(t) in simulation

group 4 is due to the longer silent periods between activation

occurrences.

In simulation group 1, independently from fa, we did not detect

significant stable patterns.

In Fig. 5, having only one subset including all channels (M = 1),

simulation groups 2–4 are equivalent. For this reason in Fig. 5 we

reported only the results obtained with simulation groups 1 and 2

(Fig. 5A–C,E–J).

No reiteracy was detected with k-sequences in simulation group

2 (Fig. 5J). This is expected because setting M = 1 means that

channels are all equally modulated. Sample plots from this group

are reported in Fig. 5B,C. We also reported, for the sake of

comparison, a sample plot from a simulation belonging to the

group 4 with M = 3 (Fig. 5D). Note that the activation of the

different channel subsets follows stereotyped serial patterns. This is

not the case for simulation group 2 (Fig. 5B,C). All the channels

are simply turned on and off at the same time so that no spatial

reiteracy should be detected with conditional sampling. This kind

of sampling, as explained in Materials and Methods and

Document S1, is insensitive to most of the common mode

frequency modulations.

Moreover, no significant difference between simulation groups 1

and 2 can be detected either in terms of segregation S(k) (Fig. 5E)

or complexity C(k) (Fig. 5F).

Conversely, constant time bin sampling provides remarkable

differences in all the measures (Fig. 5H,I,J). In particular, strong

reiteracy is due to the slow frequency modulations represented by

the alternation of active and silent periods across all the simulated

channels.

Constant time bin sampling mixes temporal and spatial informa-

tion. Constant time bin and conditional sampling provide matching

results when spatial information is salient and represents a major

determinant in the clustering procedure (Fig. 4). Otherwise, when the

clustering is dominated by frequency modulations, these two

sampling procedures can provide incoherent results (Fig. 5).

Real data
Several recordings of ongoing activity were analyzed both in

normal and neuropathic isofluorane-anaesthetized rats. Experi-

mental methods and general results are reported in a dedicated

Figure 5. Rejection of common mode modulation in simulations. Time-bin resolution Dt was set at 1 ms while the total number of spikes on
each simulation was 5000. A) Sample plot of a group 1 simulation given N = 6, fa = 2 Hz. B) Sample plot of simulation belonging to group 2. We set
N = 6, fa = 5 Hz, fb = 50 Hz, M = 1, T = 50 ms. C) Magnification of the plot B indicated by the red rectangle D) Sample plot from a group 3 simulation
where we set M = 3 (the other parameters are kept fixed). E,F,G) Estimation of S(k) (E),R(k) (F) and C(k) (G). H,J,K) Estimation of S(t) (H),R(t) (J) and C(t)
(K). Blue and red lines respectively represent group 1,2.
doi:10.1371/journal.pone.0004299.g005
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paper (Storchi et al. Submitted) while here we just focus on three

recording groups to show and discuss some typical outcomes.

The recording groups 1 and 2 were performed in two normal

rats while recording group 3 was obtained from a rat neuropathic

model (Seltzer model, [27]), known to exhibit neuropathic-

deafferentative phenomenologies. The indexes were estimated in

each recording group on 25 successive recording epochs, 5000

being the total number of spikes in each epoch (see Fig. 6,7,8).

Each recording epoch was compared to a simulation belonging

to the group 1 for which the parameter vector pa was set equal to

the values estimated in that epoch on real data (see Simulation

section).

From a rough observation, the surrogated data do not show

evident differences in comparison with the real ones in recording

groups 2 and 3 (Fig. 6A,B, 7A,B). This could lead us to conclude

that such recordings just reflect unstructured noisy discharge

patterns. However, by applying our algorithm it is easy to see how

the first impression could be somewhat misleading. In fact the

recorded discharge patterns exhibit significant segregation

(Fig. 6C,F, 7C,F) and larger complexity (Fig. 6D,G, 7D,G) in

comparison with surrogated data. Moreover, reiteracy is also

significant, mostly for low k values in recording group 2 and over

all considered k intervals in recording group 3 (Fig. 6E,H, 7E,H).

The R(k) decay for increasing values of k, as can be observed in

recording group 2, may provide a measure of the mean latency of

repetitive configurations. For experimental applications, the

detection of the k value associated with the R(k) decay (kdecay) can

constitute an interesting tool. The mean kdecay-sequence duration

represent the average switching period among different discharge

pattern configurations. An altered switching period could

represent a marker for altered ongoing activity such as the one

we can observe in animal models of neuropathic pain (unpublished

data). More generally, spontaneously switching configurations may

represent a suitable neural substrate to integrate and contextualize

incoming sensory information, amplifying relevant inputs and

skipping irrelevant ones. Gain modulations of neural responses

driven by an internal scheduling is a well-known general

computational principle that enables the performance of a variety

of tasks such as attention selection or coordinate transformation

[28]. The capacity to switch between different active spatial

configurations is embedded in recurrent neural networks [29]. EC

and reiteracy can be used in this context of recurrent networks, like

small cortical networks, to investigate those switching properties in

vivo.

