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Age is associated with increased risk for several disorders including dementias,
cardiovascular disease, atherosclerosis, obesity, and diabetes. Age is also associated
with cognitive decline particularly in cognitive domains associated with memory and
processing speed. With increasing life expectancies in many countries, the number of
people experiencing age-associated cognitive impairment is increasing and therefore
from both economic and social terms the amelioration or slowing of cognitive aging is an
important target for future research. However, the biological causes of age associated
cognitive decline are not yet, well understood. In the current review, we outline the role of
inflammation in cognitive aging and describe the role of several inflammatory processes,
including inflamm-aging, vascular inflammation, and neuroinflammation which have both
direct effect on brain function and indirect effects on brain function via changes in
cardiovascular function.

Keywords: cognitive aging, cognitive decline, inflammation, inflamm-aging, vascular inflammation,
neuroinflammation

INTRODUCTION

Life expectancies have increased considerably since the 1950s in developed countries. For example,
the population of octogenarians in developed countries has increased four-fold, the population
of nonagenarians eight-fold, and the population of centenarians 20-fold. Aging is a progressive
decline in the physiological integrity of different organs of the human body, which leads to
impaired body function and enhanced vulnerability to death. This deterioration is a crucial risk
factor for the main human pathologies, including neurodegenerative diseases, cardiovascular
disorders, cancer and diabetes (López-Otín et al., 2013). To date, several variations of innate
and acquired immunity have been observed in the elderly. These alterations have been generally,
explained as a deterioration of immunity, which has been referred to as immunosenescence and
is characterized via chronic inflammatory conditions. Immunosenescence refers to increased
susceptibility of the elderly to infection and may be explained in terms of molecular and
cellular mechanisms responsible for inflammatory age-associated disorders (Larbi et al., 2008;
Caruso et al., 2009). A better understanding of immunosenescence and the development of
novel strategies to counteract it are necessary, not only for anti-aging strategies aimed at
preventing or slowing down cognitive aging but, more notably with the aim of prolonging
healthy life, through preventing infectious and age-associated disorders and improving the quality
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of life in later years (Candore et al., 2008; Jirillo et al., 2008;
Larbi et al., 2008; Caruso et al., 2009; Holmes et al., 2009;
Trollor et al., 2010; Barrientos et al., 2015; Di Benedetto
et al., 2017). Cognitive aging is characterized by a decline in
memory and other cognitive processes, changes in behaviors and
impaired ability to live an independent and high functioning
life (Cunningham and Hennessy, 2015). In the current review
article, we bring together different biological processes related
to inflammation within the context of cognitive aging. There
have been few theoretical models of the molecular and cellular
mechanisms of cognitive decline, with most of the literature
focusing on abnormal aging and cognitive disorders of aging
such as Alzheimer’s Dementia (AD; Changeux and Dehaene,
1989; Miller and Cohen, 2001; Zlokovic, 2005; Bishop et al.,
2010). The cytokine model of cognitive function explained by
McAfoose and Baune (2009) emphasized the important role of
cytokines in cognitive process at the molecular level such as in
synaptic plasticity, neurogenesis, and neuromodulation, which
may subserve learning, memory, and other cognitive processes.
This cytokine-mediated model of cognitive processes has been
proposed to be causative in terms of longer-term pathogenesis
related to some neuropsychiatric disorders such as AD and
Major Depression (McAfoose and Baune, 2009) but there is a
lack of clarity in terms of how some of these processes may
affect cognitive aging. In this review, we outline the involvement
of three main aging features of the central nervous system
(CNS) that underpin cognitive decline (Figure 1). Specifically,
we present a model of cognitive aging that comprises three
main aging features of the CNS, including immunosenescence,
vascular aging, and brain aging and we briefly review the role of
each of these components in terms of changes in cognition with
increasing age.

COGNITION

Cognition refers to mental processes that are often measured
in terms of our ability to allocate attention, recall information,
to perceive relationships as well as the ability to think locally
and abstractly amongst other cognitive domains. Some of
these cognitive domains decrease, as we get older (Christensen,
2001; Singh-Manoux et al., 2012). In particular, memory and
processing speed appear to be more sensitive to age than
other cognitive domains (Salthouse, 1996; Christensen, 2001).
A reduction in cognitive function affects more than 50% of
people over 60 years of age (Skaper et al., 2014). Dementia
is a generic term that encompasses several diseases with
different pathologies such as AD, vascular dementia (VD),
frontotemporal dementia, and dementia with Lewy bodies.
Their common characteristic is a progressive reduction in
cognitive performance, which leads to functional dependency
and death (Gao et al., 2016). However, it is unclear which
biological processes underpin these changes. Some researchers
have proposed a linkage between inflammatory processes and
cognition. Although most of this research has been derived
from animal studies, the results of which could also be
applied to understanding human conditions such as cognitive
aging. These investigations have emphasized a close association
between some aspects of the immune system, processes at
the level of the neuron and vascular systems (Zlokovic, 2005;
McAfoose and Baune, 2009; Grammas, 2011; Broussard et al.,
2012; Davenport et al., 2012; Kousik et al., 2012; Barrientos
et al., 2015; Di Benedetto et al., 2017; Tarantini et al., 2017).
Interestingly, a recent review by Gauthier et al. (2018) argued
for the importance of considering the interaction of several
factors involved in age-associated cognitive decline (particularly

FIGURE 1 | Immunosenescence, vascular aging, brain aging in association with cognitive decline, a suggested model of underlying mechanism.
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AD) such as vascular small vessel disease, neuroinflammation
and Lewy body pathology (Gauthier et al., 2018). Vijayan
and Reddy (2016) also argued that stroke was a major risk
factor contributing to AD and VD through several cellular
and molecular changes including inflammation, oxidative
stress, mitochondrial dysfunction, vascular changes and marked
changes in brain proteins.

IMMUNOSENESCENCE

The remarkable development of human survival and lifespan
to well beyond childbearing ages has been completely
‘‘unpredicted’’ via evolution (Baylis et al., 2013). As a result,
the human immune system is exposed to significant additional
antigenic exposure outside the forces of natural selection (De
Martinis et al., 2005; Franceschi, 2007; Franceschi et al., 2007).
The immune system is highly effective for the first 40 years
of life and after that, similar to all other organs and systems
of the body undergoes a process of senescence and certain
features begin to reveal effectual reduction (Piazza et al., 2010;
Salvioli et al., 2013). The immunity begins to exhibit negative
effects on human aging (antagonistic pleiotropy) leading to
gradual systemic failures (De Martinis et al., 2005; Franceschi,
2007; Franceschi et al., 2007). The process of senescence
causes a progressive reshaping of its functions in a pervasive
process, which influences almost all the compartments of
the immune system, particularly the branch in control of
the acquired immunity (Salvioli et al., 2013). The immune
system during aging declines in efficiency and reliability
resulting in greater susceptibility to pathological conditions as
a consequence of chronic inflammatory responses, for instance,
Alzheimer’s disease, cardiovascular disease, auto-reactivity as
well as an enhanced vulnerability to infectious disease (Baylis
et al., 2013). These variations are further compounded by a
reduction in responsiveness-impaired communication among
all cells of the immune system. The overall alteration of the
immune system during aging is termed ‘‘immunosenescence’’
and has a multifactorial etiology (Weiskopf et al., 2009).
Immunosenescence of the acquired immune system includes
the involvement of the thymus and reduced responsiveness
to new antigen load, due to reduced naïve: memory cell
ratio and expansion of mature cell clones (Baylis et al., 2013;
Müller and Pawelec, 2015). Thymic output decreases with age
resulting in reduced T-cell repertoire and enhanced oligoclonal
expansion of memory and effector-memory cells (Pawelec,
2012). This imbalance leads to a reduced ability to clear
novel pathogens (prolonging infection duration) as well as an
elevation in functionally distinct T-cell populations that have an
amplified pro-inflammatory phenotype (Weiskopf et al., 2009).
Immunosenescence of the innate immune system is mainly
defined by the reduction in cellular superoxide production
and capability for phagocytosis (Pawelec, 2012). Of the innate
immune system, monocytes and macrophages are assumed to
lead to inflamm-aging (cellular exhaustion) more than any other
cell type. Monocyte variations with age can cause inflamm-
aging via reduced function and a functional shift against a
proinflammatory phenotype (Shaw et al., 2010).

WHAT IS INFLAMM-AGING?

