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BAIT: A New Medical Decision Support

Technology Based on Discrete Choice Theory

Annebel ten Broeke, Jan Hulscher, Nicolaas Heyning,

Elisabeth Kooi, and Caspar Chorus

We present a novel way to codify medical expertise and to make it available to support medical decision making.
Our approach is based on econometric techniques (known as conjoint analysis or discrete choice theory) developed
to analyze and forecast consumer or patient behavior; we reconceptualize these techniques and put them to use to
generate an explainable, tractable decision support system for medical experts. The approach works as follows: using
choice experiments containing systematically composed hypothetical choice scenarios, we collect a set of expert deci-
sions. Then we use those decisions to estimate the weights that experts implicitly assign to various decision factors.
The resulting choice model is able to generate a probabilistic assessment for real-life decision situations, in combina-
tion with an explanation of which factors led to the assessment. The approach has several advantages, but also poten-
tial limitations, compared to rule-based methods and machine learning techniques. We illustrate the choice model
approach to support medical decision making by applying it in the context of the difficult choice to proceed to sur-
gery v. comfort care for a critically ill neonate.
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Medical decision making is characterized by a high
degree of complexity, uncertainty, and time pressure.
Many decisions also entail ethical dilemmas. As a conse-
quence, a variety of medical decision support systems
have been developed.1–5 These can be classified into
knowledge-based and non-knowledge-based systems.6

The former require that experts perform the very difficult
task of explicating their tacit knowledge into determinis-
tic rules; furthermore, such rule-based systems struggle
with capturing the subtleties that are present in real-life
contexts. Non-knowledge-based systems require vast
amounts of historical data, on which machine learning
models are trained to extract implicit relations; these
models are opaque, hampering interpretability and
accountability.

We present a third way to capture and codify medical
expertise (which we colloquially define here as ‘‘knowing
what to do in a certain situation, and being able to

explain why’’) and to make it available to support medi-
cal decision making. Our approach, called Behavioral
Artificial Intelligence Technology (BAIT), uses choice
analysis techniques traditionally employed to identify
preferences of large groups of consumers, citizens, or
patients and to make predictions regarding their future
choice behavior.7–9 We reconceptualize these econo-
metric techniques and put them into practice for codify-
ing the expertise of small groups of experts and
supporting their decision making. The objective of BAIT
is to make accessible to an expert or group of experts the
combined expertise of their peers in the context of a
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particular decision problem. To illustrate the workings
of BAIT, we focus on one of the most difficult (moral)
choices in medicine: to proceed to surgery v. comfort
care for a critically ill neonate.10,11

Methods

How Does BAIT Work?

First, together with 2 to 4 experts, the expert decision is
specified (e.g., perform surgery or not in the context of a
particular medical situation and patient profile), and fac-
tors are identified that presumably play a role in making
that expert decision (e.g., gestational age). Then, for each
factor, relevant ranges are determined indicating mini-
mum and maximum values of the factor-values (e.g., 24–
30 weeks for gestational age). Constraints are specified to
preclude combinations of factor-values that are impossi-
ble or highly unlikely to occur in real life. Note that some
factors may require no additional investigator manipula-
tion (gestational age, sex) while some would require a
predetermined way of being defined (e.g., progress since
birth pre–necrotizing enterocolitis [NEC]).

Second, the structure of the choice model is deter-
mined; for example, it is decided if nonlinear weights are
to be accommodated (e.g., a decreasing or increasing
marginal importance) and/or interaction effects (i.e., an
additional positive or negative weight assigned to a
particular combination of factor-values). Depending
on the situation, different choice model types can be
specified such as binary or multinomial, nested, or (panel)
mixed logit models12,13 or models based on alternative

behavioral theories such as regret-minimization or taboo
tradeoff-aversion.14,15

Third, a choice experiment is designed and implemen-
ted, in which the group of experts is invited to make a
series of hypothetical choices based on scenarios mimick-
ing the real decision situation. Different types of choice
experiments can be used,16 depending on the specificities
of the decision. In our case, a so-called single conjoint is
used, which asks respondents a yes/no question in the
context of a specific patient-context profile. Another
option could be a choice from a multinomial set of can-
didates (e.g., in the context of triage). Each scenario is
specified in terms of a different combination of values
taken from the prespecified decision-factors and ranges,
taking into account relevant constraints. Crucially, using
so-called efficient design techniques, scenarios are con-
structed such that each choice generates a maximum
amount of information.16

Fourth, the observed choices are used to estimate the
importance weights of all factors, including their signs
(positive or negative) and any nonlinear curvatures (e.g.,
concavity or convexity), using maximum likelihood tech-
niques.12,13 This process involves comparing the model
predictions to the actual choices made by the experts. By
iteratively adjusting the weights embedded in the model,
increasingly accurate choice probability predictions are
generated, until no further improvements can be made.
The final model’s empirical performance is tested by
means of various model fit metrics.

