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Abstract

Major depressive disorder (MDD) as a dysfunction of neural circuits and brain net-

works has been established in modern neuroimaging sciences. However, the brain

state transitions between MDD and health through external stimulation remain

unclear, which limits translation to clinical contexts and demonstrable clinical utility.

We propose a framework of the large-scale whole-brain network model for MDD

linking the underlying anatomical connectivity with functional dynamics obtained

from diffusion tensor imaging (DTI) and functional magnetic resonance imaging

(fMRI). Then, we further explored the optimal brain regions to promote the transition

of brain states between MDD and health through external stimulation of the model.

Based on the whole-brain model successfully fitting the brain state space in MDD

and the health, we demonstrated that the transition from MDD to health is achieved

by the excitatory activation of the limbic system and from health to MDD by the

inhibitory stimulation of the reward circuit. Our finding provides novel biophysical

evidence for the neural mechanism of MDD and its recovery and allows the discovery

of new stimulation targets for MDD recovery.
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1 | INTRODUCTION

Individuals can be devastated by neuropsychiatric diseases, which

are an increasing and major health burden for society. With a lifetime

prevalence of 17%, major depressive disorder (MDD) is the main

cause of years lost to disability worldwide, and it is expected to be

the leading contributor to the global burden of illness by 2030

(Geneva: World Health Organization, 2008; Hock et al., 2012).

Benefiting from modern neuroimaging techniques, new findings

regarding the structure and function of the human brain provide the

most direct information for understanding the neurological mecha-

nisms of mood disorders (Delvecchio et al., 2020; Yan et al., 2019;

Zhang et al., 2018; Zhuo et al., 2019). For example, a recent study

using the REST-meta-MDD Consortium dataset (which included

1300 patients with depression and 1128 healthy controls from

25 cohorts in China) discovered that decreased functional connectiv-

ity (FC) of the default mode network (DMN) in MDD patients was a

potential biomarker linked to symptom severity and current medica-

tion treatment. This finding suggests that the dysfunction connectiv-

ity of DMN remains a prime target for understanding the

pathophysiology of depression, with particular relevance to revealing

the mechanisms of effective treatments (Yan et al., 2019). Therefore,

advances from modern neuroimaging sciences suggest excellent

potential as reliable indices to aid in the diagnosis and treatment

planning of MDD (Woo et al., 2017).

Based on network science, the brain system, as well as its interac-

tions with other complex systems, may be described by the mathe-

matical theory of graphs (Bullmore & Sporns, 2009; den Heuvel

et al., 2010; den Heuvel et al., 2013). By generating the detailed struc-

tural and functional maps of the human brain network, we can sketch

the network architecture underlying and enabling cognition and fur-

ther identify their alterations in neurological and psychiatric disorders

(Bassett & Bullmore, 2009; Fornito & Bullmore, 2015; Medaglia

et al., 2015; Petersen & Sporns, 2015). Numerous studies based on

network science provided exciting new insights into disrupted net-

work structures of the human brain for MDD and further suggested

network analysis has emerged as a highly promising approach for

probing the underlying biological mechanisms of MDD (Ma

et al., 2020; Nixon et al., 2014; Yang et al., 2021). Recent reviews sug-

gest that abnormal communication within and between brain struc-

tural and functional networks underscores the complex

psychopathology observed in MDD (Brakowski et al., 2017; Dai

et al., 2019; Dunlop et al., 2019; Kerestes et al., 2014; Nixon

et al., 2014). Particularly, the connectivity of limbic structures, salience

network, DMN, and central executive network (CEN) give rise to

diverse domains of abnormal behavior, including rumination, cognitive

control deficits, and anhedonia in MDD. Additionally, the latest study

from 16 cohorts regarding MDD observed the disrupted topological

structure of functional brain networks in MDD, suggesting decreased

brain network efficiency locally and globally (Yang et al., 2021).