Another striking characteristic feature of immunosenescence is
an increase in cellular production of proinflammatory mediators,
such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL)-6
and IL-1β in serum’s individuals (Zanni et al., 2003; Salvioli
et al., 2013) and has been indicated as inflamm-aging the chronic
sub-clinical elevated production of pro-inflammatory mediators
typical of elderly (Blagosklonny and Hall, 2009; Blagosklonny,
2010). Inflamm-aging is a consequence of a cumulative lifetime
exposure to antigenic load due to both clinical and sub-clinical
infections as well as non-infective antigens (Baylis et al., 2013).
It is believed to be related to several age-associated disorders
sharing a similar inflammatory basis. However, recent research
indicates that inflamm-aging is at least in part independent from
immunological stimuli. In addition, centenarians who prevented
or delayed major inflammatory disorders display elevation in
inflammatory mediators (Salvioli et al., 2013). The result of
the inflammatory response is tissue damage and the release
of reactive oxygen species (ROS), which can lead to oxidative
damage and in turn stimulate the production of increased levels
of cytokines, principally from cells of the innate immune system
(Cannizzo et al., 2011) as well as the acquired immune system.
These events initiate a vicious cycle in which the immune system
is remodeled favoring a chronic pro-inflammatory response
where, healing responses, pathophysiological variations, and
tissue damage occur at the same time. Irreversible molecular
and cellular damage, which is not clinically noticeable, gradually
accumulates over decades (Baylis et al., 2013). Theoretically,
the process of inflamm-aging could account for the increased
frequency of inflammation-based pathologies, which occur with
increased age (e.g., neurodegeneration, cardiovascular diseases,
arthritis, type II diabetes, and several types of cancers). The
hypothesis that aging is driven via unnecessary inflammatory
responses stems from the concept of inflamm-aging and is
consistent with the recent theory of aging as a quasi-program
(Blagosklonny and Hall, 2009; Blagosklonny, 2010).

Another cellular phenomena, relevant to immunosenescence
and inflammation is ‘‘cellular senescence’’ which is a hallmark
of aging and has been reported in a large number of studies in
which the mechanisms have been extensively reviewed (Campisi
and d’Adda di Fagagna, 2007; Collado et al., 2007; Collado and
Serrano, 2010; Kuilman et al., 2010; Salama et al., 2014; van
Deursen, 2014; Walters et al., 2016). Cellular senescence can
occur in almost all cell types that are capable of cell division
(Bitto et al., 2010; Coppé et al., 2010b; Chinta et al., 2015).
Recent evidence in epithelial cells and fibroblasts have revealed
that cellular senescence is mediated through a large increase
in the production of 40–80 factors that play a vital role in
intercellular signaling (Coppé et al., 2008, 2010a; Young and
Narita, 2009; Chinta et al., 2015). The release of these series
of factors has been termed ‘‘senescence-associated secretory
phenotype,’’ or SASP and they generally increase at mRNA levels
(Coppé et al., 2008) and enhance a wide array of proteases,
chemokines, growth factors, and cytokines. SASP proteins
that are characterized as inflammatory stimulators, include
IL-8, IL-6, IL-1, granulocyte macrophage colony stimulating
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factor, monocyte chemotactic protein-2 (MCP-2), MCP-3,
matrix metalloproteinase-1 (MMP-1), MMP-3, growth regulated
oncogene-α, and several Insulin-like growth factor-binding
proteins (Kumar et al., 1992; Wang et al., 1996; Coppé et al.,
2008) which are among the most largely secreted SASP factors
and potentially can cause or aggravate, age-related pathology,
both degenerative and hyperplastic (Chinta et al., 2015).
Therefore, senescent cells are a source of chronic inflammation
senescence/inflamm-aging during the aging process (Freund
et al., 2010). Some other studies also indicated that inflammation
could exacerbate the biological aging and cellular senescence,
whichmay be a cause for the loss of cognitive function (Panossian
et al., 2003; Honig et al., 2006; Ma et al., 2013).

INFLAMM-AGING, CELLULAR
SENESCENCE AND COGNITIVE AGING

The relationship between inflamm-aging and cognitive aging
has been reported in several human studies (Dik et al., 2005;
de Rooij et al., 2007; Schram et al., 2007; Marioni et al.,
2009; Kim et al., 2015). For instance, Trollor et al. (2010)
argued for a relationship between inflamm-aging and mild
cognitive impairment (MCI), in the Sydney memory and aging
study cohort, a longitudinal study of 1,037 Australians aged
70–90 years. The findings showed that the concentration of
TNF-α and serum amyloid A, were higher in individuals with
MCI compared with cognitively normal participants (Trollor
et al., 2010). Three hundred community-dwelling individuals
with mild to severe Alzheimer’s disease were tested on cognitive
measures and inflamm-aging. An increase in the serum level
of TNF-α and a two-fold increase in the rate of cognitive
decline over 6 months were observed in around half of all
study participants. In the baseline group, high levels of TNF-α
was associated with a four-fold enhancement in the rate of
cognitive decline. Individuals with low serum levels of TNF-α

showed no cognitive decline over the 6 months (Holmes et al.,
2009). In another study by Yaffe et al. (2003), a group of
3,031 White and African-Americans with mean age of 74 years
were assessed in terms of cognitive function and inflamm-aging.
Individuals in the highest tertile for C-reactive protein (CRP)
or IL-6 had nearly two points lower scores on the Modified
Mini-Mental State Examination (3MS) at baseline. These scores
then declined further over the 2 years of the study in comparison
with those with the lowest tertile for CRP or IL-6. Participants
with the highest inflammatory mediators tertile were also more
likely to have cognitive decline compared with participants with
the lowest tertile for IL-6 and for CRP but not for TNF-α
(Yaffe et al., 2003).

While research on the cellular senescence in brain aging
is at early stages, the role of cellular senescence in peripheral
tissues during several age-related pathologies has been more
frequently explored (Chinta et al., 2015). Animal studies have
been published on brain cellular senescence and cognitive
aging (Cho et al., 2015; Tarantini et al., 2017), for example
a study by Li et al. (2018) reported on D-galactose-induced
aging in mouse model and showed that Zicao (Acetyl shikonin)
treatment significantly reduced hippocampus senescence and
cognitive impairments through upregulating the expression of
SIRT1 and suppressing inflammatory cytokines such as IL-1β
and TNF-α (Li et al., 2018). Ungvari et al. (2017) reported that
whole brain irradiation-induced accelerated brain senescence is
notably associated with cerebromicrovascular dysfunction and
cognitive decline. Parisotto et al. (2016) showed that Melatonin
treatment reduced cellular senescence and oxidative damage
in the hippocampus of a mouse model of down syndrome.
Studies on human brain samples have also indicated an increase
in DNA-protein kinase catalytic subunit and incorporating
phosphorylated histone, γH2AX (which exhibited a neuronal
DNA damage response) is correlated with cognitive impairment
(Simpson et al., 2015) (Figure 2).

FIGURE 2 | Immunosenescence is a key mechanism underlying cognitive decline.
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IMMUNOSENESCENCE AND OXIDATIVE
STRESS

The majority of age-related disorders are associated with
a low level of chronic inflammation (De la Fuente and
Miquel, 2009; Cannizzo et al., 2011). Currently, it is not yet,
fully understood whether inflammatory responses lead to the
development of degenerative chronic disorders or whether
the chronic pathologies can lead to inflammatory response
observed during aging. Regardless of the cause-effect relationship
among age-dependent disorders and inflammation, oxidative
stress is known to play a main role in maintaining the
chronic inflammation or inflamm-aging observed in aging and
age-dependent disorders (De la Fuente and Miquel, 2009). Toll-
like-receptors and the Nalp-3 inflammasome are two main
molecular pathways which develop inflammatory responses
through oxidative damage produced by free radicals (Cannizzo
et al., 2011). Moreover, increases in oxidative stress can lead to
telomere length attrition and cellular senescence which may be
associated with cognitive decline (Ma et al., 2013).

The idea of ROS involvement in aging process, dates back
to 1995 when Harman suggested the ‘‘Free Radical Theory
of Aging’’ or ‘‘oxidative stress theory of aging,’’ referring
to accumulation of free radicals during aging process which
could cause biomolecule damage and the development of
pathological condition (Harman, 1992, 2006; Harvey et al.,
2015; Black et al., 2017). Free radicals are molecules with
unpaired electrons which are mainly unstable (Cannizzo et al.,
2011) and increase the non-enzymatic oxidation of biomolecules
(proteins, carbohydrates, lipids and nucleic acids; Halliwell,
2009; Buonocore et al., 2010; Hamanaka and Chandel, 2010).
Two main biochemical mechanisms link immunosenescence
to oxidative stress: (i) a decline in cellular functions because
of oxidative damage in protein, lipid and carbohydrate; and
(ii) cellular apoptosis followed by accumulation of oxidized
molecular aggregates. The elevation in free radicals volume in
several aging cells has also been observed in immunological
cells (Nomellini et al., 2008). Additionally, the amount of
catalase, superoxide dismutase, and glutathione peroxidase
which are the enzymes responsible for free radical clearance
in the cytosol are reduced in aged cells (Cannizzo et al.,
2011). Similarly, the amount of manganese superoxide dismutase
which is an antioxidant enzyme situated in the mitochondria,
and defenses macrophages from apoptosis increased through
oxidized low-density lipoprotein is also decreased in aging
macrophages (Fujimoto et al., 2010) all of which contribute to the
elevated level of cellular oxidative stress (Nomellini et al., 2008;
Cannizzo et al., 2011).