In a fifth step, results are presented back to the
experts. Factor weights are visualized, showing how each
factor contributes to the experts’ decisions in the experi-
ment. In addition, the choice model equipped with the
estimated weights is used to assess particular artificial
choice situations, including cases that were not included
in the choice experiment. Generated assessments take the
form a probability statement—for example, ‘‘The prob-
ability that an expert that is randomly sampled from the
expert group would recommend (to the patient’s parents)
to perform surgery on a patient with this profile equals
18%.’’ In conjunction with the probabilistic assessment,
color coding is used to highlight which factors had a pos-
itive or negative contribution to the assessment.

Case: Whether or Not to Operate on a
Premature Neonate with NEC

NEC is a devastating intestinal disease, mainly occurring
in (very) preterm neonates.17,18 Due to improved survival
of the most preterm infants, NEC incidence is rising.19 For
some 30% to 40% of preterm infants with a diagnosis of
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NEC, emergency abdominal surgery is necessary. In these
cases, children will succumb when surgery is withheld.
However, perioperative mortality rates can reach 50%,
and long-term morbidity, such as neurodevelopmental def-
icits and gastrointestinal complications, occurs in over
75%.20 Each case therefore presents the treating medical
team as well as the parents with the dilemma of whether
proceeding to surgery will still be in the child’s best inter-
est.18 We focus on the moment where the clinician gives a
final recommendation to parents. At this point, parents
have developed a preference for surgery or comfort care
(or they may be in doubt).

This study was waived for ethical approval by the
university medical centre groningen (UMCG) ethical
board (METc 2020/245). Note that in the context of
this article, the aim of this small-scale case study is to
illustrate the workings of BAIT as a technical innova-
tion, as opposed to presenting new insights into the
decision making process of local medical professionals
regarding their response to NEC cases.

Results

Two pediatric surgeons and 2 neonatologists selected 14
factors with their ranges (see Table 1), which were subse-
quently combined into 35 choice scenarios (see Figure 1
for an example).

These were assessed by 15 experts (11 neonatologists
and 4 surgeons). The estimated model obtained a good

level of fit, as indicated by a McFadden’s r2 of 0.32.
Choice probabilities predicted by the estimated model

Table 1 Decision Criteria and Ranges

Factor Level 1 Level 2 Level 3 Level 4

Gender Boy Girl
Gestational age 24 wk 26 wk 28 wk 30 wk
Birth weight 500 g 650 g 800 g 1500 g
Perinatal asphyxia Yes Dubious No
Congenital comorbidity Present with high impact Present with minor impact Absent
Progress since birth
before NEC diagnosis

Serious complications Minor complications No complications

Postnatal age 0–7 d 7–14 d 14–21 d
Weight increase since birth Weak Intermediate Good
Interpretation of
cerebral ultrasound

Bad prognosis Intermediate prognosis Good prognosis

Lung function Weak Intermediate Good
Hemodynamic status Unstable despite maximal support Stable with support Stable without support
Cerebral oxygen
saturation (NIRS)

40 60 80

Parental preferences In favor of comfort care Doubtful about surgery In favor of surgery
Estimated parental capacities
regarding future care

Weak Intermediate Good

NEC, necrotizing enterocolitis; NIRS, near infrared spectroscopy.

Figure 1 Example choice scenario.
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closely resemble the observed empirical relative frequen-
cies: the mean absolute deviation equals 4.5 percentage
points, implying that, for the average choice scenario,
the predicted probability of a recommendation to oper-
ate was only 4.5 percentage points higher or lower than
the observed relative frequency of choices made by the
group of experts. Most factors turn out to have a linear
effect on decisions, while some exhibit a nonlinear shape;
weights are shown in Table 2.

As shown in Figure 2, 5 factors together make up
three-quarters of the total importance of all factors com-
bined. Parental preference, ranked fourth, makes up
13% of total importance. Figure 3 shows an example of
an assessment generated by the model that was equipped
with the estimated importance weights.

Discussion

BAIT presents a clear alternative to conventional appro-
aches. In contrast to rule-based or knowledge-based

methods, BAIT uses choices to identify expertise rather
than asking experts to explicate their expertise directly.
This indirect process is aligned with the notion that
humans find it very difficult to explain why they made a
certain decision,21 especially when this involves moral
judgment.22 Also, BAIT results in a flexible model that
leads to choice probability predictions rather than attempt-
ing to capture the subtle tradeoffs of medical decision
making into deterministic rules.

In contrast to machine learning models trained on his-
toric data, BAIT offers a simple and explainable decision
model: weights have an unambiguous meaning, and with
help of color coding, it becomes clear immediately which
combination of factors led to a particular decision.
Furthermore, the choice experiment, being based on
hypothetical scenarios, avoids data protection–related
issues that may surface in the context of historic data.