Despite substantial evidence have indicated that MDD can be charac-

terized as dysfunctions of circuits and networks of the human brain

(Bora et al., 2012; Rubinov & Bullmore, 2013; Yang et al., 2021), the

translation of these findings to clinical contexts and demonstrable

clinical utility is still in its infancy. One of the major challenges stems

partly from the fact that the current approaches are largely descriptive

and lack a mechanistic account of the circuit function of the human

brain (Braun et al., 2018). And addressing this challenge is critical for

the prospective development of interventions and treatments for

depressive disorders and even for enhancing cognitive function in

psychiatric disorders.

Inspired by the success of modern physics, the mechanistic

whole-brain model of the underlying brain dynamics seems to have

emerged as a possible way to overcome this challenge (Deco, Ponce-

Alvarez, et al., 2014; Demirtaş et al., 2019; Ghosh et al., 2008;

Kringelbach et al., 2020; Kringelbach & Deco, 2020). Linking anatomi-

cal structures with functional dynamics, the whole-brain model can

simulate brain dynamics to discover the mechanistic principles of the

human brain in both health and disorder. Recent studies have indi-

cated that the whole-brain model successfully explains the patterns of

spontaneous interregional functional activity correlations

(Breakspear, 2004; Deco et al., 2010; Deco, McIntosh, et al., 2014).

Meanwhile, these enhanced descriptions of brain activity are not only

useful for understanding the human healthy brain but have great

potential to help support diagnosis and therapeutic interventions in

disease states (Deco & Kringelbach, 2014; Gilson et al., 2020). The

whole-brain model has proven to be useful for clinical conditions of

neurological and psychiatric disorders, such as stroke (Adhikari

et al., 2017), epilepsy (Hashemi et al., 2020), and brain tumors (Aerts

et al., 2020). It is more noteworthy that the whole-brain model can be

used to probe how the input affects neural dynamics, which would

allow for the potential prediction of interventions to rebalance dis-

eased brain states (Deco et al., 2019; Kringelbach & Deco, 2020).

Recent studies adopted the whole-brain model to fit the probabilistic

metastable substate (PMS) space of the two radically different brain

states of human sleep and wakefulness and then to investigate the

most suitable stimulation of this whole-brain model to force transi-

tions between different brain states (Deco et al., 2019). Therefore, the

whole-brain model will allow us to address a fundamental question

regarding how brain transitions occur between health and depressive

disorders.

Here, we propose a simple framework of the whole-brain net-

work in MDD linking the underlying anatomical connectivity with

functional dynamics obtained from diffusion tensor imaging (DTI)

and functional magnetic resonance imaging (fMRI). We con-

structed a structural brain network based on DTI, in which nodes

represented the region of the anatomical automatic labeling (AAL)

atlas, and edges represented quantitative anisotropy between

these regions estimated from diffusion tractography. Based on this

structural network, we built a large-scale whole-brain model with a

dynamic mean-field (DMF) model, optimized to successfully fit the

respective brain state space of the health and MDD defined by

fMRI. Finally, using the whole-brain model, we probed the optimal

brain regions to promote the transition of brain states between

participants with MDD and healthy controls through excitatory or

inhibitory external stimulation of the whole-brain dynamic model.
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2 | MATERIALS AND METHODS

2.1 | Participants and MRI acquisition

One hundred twenty-seven participants with MDD (83 females and

44 males, mean age, 38.32 ± 13.76 years, age range, 12–74 years)

and 117 age- and sex-matched healthy participants (74 females and

43 males, mean age, 38.89 ± 14.14 years, range, 19–72 years) were

recruited from the First Affiliated Hospital of Chongqing Medical

School. All subjects independently underwent a diagnostic inter-

view conducted by experienced psychiatrists according to the

Structured Clinical Interview for the Diagnostic and Statistical

Manual of Mental Disorders, 2nd edition, for Axis I Disorders. The

main exclusion criteria were derived from previous studies (Cheng,

Rolls, Qiu, Yang, et al., 2018; Wei et al., 2019). Depression severity

was rated using the Hamilton Depression Scale and Hamilton Anxi-

ety Scale by interview and self-report scales in the Beck Depres-

sion Inventory-II. Additionally, our study design was approved by

the Institutional Review Board of Chongqing Medical University

and performed in accordance with the principles of the Declaration

of Helsinki. Written informed consent was obtained from all

participants.