VASCULAR AGING

Vascular aging has been described in terms of changes in
structure and function of the endothelium and smooth
muscle cells and the communication routes between these
two cell layers that form the vascular wall (Younger, 2004;
Pase et al., 2012; El Assar et al., 2013). Impaired endothelial
vasodilation is a virtual manifestation of arterial aging and a

clinical indicator of vascular dysfunction, which may occur
over a long period of time (Younger, 2004; Seals et al.,
2006; El Assar et al., 2013). Moreover, impaired endothelial
vasodilation is the first stage in changes in vascular outcomes
and cardiovascular disease in elderly people (Seals et al.,
2006; El Assar et al., 2013; van Buchem et al., 2014). With
advancing age, there are changes that occur in the vasculature,
including endothelial dysfunction, vascular remodeling,
increased vascular stiffness and vascular inflammation,
which contributes to hypertension (Grammas, 2011; Baierle
et al., 2015; Harvey et al., 2015). In terms of hypertension,
large and small arteries undergo mechanical structural, and
functional changes which contribute to vascular complication
and elevated cardiovascular risk (Savoia and Schiffrin, 2006; van
Buchem et al., 2014). Moreover, the renin–angiotensin system
exhibit a key role in the pathophysiology and development of
hypertension and cardiovascular disease (Marchesi et al., 2008).
Hypertension-enhanced vascular changes include low-grade
inflammatory processes in which inflammation contributes
to the pathophysiology of high blood pressure (Savoia and
Schiffrin, 2006). One crucial hallmark of vascular aging is
an increased arterial stiffness, resulting in the loss of arterial
elasticity, compromising vascular adaptation to blood flow
and pressure changes (El Assar et al., 2013; van Buchem et al.,
2014; Pase et al., 2015). This increased arterial stiffness is often
revealed via increases in the speed of propagation pressure/flow
waves (Pase et al., 2010, 2012; El Assar et al., 2013). Arterial
stiffness causes impaired endothelial vasodilation leading to
endothelial dysfunction (Scuteri et al., 2008; Pase et al., 2010,
2015). Besides changes in the structure and function of the
endothelium, endothelial dysfunction also has a crucial role in
age-associated microvascular dysfunction (Rodríguez-Mañas
et al., 2009). Small and large arteries are not isolated systems
but are involved in crosstalk so that changes in the integrity
and function of small arteries impact on the functionality of
larger arteries, a condition that prevents small artery remodeling
and organ damage (Laurent et al., 2009). This crosstalk
between large artery changes and small cerebral arteries may
be important in terms of cognitive aging (El Assar et al., 2013;
van Buchem et al., 2014).

The functionality of the brain depends on a constant blood
supply and disruptions in cerebral blood flow can lead to brain
diseases and death (Moskowitz et al., 2010; van Buchem et al.,
2014). Because of this, cerebrovascular control mechanisms
function to ensure that the brain blood supply is sufficient for its
energy requirements (Iadecola and Nedergaard, 2007). Increased
neuronal activity is associated with an elevation in cerebral blood
flow (functional hyperemia) which is thought to generate energy
substrates and remove the toxic component that is derived from
brain cellular activity (Paulson et al., 2010; Zlokovic, 2011).
Cerebrovascular autoregulation manages cerebral blood flow to
some degree ensuring some consistency in the range of blood
pressure, and protecting the brain tissue from unwanted swings
in perfusion pressure (van Beek et al., 2008). Specialized receptors
on endothelial cells surface transduce mechanical (shear stress)
and chemical stimuli, for instance endothelin, nitric oxide and
prostanoids (Wolburg et al., 2009). Compelling evidence suggest
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that the health of brain is also dependent on the overall health
of the cardiovascular system, and the existence of parenchymal
and vascular inflammation which has often been offered as a
link among atherosclerosis and AD (Grammas, 2011; Tzikas
et al., 2014). To date, atherosclerosis and AD are known to share
similar vascular risk factors for instance hypercholesterolemia,
hypertension, as well as heart failure (Helzner et al., 2009;
Roselli et al., 2009; Gorelick et al., 2016) and arterial stiffness
(Triantafyllidi et al., 2009; Gorelick et al., 2016). The treatment
of vascular risk factors has been shown to reduce the risk of
developing Alzheimer’s disease (Babarskiene et al., 2002) and
dementia (Jellinger, 2013) and to slow cognitive decline in
AD patients (Deschaintre et al., 2009; Helzner et al., 2009).
Compelling data also establishes a relationship between aortic
stiffening and cognitive dysfunction (Pase et al., 2012; de la
Torre, 2012) with greater cognitive impairment associated with
poorer cerebral microcirculation and increased aortic stiffness
(Triantafyllidi et al., 2009; Pase et al., 2010, 2012).

One of the key variations during vascular aging is the
formation and development of inflame-aging (Franceschi,
2007). Inflamm-aging is not only independent of traditional
cardiovascular disease risk factors but also accelerates arterial
thickening and arterial stiffness independently from processes
associated with cardiovascular disease (Scuteri et al., 2011). There
is accumulating evidence for an increased systemic inflammatory
mediators (inflamm-aging) for example IL-1β, TNF-α, members
of the superfamily of IL-6, as well as, elevated amount of CRP
in plasma of older adults while compared with young adults
(Ferrucci et al., 2005). This increase in inflammatory markers
is associated with age, and independent of other cardiovascular
disease (Miles et al., 2008). The pleiotropic proinflammatory IL-6
has been importantly associated with age-dependent vascular
disorders (Ungvari et al., 2004). Moreover, elevated plasma
amount of IL-6 has been associated with larger disability
and mortality in older people (Cesari et al., 2012). CRP
levels are also correlated with elevated arterial stiffness in
middle-aged and elderly (Mattace-Raso et al., 2004; Nakhai-
Pour et al., 2007). However, expressions of MCP-1 and MMP
are higher in the thickened arterial intima of vessels taken
from autopsies of older people in comparison with those from
young adult (El Assar et al., 2013). Vascular endothelial cells
play a key role in the pathobiology of vascular inflammatory
processes due to their potential interaction with elements
related to systemic inflammation. They are potentially active
participants during vasculitis, not only passive targets of injury
(Younger, 2004). This is consistent with arterial changes that
are associated with endothelial dysfunction (Scuteri et al., 2008;
Pase et al., 2010, 2015). Several chronic vascular disorders
are part of a progressive process, initiating and developing
through local inflammation of large and medium sized arteries
(Renna et al., 2013). It is scientifically relevant in this regard
that pro-inflammatory signaling mechanism in the vascular
wall has been well characterized and the risk of progressing
age-associated neurodegenerative disease is related to increased
circulatory inflammatory cytokines, such as IL-6 and TNF-
α (Simen et al., 2011). Serum levels of homocysteine has
an associated with atherosclerosis and can damage blood

vessels. Crucially, AD disease data have demonstrated that
higher levels of homocysteine independently and strongly
predict the development of dementia (Fiolaki et al., 2014; Kim
et al., 2018). VD is a heterogeneous group of brain disorders
in which cognitive decline is attributable to cerebrovascular
pathologies, and includes a large component of dementia
prevalence (Gorelick et al., 2011; Iadecola, 2013). The level
of some circulatory inflammatory proteins such as CRP and
1-antichymotrypsin have been observed to increase before the
onset of VD (Engelhart et al., 2004). The level of CRP has also
been shown to increase 25 years before the onset of VD (Schmidt
et al., 2002). In the Conselice study of brain aging, with 4 years
of follow-up, the combination of high levels of IL-6 and CRP led
to a nearly three-fold increased risk of VD (Ravaglia et al., 2007).
Yano et al. (2010) also reported that pentraxin 3, a circulatory
inflammatory biomarker predicts cognitive decline in elderly
hypertensive patients.

WHAT IS VASCULAR INFLAMMATION
(VASCULITIS)?

Vasculitis is inflammation of the blood vessel wall, which
causes different pathologies, depending on the type of impaired
organ (Jennette and Falk, 1997; Hoffman and Calabrese,
2014). Vasculitis includes a heterogeneous class of disorders
recognized via inflammation and necrosis of the blood vessel
wall. Based on the Chapel Hill Consensus Conference, the
primary systemic vasculitis could be characterized into three
major groups influencing large-sized, medium- and small
sized vessels, respectively (Jennette and Falk, 2007). Small
sized vessel vasculitis is categorized under several names
including Wegener’s granulomatosis, Churg–Strauss syndrome,
Microscopic polyangiitis, Henoch–Schönlein purpura, Essential
cryoglobulinemic Vasculitis, Cutaneous leukocytoclastic angiitis
(Jennette and Falk, 1997). Medium-size arteries are involved
in Kawasaki syndrome of childhood and in classic polyarteritis
nodosa (Berlit, 2010). Large vessel vasculitis is giant-cell arteritis
and Takayasu arteritis (Prieto-González et al., 2015). The cellular
and molecular characterizations of vasculitis are complex and
diverse, depending on the type of disorder and organ. Extensive
reviews have been published on this topic (Younger, 2004;
Rosenberg, 2009; Pantoni, 2010; Zuccoli et al., 2011; Hoffman
and Calabrese, 2014; Pipitone et al., 2018).