While k-sequence and t-sequence processing provide compara-

ble results in recording groups 2 and 3, remarkable differences

were obtained in recording group 1. Only indexes C(t),S(t),R(t)

detect significant departures from the surrogated data

(Fig. 8F,G,H). In fact, while C(k), S(k) and R(k) indexes significantly

discriminated between recording groups 2 and 3 and the relative

surrogated data, this was not the case for recording group 1

(Fig. 8C,D,E). In this recording group, the presence of generalized

activations synchronized across the recording sites is clearly

observable (Fig. 8A,B). Fast ‘up’ states occur in the spindle

oscillation regime (conventionally in the 7–14 Hz frequency

interval). The presence of well-defined spindle-like oscillations

could also suggest the presence of structured spatial configurations

that match frequency modulations. Again a rough observation in

time domain (Fig. 8A,B) is inappropriate. Both C(k) and S(k) fail to

detect non-random spatial organizations in the k-sequence dataset

(Fig. 8C,E). Moreover, negligible reiteration is detected (Fig. 8D).

The whole set of measures depicts a situation very similar to the

Figure 6. Recording from normal rat 1 (N = 5). A) A sample from the analyzed activity. B) Simulated group 1 activity. The mean frequency on
each channel was set at the same value of the associated channel from the recorded activity. C,D,E) Estimation of S(k) (C),R(k) (D) and C(k) (E) from the
recorded (red lines) and the simulated (blue lines) activities. Note that, although generalized oscillations are strong in all channels, the nested
organization detected with S(k),C(k) and R(k) is not different from the random simulated activity. F,G,H) Estimation of S(k) (F),R(k) (G) and C(k) (H) from
the recorded (red lines) and the simulated (blue lines) activities. Note the strong reiteracy R(t) due to successive silent periods and compare with the
negligible reiteray R(k).
doi:10.1371/journal.pone.0004299.g006

Extracting Neuronal Patterns

PLoS ONE | www.plosone.org 9 January 2009 | Volume 4 | Issue 1 | e4299



Figure 7. Recording from neuropathic rat (N = 5). A) A sample from the analyzed activity. B) Simulated group 1 activity. The mean frequency on
each channel was set at the same value of the associated channel from the recorded activity. C,D,E) Estimation of S(k) (C),R(k) (D) and C(k) (E) from the
recorded (red lines) and the simulated (blue lines) activities. F,G,H) Estimation of S(k) (F),R(k) (G) and C(k) (H) from the recorded (red lines) and the
simulated (blue lines) activities. Discharge patterns are remarkably more stable (see R(k) and, to a less extent, R(t)) than in the normal rats 1 and 2.
doi:10.1371/journal.pone.0004299.g007

Figure 8. Recording from normal rat 2 (N = 5). A) A sample from the analyzed activity. B) Simulated group 1 activity. The mean frequency on
each channel was set at the same value of the associated channel from the recorded activity. C,D,E) Estimation of S(k) (C),R(k) (D) and C(k) (E) from the
recorded (red lines) and the simulated (blue lines) activities. F,G,H) Estimation of S(k) (F),R(k) (G) and C(k) (H) from the recorded (red lines) and the
simulated (blue lines) activities. Recorded activity strongly differs from the random-like condition.
doi:10.1371/journal.pone.0004299.g008

Extracting Neuronal Patterns

PLoS ONE | www.plosone.org 10 January 2009 | Volume 4 | Issue 1 | e4299



one described by simulation group 2 with M = 1 (see Simulations

section and compare Fig. 8E–G with Fig. 5E–G). Apparently all

the sources are driven by the same process and the time-variance

of the driving process is the only difference with the surrogated

activity. The last result suggests that within and among single fast

‘up’ states, occurring in the spindle oscillations regime, whose

onset and decay are well synchronized across the recording sites,

spatial organization of discharge patterns can be negligible or

absent. This is consistent with the results of Kurths and coworkers

[30], who simulated a biologically plausible network whose nodes

where constituted by subnetworks of interacting excitable neurons.

They found that weak couplings among and within nodes reflected

a complex hierarchical structure, well matched with the

underlying architectural connectivity, while too strong couplings

resulted in an undifferentiated generalized oscillatory activity. In

this regard it is important to note how conditional sampling

provides results that are independent from generalized frequency

modulations. The presence of reiteracy R(k) provides us with

additional and complementary information in respect to spiking

frequency oscillations. Namely stable active subsets may be present

independently of common mode firing frequency modulations.