2.2 | Structural and functional MRI acquisition

Structural and functional MRI images were acquired on a 3 T Sie-

mens Trio MRI scanner using a 12-channel whole-brain coil

(Siemens Medical, Erlangen, Germany) in the First Affiliated Hospital

of Chongqing Medical School. Diffusion tensor imaging (DTI), high-

resolution 3D T1-weighted image, and resting-state fMRI were

acquired for each participant. DTI data were acquired with spin-

echo diffusion-weighted echo-planar imaging with the following

parameters: repetition time (TR) = 11,000 ms, echo time (TE) =

98 ms, inversion time = 900 ms, reconstructed image matrix =

128 � 124, field of view (FOV) = 256 � 248 mm2, slice

thickness = 2 mm with no interslice gap, voxel size =

2 � 2 � 2 mm2, 60 axial slices. Diffusion MRI images were obtained

from 61 noncollinear directions with a b value of 1000 s/mm2 and

an additional image without diffusion weighting (i.e., b = 0 s/mm2).

High-resolution 3D T1-weighted imaging were acquired using

magnetization-prepared rapid acquisition gradient-echo sequence

(MPRAGE) with the following parameters: TR = 1900 ms,

TE = 2.52 ms, inversion time = 900 ms, flip angle = 9�, recon-

structed image matrix = 256 � 256, FOV = 200 � 200 mm2,

176 axial slices; slice thickness = 1 mm; voxel

size = 1 � 1 � 1 mm3. Resting-state fMRI was acquired using an

echo-planar imaging (EPI) sequence with the following parameters:

TR = 2000 ms; TE = 30 ms; flip angle = 90�; reconstructed

matrix = 64 � 64; FOV = 220 � 220 mm2. The 32 axial slices; slice

thickness = 3 mm; voxel size = 3 � 3 � 3 mm3, 242 volumes lasting

for 484 s. During scanning, participants were instructed to keep

their eyes closed, relax, and move as little as possible.

2.3 | Structural and functional MRI processing

Preprocessing of DTI and resting-state fMRI data was performed

according to the standard preprocessing steps. In particular, DTI data

processing was carried out using the FMRIB's Diffusion Toolbox (FDT

2.0) with FSL v4.1 (http://www.fmrib.ox.ac.uk/fsl). The default param-

eters of this imaging preprocessing pipeline were used for all partici-

pants. Then, structural connectivity maps or structural brain networks

were generated for each participant involving the following step:

(1) regions of the whole-brain network were defined using the AAL

atlas (considering only the 90 cortical and subcortical noncerebellar

brain regions), as used in the resting-sate fMRI; (2) probabilistic tracto-

graphy was used to estimate the connections between regions of the

whole-brain network; (3) three group-averaged structural connectivity

maps were respectively obtained across all subjects, across all MDD

participants, and across the healthy controls.

Meanwhile, resting-state fMRI data preprocessing was performed

using statistical parametric mapping (SPM8) (https://www.fil.ion. ucl.

ac.uk/spm/) and Data Processing & Analysis for Resting-state Brain

Imaging (DPABI) (http://rfmri.org/dpabi) (Yan et al., 2016). The pre-

processing steps included the following steps: (1) removing the first

10 time points; (2) temporal and head motion correction; (3) normaliza-

tion to the standard space of Montreal Neurological Institute (MNI);

(4) spatial smoothing using Gaussian kernel with a full width at half

maximum = 4 mm; (5) temporally band-pass filtering with 0.01–

0.08 Hz; (6) regressing out nuisance signals (including 24-parameter

head-motion profiles, mean white matter [WM], and cerebrospinal

fluid [CSF] time series). Finally, the averaged blood-oxygenation-level-

dependent (BOLD) time series from 90 regions of interest (ROIs) were

extracted using the AAL atlas.