VASCULAR INFLAMMATION AND
COGNITIVE AGING

The blood-brain barrier (BBB) is a dynamic and active
barrier, selectively allowing the entrance of molecules (oxygen
and nutrients) from blood into the brain and concomitantly
protecting the brain form infections and blood toxins (Zlokovic,
2011). It consists of a monolayer of brain endothelial cells sealed
with ‘‘tight junctions’’ which are proteinaceous transmembrane
complexes made of members for instance; claudins, occluding
and junctional molecule-1, and sub membrane molecules
connecting to the actin-network (Jia et al., 2013). Endothelial
cells of the BBB manage the neuronal environment through
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controlling the transport of numerous molecules from the
blood to the brain parenchyma and vice versa. They also
manage fluctuations via the synthesis of mediators able to
impact on nerve cells function and vascular endothelial
growth factor (Marchesi et al., 2008; Attems et al., 2011;
Sanchez et al., 2013). Moreover, the BBB is permeable to
pro-inflammatory mediators from systemic inflammation and
permits leucocyte migration in to the brain (Lyman et al.,
2014). Interestingly, vascular endothelial cells have a critical
role in the pathobiology of vascular inflammation (Younger,
2004) and the variations in the metabolism of endothelial cells
can cause neurodegenerative disorders. The neurovascular unit,
which strongly influences neuronal cell activity of the brain
(Bertini et al., 2013), also consist of astrocytes, and microglia
which are the main neuroinflammatory principle cells (Seth
and Koul, 2008; Ransohoff and Perry, 2009; Ransohoff and
Cardona, 2010; Grammas, 2011), as well as pericytes and
neurons (Grammas, 2011). Astrocytes connect to endothelial
cells, providing support to those cells and as a result are able
to regulate BBB maintenance they, act as mediators between
BBB and neurons (Hawkins and Davis, 2005). Deregulation
of the BBB, and neurovascular dysfunction has been observed
to lead to neurodegeneration and cognitive decline (Iadecola,
2004; Zlokovic, 2011; Leung et al., 2013). Signaling cascade are
correlated with angiogenesis and vascular activation and are
up regulated in the micro vessels in brains of patients with
AD leading to a complicated neuroinflammatory response, and
neuronal synaptic disconnection, which can damage or kill the
nerve cells (Zlokovic, 2008; Grammas, 2011; Sanchez et al.,
2013), and consequently exhibit cognitive impairments (Ryan
and Nolan, 2016). In AD human studies, there has been a
significant elevation in inflammatory mediators in the cerebral
microcirculation. Brain endothelial cells in AD express high
level of inflammatory adhesion molecules, for instance cationic
antimicrobial protein 37 kDa, MCP-1 and intercellular adhesion
molecule-1 (ICAM-1; Frohman et al., 1991; Pereira et al., 1996;
Grammas and Ovase, 2001). Moreover, AD brain micro-vessels
express significantly higher amount and range of inflammatory
mediators such as thrombin, nitric oxide, transforming growth
factor-β, TNF-α, IL-1β, IL-6, IL-8 and MMPs (Dorheim et al.,
1994; Grammas and Ovase, 2001, 2002; Thirumangalakudi et al.,
2006). Crucially, inflammation has a key role in linking several
vascular and neuronal damage to cardiovascular risk factors
(Gorelick et al., 2011) such as arterial stiffness and hypertension
(Gorelick et al., 2016). Inflammation is actively involved in
cerebral vasculature, although the role of inflammation in
vasculopathy is poorly understood (Klohs et al., 2014).

Unfortunately, most of the data available on vascular
inflammation in relation to cognitive aging are based on animal
models (Takeda et al., 2010; Yu et al., 2012; Won et al.,
2013; Kaiser et al., 2014; Acharya et al., 2015) and available
human studies mainly assess the role of systemic inflammatory
biomarkers or symptomatic changes of cardiovascular risk
factors in relation to cognitive aging. We describe here some
of the studies that assist us in better understanding of the
relationship between vascular inflammation and cognition.
Several human studies have reported that platelet activity

is significantly, correlated with dementia severity, supporting
the role of vascular inflammation in the pathogenesis and
progression of dementia (Laske et al., 2008, 2012; Stellos et al.,
2010, 2014). Laske et al. (2008) suggested a correlation among
soluble glycoprotein VI as markers of platelet activity with
the pathogenesis of AD. Yano et al. (2010) reported that
pentraxin 3, is a useful inflammatory biomarker for predicting
cognitive decline in elderly hypertensive patients. Some human
studies have also reported evidence that statins, cholesterol-
lowering drugs have therapeutic application in AD (Jick et al.,
2000; Wolozin et al., 2000) and patients in these studies
exhibited a slower cognitive decline (Sparks et al., 2006).
To investigate the relation among midlife hypertension and
onset of AD later in life, Kruyer et al. (2015) chemically
enhanced chronic hypertension in the transgenic Swedish-
Dutch-Iowa mutation mouse model of AD. Hypertension
increased cognitive impairments on the Barnes maze test
and led to an increase in microvascular deposition of Aβ,
vascular inflammation, BBB leakage, and pericyte loss. Moreover,
hypertension enhanced hippocampal neurodegeneration at an
early age in this mouse line, establishes this as a useful research
model of AD with mixed amyloid and vascular pathologies
(Kruyer et al., 2015). Grammas and colleagues reported that the
vascular activation inhibitor, sunitinib, reduces Aβ as well as
cerebrovascular expression of inflammatory proteins improved
cognitive function in 3xTg-AD murine models and AD2576APP
Swe (Grammas et al., 2014). Blocking angiotensin II signaling
helps reduce neurodegeneration and to develop longevity in
rodents (Benigni et al., 2010).

VASCULAR AGING AND OXIDATIVE
STRESS

Inflammation and oxidative stress are underlying factors in the
development of vascular aging and it is difficult to determine the
effects of these two factors independently as several interplays
co-exist between oxidative stress and inflammation and vice
versa (Csiszar et al., 2008; Montezano and Touyz, 2014).
Oxidative stress is crucially involved in several molecular
and cellular interactions of vascular aging, which include:
(1) elevated amount of pro-inflammatory responses in vascular
cells; (2) vascular dysfunction among oxidative modification
of structural and functional proteins which regulates vascular
contraction/relaxation fibrosis and calcification; (3) variations in
calcium homeostasis in vascular cells; (4) activation of redox-
sensitive pro-inflammatory and profibrotic transcription factors;
and (5) activation of molecular mechanisms causing senescence
and autophagy in endothelial and vascular smooth muscle cells
(Tatchum-Talom and Martin, 2004; Harvey et al., 2015).

BRAIN AGING

To date, numerous functional and structural changes related
to normal brain aging have been reported and indicated that
brain mass reduces in the order of 2%–3% per decade after
the age of 50, and in participants 80 years or older brain mass
decreases 10% in comparison to young adults (Drachman, 2006).
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Voxel-based morphometry and magnetic resonance imaging
has revealed that age particularly impacts on the volume of
white and gray matter at parietal, prefrontal and temporal areas
(Salat et al., 2004; Samanez-Larkin and Knutson, 2015; Von
Bernhardi et al., 2015). Complex learning abilities, for instance,
dual tasks (e.g., memorizing a word list while walking), show
a progressive decline in the elderly (Salat et al., 2005; Von
Bernhardi et al., 2015). However, cognitive decline during aging
varies considerably, with some older people reporting normal
cognitive abilities (Shock et al., 1984). Consistent with brain
tissue and neuropsychological changes there are some brain
changes that occur as a consequence of molecular and cellular
changes in the body such as increases in the permeability of
the BBB, enhancement in systemic inflammation, degeneration
of neurons and other brain cells which could also lead to the
production of ROS. It has been suggested that BBB permeability
increases in aged animals (Blau et al., 2012; Enciu et al., 2013)
facilitating infiltration via monocytes producing mitochondria-
generated ROS (Zlokovic, 2008; Lyons et al., 2009). Microarray
analysis of brain tissue provided from aged and young rodents
have reported that the upregulated genes in the aged rodents
are correlated with oxidative stress and inflammation (Lyons
et al., 2009). In other research, enhancement in both major
histocompatibility complexes (MHC)-II and glial fibrillary acidic
protein (GFAP) were demonstrated in the brain of aged mice
strengthening the hypothesis that activation of microglia and
astrocytes are indicators of brain aging (Godbout et al., 2005)
and all these changes could lead to chronic ‘‘neuroinflammation’’
(Lynch, 2009; Dong et al., 2014; Lyman et al., 2014).

WHAT IS NEUROINFLAMMATION?