On the whole, the properties extracted by the application of

index C(k),S(k) and R(k) and briefly highlighted here could lead to

significant advances in the analysis of ongoing brain activity.

Discussion

In this paper we present an original method to extract and

characterize sequences with fixed numbers of spikes and

distributed on multisite sources in multiple electrode recordings.

Being the samples collected on the base of fixed spike counts, their

occurrence is detected in a time-independent fashion k across the

spiking sources. Time independence yields a basic advantage

making insensitive to brain oscillations and distinguishes spatial

dynamics of multisite discharge patterns. Starting from the basic

observation that the assessment of all possible patterns is

unachievable because of the diverging increase of possible

configurations as a function of k and N, we embedded in our

algorithm a procedure, based on clustering, to extract the most

salient pattern structures that we called essential classes (EC). To

characterize the dynamics within and among the detected classes,

we introduced three simple measures (C; R; S) evaluating,

respectively, the average pattern complexity, the structure of

ECs and their stability in time. Several kinds of surrogate activity,

ranging from random to strongly structured, were used to validate

the algorithm. Its application to real data significantly revealed

both random and non-random spatial structures of ongoing

discharge patterns and, in several cases, their remarkable stability.

The main drawback of our conditional sampling technique

emerges when spiking frequency, synchrony or the number of

sources is high. In these cases, when several spiking sources

discharge simultaneously next to the completion of a k-sequence, it

could happen to collect sequences containing more than the

predefined k spikes. For example, given k = 5 and N = 2, it is

possible that, during the sampling procedure, after 4 spikes there is

a simultaneous emission from the two sources, resulting in a

sequence of 6 spikes. A criterion to decide which of the two spikes

will go in the completing sequence and which in the following

could solve this problem. However any criterion will be necessarily

arbitrary. Because the number of ‘‘overloaded’’ k-sequences is

negligible in both the simulations and the data analyzed, we

reasonably skipped the problem, potentially more demanding with

larger source numbers.

As it concerns the clustering procedure, the algorithm we used

[22,23] was selected for its wise initialization and computational

efficiency. We also used the farthest-first transversal clustering

algorithm [31].This has the important property of keeping the

clustering cost, defined as the largest cluster radius, below a

twofold value of the optimal clustering (irrespectively to the

number of clusters). The results were qualitatively the same as the

ones shown above. In principle, any kind of clustering algorithm

could be introduced in the algorithmic flow.

The use of an encoding scheme, inspired by the work of Willems

[25], proved to be quite conservative in the extraction of the EC

(typically 1–20), exhibiting reasonable generalization performanc-

es and avoiding overfitting. The ability to separate repetitive and

random occurring sequences and the relation between Entropy

and the cost criterion length have been analyzed. The scheme we

described is readily implementable as a compression algorithm.

We think that, in some cases, we could achieve much better

compression by modifying the flag structure. In order to reduce

the flag number, a single flag could be modified to encode several

blocks, increasing the compression rate of those k-sequence

datasets with regular serial dynamics. Conceptually, our approach

is not very different from the first formulation of Minimum

Description Length (MDL) [32], known as the two-part MDL. In

adjunct to MDL, the scheme we developed allows the separation

of a regular component (composed of the ECs and all their k-

sequences) from a more random one. The final description length

is the shortest achievable by the scheme and is asymptotically

bounded by the entropy plus a constant factor.

Several algorithms have been developed in the last decades to

evaluate spontaneous and evoked activities.

The method we described is original and not straightforwardly

comparable with other preexisting algorithms in terms of

performance. Instead, given its substantial novelties, our algorithm

can be used in addition to other algorithms in order to provide

complementary information. The work of Abeles and colleagues

[13,15] deals with precisely timed repeating sequences (also called

‘‘cortical songs’’) while, with conditional sampling, we skip the

time dimension and focus on the order of occurrence of spike

groups. Thus, when observing tonic activity regimes, our pattern

characterization seemingly spatially complements the precise firing

reverberation sequences of well-timed activations of the synfire

chain model [33].

Some authors took into account the use of relative order of spike

occurrence by assigning a distinct symbol to each source [19,34].

Those methods rely on template matching and allow for deciding

whether arbitrary, user-chosen patterns occur more often than

expected by chance. Such valuable techniques are currently

contributing to the discovery of unexpected spiking schemes, such

as time-compressed replays of behavior-related spike sequences in

cortex and hippocampus [18–20]. Our algorithm equally uses the

relative order of spike occurrences, but, with conditional sampling

and clustering, it assigns distinct symbols to different multisource

configurations. The method is less detailed (we skip the precise

order of occurrence of single spikes in a sequence) but provides

more general information about all possible recurrent patterns.