In terms of a potential limitation of BAIT compared
to rule-based expert systems such as clinical practice
guidelines, we note that our approach relies on the ability

Table 2 Estimation Factor Weights.a

Factor Level Weight (P Value)

Sex Boy 0
Girl 0.020 (0.96)

Gestational age 24 wk 0
26 wk 1.656 (\0.001)
28 wk 1.851 (\0.001)
30 wk 2.859 (\0.001)

Birth weight 500 g 0
650 g 1.238 (0.003)
800 g 1.835 (\0.001)
1500 g 2.507 (\0.001)

Perinatal asphyxia 0.452 (0.053)
Congenital comorbidity Present with high impact 0

Present with minor impact 0.944 (0.002)
Absent 1.752 (\0.001)

Progress since birth before NEC diagnosis 0.230 (0.25)
Postnatal age 0.250 (0.28)
Weight increase since birth 0.183 (0.36)
Interpretation of cerebral ultrasound Bad prognosis 0

Intermediate prognosis 1.798 (\0.001)
Good prognosis 2.782 (\0.001)

Lung function 0.204 (0.29)
Hemodynamic status 0.279 (0.144)
Cerebral oxygen saturation (NIRS) 0.430 (0.046)
Parental preferences In favor of comfort care 0

Doubtful about surgery 1.729 (\0.001)
In favor of surgery 2.154 (\0.001)

Estimated parental capacities regarding future care 0.216 (0.28)
Constant 28.830 (\0.001)

NEC, necrotizing enterocolitis; NIRS, near infrared spectroscopy.
aDecision: recommendation to operate (1) or not (0). Model: binary logit, estimated as binary logistic regression (using SPSS). Number of

observations (N) = 525. Null log-likelihood = 2364. Log-likelihood of estimated model = 2245. McFadden’s r2 = 0.32.
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of those experts who participate in the choice experiment,
to assess, interpret, and balance a variety of factors and
their potential risks for patient health and well-being. In
light of the fact that even experienced medical experts

may have difficulties assessing such risks,23–25 this may be
considered a tall order. In a worst-case scenario, any mis-
judgment (or skew within the range of acceptable judg-
ments) captured by BAIT in the choice experiment phase
might carry over in the subsequent real-life decision mak-
ing of experts, as their choices could be unduly influenced
by the output of the decision support system. Indeed,
more classical rule-based approaches such as the ones
embedded in conventional guidelines and protocols may
be considered less vulnerable to flaws and cognitive biases
from the side of individual experts. We see several ways
in which this potential problem of bias carryover can be
reduced. First, the selection of experts participating in the
choice experiment should be done very carefully; a trade-
off needs to be made here, between the need to select
(only) experts with very high levels of expertise, while also
ensuring that the group is large enough to avoid a situa-
tion where one expert’s misjudgment has an outsized
effect on the model. Second, when the size of the pool of
experts allows for this, it may be recommended to have
experts perform the choice experiment in pairs (e.g., in
our case, coupling a neonatologist to a surgeon), to allow
for a discussion and balancing of opinions. Third, the
very nature of BAIT suggests that in most contexts, it
should best be used as a decision support system, as
opposed to offering guidance.26,27 Concretely, BAIT is
able to predict, in a given real-life choice situation, what
decision would be made by which share of the expert
pool. This, we expect, is very helpful to experts, but it
does not equate to the use of a protocol or a set of rules
and guidelines. In fact, such protocols and guidelines in

Figure 2 Relative importance of decision criteria.

Figure 3 Example of an assessment generated by the model.
Green color coding: the value for this factor contributed
positively to the assessment. Red color coding: the value for
this factor contributed negatively to the assessment. No/
transparent color coding: the value for this factor did not
contribute positively or negatively to the assessment.
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our view can and should coexist with BAIT, the former
being more prescriptive (focusing on what the individual
expert ‘‘should’’ do) and the latter being more descriptive
(focusing on what the pool of experts ‘‘would’’ do). Fur-
ther research into the potential use of BAIT in real life is
certainly recommended, to shed more light on this subtle
distinction between decision guidance and decision sup-
port and how it affects expert decision making and learn-
ing in day-to-day medical practice.

Future research should focus on dynamic applications
where the system is being updated with each new ‘‘real-
life’’ choice made.

Another interesting avenue for further research is to
study the transferability of expertise from one group of
experts to another (e.g., in a different hospital). It should
be noted here that our current application focused on a
local and rather homogeneous group of experts; while this
ensures that the resulting model is representative for the
local situation, it does create potential risks of tunnel vision
and bias carryover (see above). The application of BAIT
on a larger scale (e.g., involving a choice experiment that is
implemented among peers nationwide) could reduce such
risks and hence deserves to be looked at in future studies.
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