Neuroinflammation is a complex cellular and molecular cascade
in brain where immunological cells have a key role in its
initiation and development (Glass et al., 2010; Skaper et al.,
2014; Rizzo et al., 2014; Arulselvan et al., 2016). The BBB is
one of several key players during neuroinflammation, where
non-neuronal cells (e.g., microglia, asterocytes and pericytes)
together with neurons form a functional unit, often referred to
as a neurovascular unit to process a neuroinflammatory response
(Iadecola, 2004; Hawkins and Davis, 2005; Zlokovic, 2005, 2008,
2011). BBB breakdown can occur under different conditions such
as due to inflammatory responses, neurodegenerative processes,
and vascular disorders. It can cause a neuroinflammatory
response and generate neurotoxic products that cause a
progressive synaptic disconnection, neuronal dysfunction and
cell loss leading to a vicious circle in disorders such as
AD, Parkinson’s disease (PD), multiple sclerosis (MS), and
other disorders (Zlokovic, 2005, 2008, 2011). During the
neuroinflammatory process, microglia and astrocytes are the
main active immunological cells, which regulate both the
enhancement as well as reduction of inflammatory production
(Seth and Koul, 2008; Ransohoff and Perry, 2009; Ransohoff and
Cardona, 2010). This condition is achievable via the synthesis of
cytokines, up- or downregulation of several cell surface receptors
such as pathogen recognition receptors, cytokine receptors,
and several other receptors vital for antigen presentation

(Ransohoff and Perry, 2009; Ransohoff and Cardona, 2010).
Chronic neuroinflammation or upregulated neuroinflammation
is commonly known via an enhancement in microglia activation
and elevated level of inflammatory cytokines such as IL-1β, which
are prevalent in almost all neurodegenerative diseases such as
AD, MS, PD and amyotrophic lateral sclerosis (Lynch, 2009;
Glass et al., 2010). Interestingly, these variations are similar,
though less dramatic in the non-disease aging brain (Lynch,
2009). Supporting cells in the CNS (microglia and astrocytes)
during neuroinflammation have a high turnover and exacerbate
the process of brain cellular aging (Ma et al., 2013).

Research has also characterized the role of microglia during
brain aging indicating a role of morphological, biological,
physiological, anatomical, and molecular changes in aging
microglia which also exhibit a comprehensive depiction of the
senescent microglia phenotype (Norden and Godbout, 2013;
Wong, 2013). This is due to the dynamic role of microglia
cells in the CNS which have a crucial role in the development,
plasticity and immune surveillance of the brain (Norden and
Godbout, 2013). As such, we focus on the role of the microglia
during neuroinflammation and brain aging. Microglia account
for 10% of the total glial cell population in the brain. As a
consequence of damage to the brain, microglia cells transform
their morphology dramatically, migrating to the lesion sites
and proliferate (Cerbai et al., 2012; Jurgens and Johnson,
2012; Norden and Godbout, 2013). Proliferated microglia cells
phagocytose debris and dying cells and/or generate cytokines
to support injured neurons and to keep the microenvironment
homeostasis and are therefore useful for neuronal survival. Data
has also shown a neurotoxic role of microglia whenever- they
are activated in severe injury or neurodegenerative disorders
(Jurgens and Johnson, 2012; Norden and Godbout, 2013). The
two-way communication between neurons and microglia is
vital for maintaining homeostasis during the physiological and
chronic inflammatory response in the CNS. While microglia
activation is crucial and beneficial in response to disorders
and injury, unrestricted or prolonged activation could have
harmful impacts on brain performance and behavior. To
avoid inflammation-associated damage, microglia reactivity is
modulated via neurons in the healthy brain (Jurgens and
Johnson, 2012). Overall density and numbers of microglia have
been shown to enhance notably with advancing age in several
CNS compartments, which include the hippocampus (Wong,
2013) auditory and visual cortex (Tremblay et al., 2012) and the
retina (Damani et al., 2011). These elevations might lead a low
rate of basal microglia proliferation or in other respects i.e., to
slow incremental recruitment of macrophages or monocytes
from the periphery (Cerbai et al., 2012; Wong, 2013). From
histopathology studies, some evidence has been provided that
in the aged brain, microglia morphologies exhibit a perinuclear
cytoplasm hypertrophy and retracted processes, almost similar to
activated microglia (Miller and Streit, 2007; Wong, 2013). Aged
microglia immunophenotypes also exhibit those of activated
microglia, with enhanced expression ofMHC II and complement
receptor 3 (Frank et al., 2006; Ziv et al., 2006; Wong, 2013).
In activated microglia, molecular markers are often observed
to be up regulated, (such as ionized calcium-binding adaptor
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molecule1). Moreover, these markers are enhanced in aged
microglia with no-evidence of injury or disease (Frank et al.,
2006; Wong, 2013). During healthy aging, in human in vivo
positron emission tomography (PET) using [11C]-PK11195
(TSPO radioligands) has shown an enhancement in ligand
binding in several cortical and subcortical areas, demonstrating
an elevated amount of basal microglia activation (Schuitemaker
et al., 2012). Moreover, aged microglia express elevated amounts
of effector molecules similar to activated microglia which is
known to be the primary cell source of cytokines release such
as TNF-α, IL-6, IL1-β (Lynch, 2009; Wong, 2013). Elevated
expression of inflammatory cytokines (such as IL1-β, TNF-α,
IL-6) are also elevated in aged microglia in situ (Wong, 2013),
isolated ex vivo (Sierra et al., 2007; Njie et al., 2012) or when
cultured in vitro (Ye and Johnson, 1999). Additionally, older
brains show increased interaction among T cells and microglia
(Lynch, 2009). Microglia senescence has an underlying role in
the switching of microglia from neuroprotection in the young
brain to neurotoxic in the aged (Norden and Godbout, 2013).
Targeting some of these features of microglia senescence might
constitute a feasible therapeutic strategy for some disorders
and even cognitive aging itself (Jurgens and Johnson, 2012;
Norden and Godbout, 2013; Wong, 2013). Overall, there is
general agreement on the enhancement of basal state microglia
activity in healthy aging, such that aged microglia may lead to
chronic states of ‘‘para-inflammation’’ (Medzhitov, 2008) that is
correlated with the enhanced vulnerability of the aged CNS to
neurodegenerative disorders in which there is a crucial role of
chronic neuroinflammation (Wong, 2013).

NEUROINFLAMMATION AND COGNITIVE
AGING

Cognitive aging is characterized by a reduction in
cognitive abilities in the elderly. Although the underlying
mechanism involved in this process is not fully understood,
neuroinflammation appears to be a significant contributor
(Ownby, 2010). Several research studies have attempted to
describe the relationship between neuroinflammation and
cognition. To date, several animal studies (Hovens et al., 2014;
Czerniawski et al., 2015; Elmore et al., 2015; Michels et al.,
2015; Wei et al., 2015; Flannery et al., 2016; Laurent et al., 2017;
Reis et al., 2017; Sanchez-Marin et al., 2017; Wang et al., 2018)
have addressed this issue. For instance, a study by Sun et al.
(2015) in male Sprague-Dawley rats showed that LPS could
induce IL-17A, TNF-α, IL-6, iNOS, and COX-2 expression in the
hippocampus when followed by IL-17A-neutralizing antibody
treatment, and it significantly eliminated neuroinflammatory
response through suppression of microglia activation and
improved memory. Tian et al. (2015) also found that in a mice
surgery model, partial hepatectomy enhanced the amount of
IL-17A in the hippocampus and increased cognitive impairment,
while vitamin D intervention reduced cognitive deficits by
inhibiting Th17 cells and increasing T reg cell numbers. Tan
et al. (2015) study also showed that transfusion of old red blood
cells in Sprague-Dawley rats increased IL-6 in the hippocampus
and enhanced ionized calcium-binding adapter molecule 1,

in the cerebral cortex and hippocampus (neuroinflammatory
response), and impaired memory and learning. Cognition and
behavior were evaluated by Barnes maze and fear conditioning
tests (Tan et al., 2015). A study by Hajiluian et al. (2017) with
male Wistar rats model, showed that vitamin D reversed obesity-
induced cognitive impairments via a reduction in nuclear factor
kappa B (NFκB) amount (a key neuro-inflammatory factor) and
an increase in brain derived neurotrophic factor concentration
and modulation of the BBB permeability in the hippocampus.
Cognitive function was examined by the Morris water maze test
and the BBB permeability was evaluated by Evans blue dye in the
hippocampus (Hajiluian et al., 2017).

The most widely applied transgenic Alzheimer animal
models do not demonstrate the degree of inflammation in
neurodegeneration and cognitive decline comparable to human
disease. Therefore, a more suitable animal model, is required
which closely mimics the resulting cognitive decline andmemory
loss in humans in order for us to be able to better understand the
impact of neuroinflammation on neurodegenerative disorders
(Millington et al., 2014). A few animal studies have specifically
focused on the relationship between neuroinflammation and
cognitive aging. For example, in the age-related Alzheimermouse
model, head injury can cause a chronic neuroinflammatory
response, which initiates and causes cognitive impairment.
A study by Webster et al. (2015) found that a single mild
traumatic brain injury in the APP/PS1 knock-in mouse led
to a delayed onset of neuroinflammatory response and a
more persistent glia cells activation (microglia and astrocyte)
in comparison to injured wild-type mice who consequently
developed cognitive impairment (Webster et al., 2015). Fonken
et al. (2016) demonstrated that high mobility group box
1 (HMGB1) mediates neuroinflammatory response priming
in the aged brain of rats by blocking the HMGB1 action
using a competitive antagonist Box-A. Aged-microglia became
desensitized to an immunological challenge and therefore were
prevented from an exaggerated neuroinflammatory response
and sickness behavior following infection (Fonken et al.,
2016). In the mice model of dementia 6-Shogaol (an active
constituent of ginger) eliminated neuroinflammatory processes
by inhibiting microgliosis and astrogliosis and consequently
improved cognitive process (Moon et al., 2014).