2.4 | Leading eigenvector dynamics analysis

To capture the amount of interregional BOLD signal synchrony at any

given time point, we first extracted the averaged BOLD time series

from all voxels within regions defined in the AAL atlas for all partici-

pants (including 127 MDDs and 117 healthy controls), and Hilbert

transformed the averaged BOLD time series to yield the phase evolu-

tion of the regional signals (Figure 1a). Then, a time-resolved dynamic

FC matrix was defined using the BOLD phase coherence connectivity,

and the corresponding time-resolved leading eigenvector across time

points and subjects (including 232-time points for each subject) was

computed. The time-resolved leading eigenvector can capture the

dominant connectivity pattern of the dynamic FC matrix at a given

time (Figure 1b). In particular, the phase coherence connectivity

between each pair of brain regions is given by (Deco et al., 2019):

dFC i, j,tð Þ¼ cos θ i,tð Þ�θ j,tð Þð Þ ð1Þ

where the BOLD phase θ i,tð Þ at a region i is estimated using the Hil-

bert transform for each regional BOLD time series. In addition, the

leading eigenvector at each time point was calculated to reduce the
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dimensionality of the coherence matrix, which can capture the instan-

taneous dominant connectivity pattern for each time point. Next,

based on the leading eigenvector of the phase coherence matrix for

each time point, the PMS space was defined by the k cluster cen-

troids, which were obtained from the time-resolved leading eigenvec-

tors across the time points and subjects using k-means clustering

algorithm (Figure 1c). Notably, the number of PMSs present is a free

parameter and the optimal number of clusters in our study was k¼3

according to the Silhouette index and the minimal p value for signifi-

cant differences between probabilities between MDD patients and

healthy controls.

Finally, following the identification of metastable substates, the

probability of occurrence of each FC state was computed for all sub-

jects. The probability of occurrence or fractional occupancy is simply

the ratio of the number of epochs assigned to a given cluster centroid

divided by the total number of epochs (TRs) in each group. Differences

in probabilities of occurrence were statistically assessed between MDD

patients and healthy controls using a two-tailed two-sample t-test with

a significance threshold of p = .05 and Bonferroni correction.

2.5 | Whole-brain computational model
construction and optimization

2.5.1 | Whole-brain DFM model construction

Based on the characteristics of the brain states using the leading

eigenvector dynamics analysis (LEiDA) method, we propose a compu-

tational framework for the large-scale whole-brain model to generate

such brain states to promote or force the transition between states.

Briefly, we adopted the biophysics-based large-scale computational

model proposed by Deco et al. (Deco, Ponce-Alvarez, et al., 2014;

Kringelbach et al., 2020), which reduces the complexity and number

of local microcircuit parameters in a spiking neural network model

using a dynamical mean-field (DMF) approach. Specifically, the DMF

model uses a reduced set of dynamical equations describing the activ-

ity of coupled excitatory and inhibitory neuron pools to describe the

activity of large ensembles of interconnected excitatory and inhibitory

spiking neurons. The inhibitory currents are mediated by

γ-aminobutyric acid (GABA) type A receptors, whereas excitatory

F IGURE 1 Computing the probabilistic metastable substate (PMS) space for whole-brain activity. (a) Leading eigenvector dynamics analysis
(LEiDA) method for the time series in every brain region of each participant. (b) Blood-oxygenation-level-dependent (BOLD) phase coherence
matrix and its leading eigenvector at a given time point. (c) Clustering analysis for leading eigenvectors at all time points in all subjects. Each
cluster is represented by a central vector (green, red, and blue), representing a recurrent pattern of phase coherence or substate. (d) Three PMS
spaces for major depressive disorder (MDD) and health. Substates 1 and 2 are significantly different in terms of the probability of occurrence
between MDD and health.
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synaptic currents are mediated by N-methyl-D-aspartate (NMDA)

receptors. Importantly, in the large-scale computational model, each

brain region receives excitatory input from all structurally connected

regions into its excitatory pool, weighted by the underlying anatomical

connectivity matrix obtained from DTI (Figure 2a). Notably, emulating

the resting-state condition, we used parameters in the DMF model

based on the findings of Wong and Wang (Wong & Wang, 2006) such

that each isolated node exhibited typical noisy spontaneous activity

with a low firing rate (r Eð Þ �3Hz) observed in electrophysiology exper-

iments. Finally, the generalized hemodynamic model was used to

transform the simulated mean-field activity from the whole-brain

DMF model into a BOLD signal. In our study, we used all biophysical

parameters stated by Stephan et al. (Stephan et al., 2007) and concen-

trated on the most functionally relevant frequency range for resting-

state activity, that is, both simulated and empirical, and BOLD signals

were band-pass filtered between 0.01 and 0.08Hz.