The algorithm automatically selects the ECs with no need for a

priori knowledge of the patterns to be tested.

Conditional sampling might grant complementary spatial

information independent from the domain of brain oscillations.

Oscillations are a widespread and complex intermingled thread,

pervading, at different temporal scales, the whole brain dynamics

[35,36]. Local Field Potentials (LFP) or Electroencephalogram

(EEG) provided extensive knowledge about the oscillation bands
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generated, among others, in the thalamo-cortical loop, and about

their neural substrate and their functional significance [7–9].

Recent data support an extended view of neural processing

from the sole time-domain measures of oscillating brain dynamics

to seemingly time-independent complementary measures as

introduced by our work. A recent study highlighted, by simulation

runs, the presence of the same dominant discharge patterns at

significantly different oscillation frequencies staggered both in wide

and in sharply peaked bands [37]. Our method, based on single

unit recordings, combined with the time-frequency analysis of

EEG and LFP, might provide an interesting multiscale approach

aimed to join population oscillatory rhythms with multisite

discharge patterns.

The characterization of essential patterns in terms of stability has a

solid theoretical background in the great body of work developed to

investigate the attractor dynamics of neuronal networks [38–41].

Attractors constitute the essential elements for memory storage and

retrieval. Several maintenance mechanisms for attractors have been

proposed, ranging from recurrent excitation within cell assemblies to

synfire-chains and single-cell bistability.

The presence of stereotyped attractor-like configurations or

motifs among the whole set of possible neural combinations is a

common finding in works dealing with spatiotemporal character-

ization of ongoing dynamics. Yuste and coworkers [11], showed

the presence of precise and repetitive patterns of discharge in

somatosensory thalamocortical slices using calcium imaging. Such

patterns could either arise spontaneously at the onset of ‘up’ states

or could be evoked by thalamic stimulation [12]. Interestingly,

spontaneous and evoked patterns were statistically indistinguish-

able. Accordingly, they hypothesized that spatiotemporal dis-

charge patterns are predefined in the cortex, the thalamus simply

providing a trigger signal. Ordered serial activations of specific

neural subsets were also observed with single units in vivo in S1

cortex of rats [10]. The result was quite generalizable because it

was obtained both in urethane and ketamine-xylazine anaesthe-

tized and in unanaesthetized rats.

When triggered by incoming sensory stimulations or by pending

tasks, the spontaneous subset activations could constitute the

neural substrate for gain modulations, a widely analyzed and

debated general computational principle [27].

In general the algorithm we developed, thanks to conditional

sampling, to its robustness in respect to noise and to the novel

cost criterion, could lead to the uncovering of unobserved

general properties of spiking network dynamics. We propose its

application in characterization of ongoing dynamics in diverse

physiological and pathological conditions (sleep, chronic pain,

visual-attentive processes, memory based rehearsal of past

experiences a.s.o.) Specifically, we briefly showed how our indexes

C(k),S(k),R(k) could be able to characterize altered ongoing activity

in an experimental model of chronic pain.

Beyond the issues already discussed, among future applications

and developments, the relation between activity and the

underlying anatomical substrate represents a promising field of

investigation. Several theoretical works have evidenced the

fundamental role exerted by structural motifs on the emergence

of variable functional motifs, on different time and spatial scales

[30,42,43]. More recently, a paper addressing explicitly the

mutual relationships between network architecture and dominant

patterns of neural activity stressed how synaptic connections

determine the repertoire of spatial patterns in spontaneous activity

[36]. Spatial configurations identified by our method could

represent a further starting point to address the problem of

relation between functional and anatomical connectivity.

Supporting Information

Document S1 In the first paragraph some examples of

conditional sampling are provided. In the second the encoding

scheme used to develop the cost function is described in detail. In

the third an upper bound for cmin(k,Dmax) is calculated.

Found at: doi:10.1371/journal.pone.0004299.s001 (0.12 MB

PDF)

Figure S1 Estimated distribution of Pr0. Pr0 estimated with

Ns = 10000 shuffles of the final string. The estimated value of Pr is

represented by the blue vertical line.

Found at: doi:10.1371/journal.pone.0004299.s002 (1.41 MB TIF)

Figure S2 R(k) values of a group 4 simulation. We set N = 6,

M = 2, T = 100 ms, fa = 0.5 Hz and fb = 20(blu line), 40(red),60(-

green),80(black) and 100 Hz(cyan). The values M T fb = 4, 8, 12,

16, 20 Hz, as expected, well reflects the position of R(k) sharp

decay.

Found at: doi:10.1371/journal.pone.0004299.s003 (1.46 MB TIF)
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