PET has been frequently used in human studies to quantify
microglia activity by labeling the translocator protein 18 kDa
(TSPO), which becomes over expressed upon activation of
microglia cells (Knezevic and Mizrahi, 2018). Studies that focus
on neuroinflammation in MCI reported a similar association
between cognitive impairment and TSPO binding (Okello et al.,
2009; Yasuno et al., 2012; Schuitemaker et al., 2013). The only
research with participants who had MCI reported a significant
correlation among cognition and neuroinflammation was on
the combined AD and MCI participants in the analysis (Kreisl
et al., 2013a,b). There was a significant association among
PET related inflammatory binding and impaired performance
on the MMSE, logical memory immediate, clinical dementia
rating, trail making part B tasks, and block design, with the
strongest associations among [11C]-PBR28 (TSPO radioligands)
binding in the inferior parietal lobule and performance on

Frontiers in Aging Neuroscience | www.frontiersin.org 9 March 2019 | Volume 11 | Article 56

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Tangestani Fard and Stough Inflammation and Cognitive Aging

block design and clinical dementia rating score (Kreisl et al.,
2013b). Three relevant studies have reported on relationships
between neuropsychological assessments in AD patients and
neuroinflammation (Kreisl et al., 2013b; Schuitemaker et al.,
2013; Suridjan et al., 2015). In the study by Schuitemaker
et al. (2013), there was no significant correlation between
cognition and [11C]-PK11195 (TSPO radioligands) binding
(Schuitemaker et al., 2013). However, two investigations with
second-generation radioligands reported a significant association
between performance on cognitive scales and TSPO binding.
Kreisl et al. (2013b) reported a strong negative association
between performance on the block design and [11C]-PBR28
(TSPO radioligands) binding in the inferior parietal lobule.
Similarly, Suridjan et al. (2015) identified a negative correlation
between performance on the visuo-spatial tasks in the repeatable
battery for the assessment of neuropsychological status and
[18F]-FEPPA (TSPO radioligands) binding in the parietal and
prefrontal cortices. The former research additionally identified
a negative association between [11C]-PBR28 binding and trail
making part B task and performance on the logical memory
immediate recall assesses executive function and memory,
respectively. Three studies have reported that lower performance
on the MMSE significantly correlated with higher levels of TSPO
binding (Edison et al., 2008; Yokokura et al., 2011; Kreisl et al.,
2013b). However, there are other studies that have demonstrated
no association between these two variables (Yasuno et al., 2008;
Schuitemaker et al., 2013; Varrone and Nordberg, 2015), and
another study reported a positive association among MMSE
score and the global cortical index (Hamelin et al., 2016).
Based on the in vivo PET data, it can be concluded that
chronic neuroinflammatory response plays a key role in the
pathology of AD. Whether this chronic neuroinflammatory
response is an initial factor or it happens consequentially during
the development of disease is not known. The contradictory
results across different studies using TSPO variables may be
explained by methodological differences in the studies and how
cognitive impairment was assessed. Future research should be
conducted to include larger populations with longer observation,
categorizing population via genetic, cognitive and behavioral
phenotypes to study other factors, which could influence
microglia activation (Figure 3).

DISCUSSION

Although, cognitive aging is a complex, multifactorial process,
there are a number of key biological processes involved in this
process. As such, we have proposed the involvement of three
main processes that may explain cognitive aging, which includes
immunosenescence, vascular aging and brain aging. Within
this model, we described how they share common pathological
processes such as inflame-aging, vascular inflammation and
neuroinflammation, respectively (Figure 1). Capturing these
three key processes in any single study is difficult for a number
of reasons; however, their utility taken together should be better
explored (Piazza et al., 2010; Cannizzo et al., 2011; Salvioli
et al., 2013; Di Benedetto et al., 2017). We have also argued
that immunosenescence is a critical key mechanism involved
in cognitive aging (Figures 2, 3). Better understanding the
development of immunosenescence in each individual should be
further considered, and appears to be sensitive to both genetic
and environmental factors (Weiskopf et al., 2009; Baylis et al.,
2013; Di Benedetto et al., 2017). Immunosenescence affects
how body regulate and manage different cellular and molecular
interactions in almost all body organs (Markiewski and Lambris,
2007; Ownby, 2010; Fard et al., 2015; Arulselvan et al., 2016;
Di Benedetto et al., 2017), particularly the brain during chronic
neuroinflammatory processes. Neuroinflammation serves several
fundamental roles in the brain structure and function, such as
ion homeostasis, involvement in the regulation of metabolic
function, the production of anti-oxidant species, synaptic levels
of glutamate, modulation of neuroplasticity, maintenance of
BBB, as well as protection from both endogenous and exogenous
factors (Benarroch, 2005; Shih et al., 2006; Wang and Bordey,
2008; Broussard et al., 2012; Di Benedetto et al., 2017). We also
propose that neuroinflammation is an underlying mechanism
underpinning cognitive performance playing a vital role in
learning and memory as we grow older (McAfoose and Baune,
2009; Ownby, 2010; Ryan and Nolan, 2016; Di Benedetto et al.,
2017; Hajiluian et al., 2017). It is important to bear in mind
that, there are normal or physiological levels of inflammation
however, chronic events (Markiewski and Lambris, 2007;
Fard et al., 2015; Sun et al., 2015; Tian et al., 2015; Arulselvan
et al., 2016) may reshape a normal inflammatory response into

FIGURE 3 | Inflammation as a common underlying mechanism in three main features of aging involved in cognitive decline.
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an exaggerated response which could then be characterized in
terms of inflamm-aging, vascular inflammation and chronic
neuroinflammation. We therefore propose, that cognitive
aging is a consequence of these three inflammatory processes
which interact in a synergistic manner (Figures 2, 3). As such,
treatments that ameliorate any or all aspects of exaggerated
inflammatory responses may be beneficial in improving
cognition or even ameliorating cognitive decline in the elderly.
For instance it is commonly accepted that anti-inflammatory
drugs are able to block important inflammatory pathways
such as NF-κB, and mitogen-activated protein kinase (MAPK;
Fard et al., 2015; Arulselvan et al., 2016) and these could
be explored as treatments to ameliorate cognitive decline
with age. Notably, whilst, nerve cells remain the most vital
functional unit of the nervous system, immune cells acting
directly or indirectly on brain function are more easily
manipulated targets than nerve cells. Better understanding
of the complex neuro-immune interactions will pave the way
for the development of new therapies that target the immune
system for the benefit of brain (Kipnis and Filiano, 2018), and
cardiovascular function.

In general, immunosenescence is a pathological process,
which manifests as a gradual decline in the functionality of
our immune system over the lifespan at the molecular and
cellular level and as such is hard to evaluate its initiation
and development (Piazza et al., 2010; Cannizzo et al., 2011;
Salvioli et al., 2013; Di Benedetto et al., 2017). Environmental
factors such as life style and genetical factors directly influence
immunosenescence in each induvial (Weiskopf et al., 2009; Baylis
et al., 2013; Di Benedetto et al., 2017). Interestingly, a review
by Kennedy et al. (2017) described the impact of exercise on
improving cognitive functioning via several parallel pathways
such as the modulation of inflammation and oxidative stress
during brain aging. Another interesting report by Windham
et al. (2014) on the associations between inflammation and
cognitive function among two different population groups of
African Americans and European Americans, demonstrated that
population with high vascular risk, higher inflammation and
poorer cognition were associated with markers of TNF-α activity
and especially apparent in African Americans.