2.6 | Empirical fitting of the whole-brain model

2.6.1 | Comparing empirical and simulated PMS
space measurements

By running the large-scale whole-brain computational model, the sim-

ulated BOLD signals and corresponding probabilities of the metasta-

ble substates were assessed. Specifically, the leading eigenvector of

each simulated time point was classified according to the Euclidean

distance from the extracted empirical centers after clustering. The

probabilities of the metastable substates from the simulated signals

were calculated as the ratio of the number of epochs assigned to a

given empirical cluster centroid (Figure 2b). Then, a symmetrized

Kullback–Leibler (KL) distance was considered to compare the empiri-

cal and simulated probability metastable space state measurements

(Figure 2c), as follows:

KL Pemp,Psimð Þ¼0:5
X
i

Pemp ið Þ ln Pemp ið Þ
Psim ið Þ

� �
þ
X
i

Psim ið Þ ln Psim ið Þ
Pemp ið Þ
� � !

ð2Þ

where Pemp ið Þ and Psim ið Þ are the empirical and simulated probabilities

of the same empirically extracted metastable substates i, respectively.

2.6.2 | Empirical fitting of global coupling factor
across all subjects

The global coupling factor (G) is a free control parameter that is varied

systematically to study the dynamics of the global cortical system that

equally scales all interarea E-to-E connections. Finding the optimal

working point of the system requires the optimal G value such that

the simulated activity by the model maximally fits the empirical

resting-state activity of all participants. Therefore, the averaged struc-

tural connectivity across all subjects (including MDD patients and

healthy controls) was calculated and considered as the underlying

F IGURE 2 Schematic of the whole-brain computational model. (a) the whole-brain model with the local dynamic mean-field model, in which
then underlying anatomical connectivity was determined using diffusion MRI and tractography techniques. (b) Simulated time series and its
corresponding simulated probabilistic metastable substate (PMS) space. (c) Empirical time series from the empirical functional magnetic resonance
imaging (fMRI) and its corresponding empirical PMS space. Notably, the whole-brain model was fitted to the empirical neuroimaging data
described by the PMS space.
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anatomical connectivity matrix. Then, the whole-brain computational

model for all subjects was run 10 times with a time step of 1 ms for a

range of G values between 0.5 and 5 (with increments of 0.1). The

2000s simulated BOLD signals were obtained for each G value and

were down-sampled into 1000 time points according to 2 s of the

empirical BOLD signals. Finally, the KL distance was calculated

between the simulated and empirical corresponding probabilities of

the metastable substates for each G value.

2.6.3 | Empirical fitting of structural connectivity
for the specific models

Based on the optimal G value, the special whole-brain models of

MDD and health were optimized to characterize the specific brain

activity and the metastable substates. In both cases, two group-

averaged structural connectomes were calculated for MDD patients

and healthy controls and were considered as the underlying anatomi-

cal connectivity matrix. Then, the underlying anatomical connectivity

matrix is optimized by computing the distance between the model

FCphase-mod
ij and empirical grand-averaged phase coherence matrices

using a gradient-descent approach. The model was run repeatedly

with the optimized anatomical connectomes until the fit converged

toward a stable value. The anatomical connectomes were updated

using the following procedure:

Cij ¼Cijþ ε FCphase-emp
ij �FCphase-mod

ij

� �
ð3Þ

where ε¼0:01, and the grand-averaged phase coherence matrix is

defined as follows:

FCij ¼ ⟨cos θj tð Þ�θi tð Þ
� �

⟩ ð4Þ

where θj tð Þ is the phase of the BOLD signal in brain regions j at time t

extracted with the Hilbert transform, and the bracket denotes the

average over time.