We have argued for the importance of three distinct, but inter-
related inflammatory processes linked to cognitive aging such
as inflame-aging, vascular inflammation and neuroinflammation
(Figure 1). This model can be applied across different
cognitive processes, however, not all older individuals show
pathological inflammatory processes across these three domains
at one time point. Chronic neuroinflammation may be the
most directly relevant inflammatory domain in terms of
cognitive aging, however inflamm-aging may be an important
initiator of prolonged neuroinflammation. Finally, vascular
inflammation may be more transient and specifically be related
to cardiovascular disorders (Wilson et al., 2002; Zlokovic, 2005;
Xie et al., 2009; Iadecola, 2010; Grammas, 2011; Broussard
et al., 2012; Davenport et al., 2012; Kousik et al., 2012;
Barrientos et al., 2015; Chi et al., 2016; Di Benedetto et al.,
2017; Tarantini et al., 2017). In support of our model, there
is evidence that some disorders show these relationships. For

instance, in postoperative cognitive dysfunction (POCD) there
is a significant relationship between systemic inflammatory
mediators and neuroinflammation. A major operation can
activate specific homeostatic reactions, which can generate
an inflammatory response with the production of several
inflammatory mediators (Hu et al., 2010; Terrando et al., 2011;
Elwood et al., 2017). Damaged tissues activate monocytes,
macrophages, fibroblasts and endothelial cells, and release
various inflammatory products including oxidative radicals,
complement split products and cytokines, such as IL-1, IL-6,
TNF-α. These circulatory mediators can directly penetrate the
BBB (Wilson et al., 2002). Cytokines bind to their receptors
in the CNS, activate vascular endothelial cells and microglia
cells, and subsequently, enhance neuroinflammatory response
and a series of molecular reactions (Wilson et al., 2002; Xie
et al., 2009). This neuroinflammatory response can lead to
cognitive decline, which could impact on the production and
activity of neurotransmitters, decrease neural plasticity, and
increase neurotoxicity (Hu et al., 2010). Interestingly, a review
by Cunningham and Hennessy (2015) noted that a growing body
of clinical, preclinical and epidemiological evidence shows that
chronic co-morbidities and systemic inflammatory contributes
to the progression of dementia. VD is known to be correlated
with cerebrovascular pathologies (Gorelick et al., 2011; Iadecola,
2013). Recent data, has revealed a role of cerebrovascular
disorders, not only as initial cause of cognitive decline, but
also as an adjuvant to the expression of dementia in AD and
other neurodegenerative pathologies (Iadecola, 2013). Vascular
risk factors impair the structure and function of cerebral blood
vessels and the neurovascular unit, and these pathological
changes are then mediated via vascular oxidative stress and
inflammation (Iadecola, 2010). In the review by Sharp et al.
(2011), hypertension was shown to be an important risk factor
in cerebrovascular disease, cognitive impairment and AD as
well as, for VD. Moreover, VD is associated with microinfarcts
of cerebral blood vessels preventing oxygen supply to neurons
which is caused to some extent because inflammation of the
arterial wall affects the accumulation of thrombotic factor
(Libby et al., 2009). Accumulating evidence also suggests that
neuroinflammation is a hallmark of AD and several studies
have shown the existence of biomarkers of neuroinflammation,
in brain tissue of AD patients (e.g., inflammatory cytokines,
chemokines, and activated microglia (Eikelenboom et al., 2010;
Lee et al., 2010; Sudduth et al., 2013; Klohs et al., 2014; Morales
et al., 2014; Hoeijmakers et al., 2017). Epidemiological studies
have also shown that long-term consumption of non-steroidal
anti-inflammatory drugs inhibits the progression of AD and
delay its onset, suggesting that there is a significant relation
among AD pathogenesis and neuroinflammation (Holmes et al.,
2009; Lee et al., 2010) (Figure 1).

INFLAMMATION AND COGNITIVE
IMPAIRMENT IN DEMENTIA

Cognitive aging is a generic concept, with more than 100 diseases
leading to dementia (Vijayan and Reddy, 2016), while we
discussed the three specific inflammatory domains including
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neuroinflammation supported by three types of dementia such
as POCD, VD, and AD. Our proposed model can be applied
to other types of pathological cognitive aging, as well. It
also seems plausible to hypothesize high commonality in the
three inflammatory domains outlined across cognitive aging
(particularly chronic neuroinflammation which is common
feature of all dementias). As we discussed earlier, the specific
inflammatory hallmark in each dementia varies depending on
the type of dementia. We now focus on some of these issues in
more detail.

The involvement of cellular senescence and inflammatory
process via complex molecular and cellular processes occur
in neurons and gilal cell in PD and MS patients have been
reviewed previously by Kritsilis et al. (2018). Neuroinflammation
is one of the mechanisms involved in PD-cognitive impairment.
Elevation in cortical microglia activation has been reported in
11 PD-dementia patients, using biological parametric mapping
analysis (Fan et al., 2015). Cerebrospinal fluid level of
cytokines was observed to be correlated with PD-cognitive
impairment (Lindqvist et al., 2013). Petrou et al. (2016) found
correlations among diabetes, gray matter loss and PD-cognitive
impairment using magnetic resonance imaging in 36 patients,
possibly due to neuroinflammation caused by mitochondrial
dysfunction (Aviles-Olmos et al., 2013; Petrou et al., 2016). In
a human study by Hall et al. (2018), inflammatory biomarkers
such as CRP and serum amyloid A in cerebrospinal fluid
were higher in PD-dementia elderly individuals compared to
elderly individuals without PD. In addition, inflammation was
associated with more motor symptoms and cognitive decline
(Hall et al., 2018).

MS is an inflammatory neurodegenerative disease of the CNS
mainly effecting young adults. In this condition, infiltrating
myelin-reactive lymphocytes (mainly T-cells but also B-cells)
attack axon antigens andmyelin sheaths on oligodendrocytes and
neurons in the CNS. These insults cause a neuroinflammatory
cascade, formation of large demyelinating plaques in the
white matter and gliosis, and synaptopathy, leading to an
impairment of the neuronal signaling and, later on to
neurodegeneration (Dendrou et al., 2015; Mandolesi et al.,
2015; Musella et al., 2018). Clinical characteristics include
motor impairments, sensory and visual disturbances, pain,
fatigue, mood disturbances and cognitive deficits (Dendrou
et al., 2015). MS patients frequently suffer from cognitive
impairment and it estimated between 40% and 65% of MS
patients tend to progress cognitive impairment gradually over
time. Cognitive impairment is present in MS patient with
progressive clinical onset compered to patients in relapsing
remitting phase (Huijbregts et al., 2004; Ruet et al., 2013;
Planche et al., 2016; Matias-Guiu et al., 2017), although some
heterogeneous results have been reported as well (Rao, 1990;
Potagas et al., 2008). In MS patients during immunosenescence
and possibly due to inflame-aging, additional inflammatory
responses cause chronic neuroinflammatory responses which
therefore significantly accelerate CNS aging (Dendrou et al.,
2015; Musella et al., 2018). Several studies have also suggested
that an exacerbation of common neuropathological aspects of
aging brain and MS such as neuroinflammatory processes,

synaptic dysfunction, cellular loss (synaptopathy) and synaptic
plasticity impairment (Di Filippo et al., 2008; Weiss et al.,
2014; Mandolesi et al., 2015; Stampanoni Bassi et al., 2017;
Musella et al., 2018), may explain the effect of aging on MS
disability. A recent study by Surendranathan et al. (2018)
reported that both neuroinflammatory responses with microglia
activation and peripheral inflammatory changes are observed
in dementia with Lewy bodies. A review by Swardfager
et al. (2018) recently indicated that an increased risk of
dementia in severe psychological disorders such as major
depressive disorder and bipolar disorder is associated with
inflammation, oxidative stress and variations in metabolic
pathways. Moreover, those pathways are involved in the
premature development of metabolic and vascular comorbidities
(Swardfager et al., 2018).

Patients who survive a stroke are also at high risk of
recurrentmicrovascular changes. Themechanisms that underpin
this process is not fully understood. A recent data showed
that stroke-enhanced atherosclerosis is induced by brain-
released biochemical which lead to vascular inflammation and
plaque formation (Rust et al., 2018). Inflammation in stroke
appear to have both beneficial and detrimental effects (Jin
et al., 2010). Chronic inflammatory response may trigger
neurotoxic pathways leading to progressive degeneration.
Damaged neurons also may exacerbate neuroinflammation-
mediated disorders by producing chemokines and activation
of microglia (Zhang and Yang, 2014). Numerous recent
longitudinal studies have examined the correlation among
inflammatory biomarkers and post-stroke dementia but a
relationship is not yet established. Erythrocyte sedimentation
rate, CRP, IL-6, IL-12 were also suggested as predictors of
post-stroke cognitive impairment (Rothenburg et al., 2010;
Narasimhalu et al., 2015). Kliper et al. (2013) showed strong
relationship between cognitive performance and erythrocyte
sedimentation rate between stroke survivors, where higher
erythrocyte sedimentation rate levels were correlated with poorer
performance in cognitive tests, particularly memory scores.
Preliminary data has also demonstrated that cortical amyloid
deposition and post-stroke white matter neuroinflammation
contribute to post-stroke dementia (Arboix et al., 2014).
Interestingly, Malojcic et al. (2017) argued that cerebral
hypoperfusion is linked to cognitive decline either as an
aggravating factor or risk factor. Hypoperfusion as a consequence
of macroangiopathy, microangiopathy, or cardiac dysfunction
may also promote or accelerate neuroinflammation, BBB
disruption and neurodegeneration.

Obesity is correlated with low grade systemic inflammation,
peripheral insulin resistance and high oxidative stress (Chunchai
et al., 2016; Saiyasit et al., 2018). Moreover, obesity can cause
neurodegeneration and cognitive impairment via induction
of hippocampal inflammation, hippocampal mitochondrial
dysfunction, hippocampal insulin resistance, and hippocampal
oxidative stress (Chunchai et al., 2016; Stranahan et al.,
2016; Saiyasit et al., 2018). These changes also are associated
with a decline in hippocampal synaptic plasticity and the
number of dendritic spines (Sa-Nguanmoo et al., 2018;
Saiyasit et al., 2018). Moreover, obesity induced through high-
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fat-diet consumption, leads to an elevation in amyloid plaque
formation and neuronal cell death (Kothari et al., 2017; Pintana
et al., 2017). Growing evidence demonstrates a close relationship
among type 2 diabetes Mellitus and neurodegenerative diseases
such as AD. They share several pathological characteristics
comprising inflammation, oxidative stress, brain vasculopathy,
impaired insulin sensitivity, tau hyper-phosphorylation, and
amyloid accumulation (Tumminia et al., 2018). Riederer et al.
(2017) posited that peripheral inflammatory biomarkers in
diabetes mellitus can pass BBB and initiate neuroinflammation
and microglia activity, thus contributing to the pathophysiology
of AD and VD.

There is also data that supports the notion that a
reduction in vascular functions and brain metabolism
occur decades before the onset of cognitive impairments
and these reductions are highly associated with chronic
neuroinflammation that develop over time. Crucially, recent
findings suggest that the gut microbiota (GMB) play a vital
role in modulating immune reactions in the brain through
the brain-gut axis (Hoffman et al., 2017). Some recent data
has indicated that a specific subset of the GMB can stimulate
neuroinflammation in rodents (Erny et al., 2015; Palm et al.,
2015; Petra et al., 2015) and influence brain function and
behavior in rodents and humans (Li et al., 2009; Bercik et al.,
2011; Diaz Heijtz et al., 2011). A study by Hoffman et al.
(2017) found that inflammation influences neurovascular
function, brain metabolism, gut microbiome, memory and
anxiety in aging mice. Interestingly, a study by Cattaneo
et al. (2017) in elderly humans indicated that an elevation
of a proinflammatory GMB taxon, Escherichia/Shigella,
and a decrease in the abundance of an anti-inflammatory
taxon, E. rectale, are correlated with systemic inflammatory
biomarkers in patients with cognitive impairment and brain
amyloidosis. This finding is in line with the hypothesis that
GMB composition may drive peripheral inflammation, leading
chronic neuroinflammatory responses, brain amyloidosis and
probably, neurodegeneration and cognitive decline in AD
(Cattaneo et al., 2017).

PHARMACOLOGICAL APPROACHES

Current treatment paradigms for neurodegenerative disorders
such as dementia are limited by their significant side-effects and
poor long-term efficacy, creating an essential need to develop
preventative therapies that target common pre-symptomatic risk
factors such as inflammation and oxidative stress. There are
a large number of pharmacological agents applied to improve
cognitive decline bymanaging inflammation and oxidative stress;
however, in this section we briefly summarize the key published
studies on this topic (Herman et al., 2018).

Phytochemicals are able to interfere with the NF-κB pathway
and manage inflammation. They suppress the ubiquitination or
phosphorylation of signaling molecules, and therefore, supress
the degradation of IκB. The translocation of NF-κB to the
nucleus and subsequent transcription of pro-inflammatory
cytokines are suppressed via the actions of phytochemicals. In
addition, natural bio-compounds that prevent the interaction

of NF-κB can block NF-κB’s transcriptional activity by
suppressing its binding to target DNA. Several polyphenols
such as curcumin, pterostilbene, resveratrol, macranthoin
G, punicalagin, salidroside, 4-O-methylhonokiol, genistein,
lycopene, gallic acid and obovatol have been reviewed as
potent NF-κB inhibitors for AD treatment by Seo et al.
(2018). Several alkaloids including galantamine, tetrandrine,
glaucocalyxin B, oridonin, berberine, anatabine have also
shown anti-inflammatory properties in AD models in vitro
as well as in vivo. Moreover, vitamins (such as vitamin-D,
alfa-Tocopherol quinine, Retinoic acid), artemisinin, tanshinone
IIA, geniposide, dihydroasparagusic acid, xanthoceraside, 1,8-
cineole, L-theranine, and paeoniflorin were posited as promising
NF-κB inhibitors (Seo et al., 2018).

An interesting review by Skvarc et al. (2018) has summarized
several novel therapies with common anti-inflammatory
properties in different stages of preclinical and clinical levels as
therapeutic targets to deal with POCD such as Parecoxib/COX-II
inhibitors, Statins, Pregabalin, Dexmedetomidine, Lidocaine,
Ketamine, Minocycline, and N-Acetylcysteine.

Vinpocetine [14-ethoxycarbonyl-(3a,16a-ethyl)-14,15-
eburnamine] is a synthetic derivative of vinca alkaloid vincamine
which is an alkaloid extracted from the periwinkle plant,
Vinca minor (Gulyás et al., 2002a,b). Currently, vinpocetine
is available in many countries as a dietary supplement to
improve cognition and memory. Moreover, it has been clinically
used in several countries for treatment of cerebrovascular
disorders such as stroke and dementia. Zhang et al. (2017) has
argued that vinpocetine is a potent anti-inflammatory agent
based on different in vitro cell culture models. By directly
suppressing IKK activity, and enhancing the stability of IκB,
that leads to binding of IκB with NF-κB and subsequent
suppression of NF-κB dependent inflammatory molecule
expression (Jeon et al., 2010; Zhang et al., 2017). Vinpocetine
can penetrate the BBB and enter the brain (Gulyás et al.,
2002a,b). The anti-inflammatory effects of vinpocetine has
also been demonstrated in several animal models in vivo.
In a rat cerebral ischemia-reperfusion injury model, NF-κB
and TNF-α level were found to be correlated with changes
in brain edema and infarct volume. Vinpocetine suppressed
NF-κB and TNF-α expression and reduced the inflammatory
response after cerebral ischemia-reperfusion (Wang et al., 2014).
More importantly, the anti-inflammatory effect of vinpocetine
was recently reported in a study involving 60 patients with
anterior cerebral circulation occlusion and onset of stroke
(Zhang et al., 2018). Participants treated with vinpocetine not
only had a better recovery of psychoneurological function
and improved clinical outcomes, but also had reduced NF-κB
signaling activation and pro-inflammatory biomarker expression
(Zhang et al., 2017).

A recent review byMasoumi et al. (2018) has also summarized
evidence for the hypothesis that Apelin neuropeptide is an
effective and comprehensive therapeutic agent to improve
cognitive function in AD, and unlike current therapies, can
influence a broad range of molecular mechanisms involved
in AD pathogenesis. Apelin reduces the accumulation of
Aβ and decreases phosphorylation and accumulation of tau
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protein. Apelin also prevents neurodegeneration by suppressing
production of inflammatory mediators, especially TNF-α,
IL-6 and IL-1β, which plays an important role during
neuroinflammatory process and the pathogenesis of AD. Apelin
can modulate N-methyl D-aspartate receptors and therefore
decrease excitotoxicity and death of neurons and prevents
neuronal apoptosis. In addition, it exhibited high antioxidant
properties preventing free radicals and ROS productions. Apelin
also enhances synaptic plasticity of the neurons, and improves
cognitive function and memory by increasing factors such as
endothelial nitric oxide, angiotensin converting enzyme-2 and
Glucagon-like peptide-1 (Masoumi et al., 2018). Also see other
reviews on this topic (Rodriguez-Grande et al., 2017; Solas
et al., 2017; Meeusen and Decroix, 2018; Zhong et al., 2018;
Fish et al., 2019).

LIMITATIONS AND FUTURE RESEARCH

Studies examining the involvement of the three main
inflammatory types posited by us in this review (inflame-
aging, vascular inflammation, and neuroinflammation) in
cognitive processes are mainly hampered by the lack of direct
studies involving humans. While animal studies help us
understand the cellular and molecular mechanism of cognition,
human clinical studies are still needed given the differences in
complexity and range of cognition that can be studies between
animals and humans. Another major limitation of the current
literature is that there are only a few sensitive biomarkers for
inflammation in humans with the available markers specifically
reflecting molecular and cellular processes rather than brain
related inflammation. Another challenge in studying the
biological processes that underpin cognitive aging are that
processes such immunosenescence and chronic inflammation
have a progressive and time dependent nature, which require
observation over a long time. This is obviously, expensive from

a clinical perspective. Cognitive aging itself is a complex and
multifactorial disorder, which requires the investigation of
diverse molecular and cellular processes.

CONCLUSION

In developed countries, there is a significant increase in the
proportion of older citizens. Increasing number of older citizens
pose a number of critical issues for our societies including
increased cognitive aging, increased numbers of patients with
AD and a loss of independence and reliance on social security.
Therefore, a better understanding of the role of processes such
as inflammation in cognitive and brain aging is important.
Immunosenescence is a pathological phenomenon and a central
concept that brings together our understanding of age-associated
chronic disorders, functional decline and aging across the
lifetime. A better understanding of the cellular and molecular
mechanisms underlying brain aging, as well as their potential
interactions, provides a growing list of factors that can be targeted
for specific interventions aimed to prevent or delay cognitive
decline associated with aging. Future studies on the role of
inflammation during cognitive aging are necessary and would
benefit from directly addressing the three types of inflammation
described in this review article.
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