2.7 | Forcing brain states transitions between
MDD and health

Based on two fitted specific whole-brain computational models for

MDD and health, our study further explores how to force the transi-

tion of brain metastable substates between MDD patients and

healthy subjects. To address this challenge, excitatory or inhibitory

external stimulations were added to the fitted whole-brain computa-

tional model to probe the alteration of brain metastable substates. A

previous study suggested that the whole-brain model can simulate

task-evoked activity through external stimulation (Deco, Ponce-

Alvarez, et al., 2014). Therefore, each brain region was systematically

perturbed in the whole-brain model through an excitatory or inhibi-

tory stimulation intensity of 0.02 in our study. Particularly, in the

fitted whole-brain model for MDD, only one brain area is stimulated

at a time, and the excitatory stimulation intensity is 0.02.

For each external excitatory stimulation, we calculated the KL dis-

tance between the model-based PMSs of the whole-brain model for

MDD patients and the empirical PMSs of healthy controls. Corre-

spondingly, we perturbed only one region of the healthy whole-brain

model at a time through an inhibitory stimulation intensity of �0.02

and calculated the KL distance with the empirical PMSs of MDD

patients. In addition, we further probed the effects of different inten-

sities of stimulation on forcing transitions of brain states between

MDD and healthy subjects. The intensity of excitatory or inhibitory

stimulation was set to 0.01, 0.05, and 0.08.

3 | RESULTS

3.1 | PMS space for whole-brain activity

To accurately probe the stimulus-driven transition of brain states

between MDD patients and healthy controls, we first provide a quan-

titative characterization of the dynamics of underlying brain states.

The PMS space for the human brain of MDD and the health was

assessed using LEiDA method (Deco et al., 2017; Deco et al., 2019;

Kringelbach et al., 2020). Our results showed that, as expected, MDD

patients and healthy controls could be significantly distinguished by

the three substates based on LEiDA methods (Figure 1d), demonstrat-

ing that the clustering approach is useful for distinguishing brain

states. Specifically, compared to healthy controls, the probability of

substate 1 (S1) was significantly increased in MDD patients

(t = �3.19, p = .0016; two-sample t-test with Bonferroni correction).

In contrast, the probability of substate 2 (S2) was significantly

decreased (t = 2.81, p = .0054; two-sample t-test with Bonferroni

correction).

3.2 | The optimal spatiotemporal fit of the whole-
brain model to the PMS space

Based on the characteristics of the brain states using the LEiDA

method, we built the large-scale whole-brain model with DFM to gen-

erate such brain states to promote or force the transition between

states. Noteworthy, we adopted the two-step strategy of fitting the

whole-brain model to the PMS space for MDD patients and healthy

subjects through optimizing the global coupling parameters and struc-

tural connectivity between brain areas. Based on the structural con-

nectivity averaged across all subjects, we first fitted the whole-brain

model to the PMS space of all subjects by exhaustively exploring the

global coupling parameter (G) across a range of 0.5–5 (with incre-

ments of 0.1). Our results show that the different G values yield sig-

nificantly different KL distances between the empirical and modeled

PMSs (Figure 3a). The minimum KL distance was 0.0064, correspond-

ing to a G value of 2.6, suggesting the optimal fitting of the spatiotem-

poral characteristics.
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Upon optimal global coupling (G = 2.6), we further optimized the

whole-brain computational models for radically different brain states

of MDD patients and healthy controls. Based on the structural con-

nectivity averaged across each group, we measured respectively the

difference between the model and the empirical group-average phase

coherence matrices for MDD and the health and then adjusted the

structural connections separately using a gradient-descent approach.

The whole-brain model was run repeatedly with recursive updates of

the structural connectivity until convergence was reached. We contin-

ued adopting the KL distance during optimization to evaluate the simi-

larity between the modeled and empirical PMSs. Our results showed

that we successfully used the whole-brain models to fit the PMS

space of brain states in MDD patients and healthy controls

(Figure 3b). Specifically, the KL distance between the empirical MDD

PMS space and the modeled PMS space obtained by the best-fit

model for MDD was 2.20 � 10�4. The probabilities of the three sub-

states from the modeled BOLD time series were 0.2698 (S1), 0.4709

(S2), and 0.2593 (S3), and the corresponding probabilities of the three

substates from the empirical BOLD data of MDD were 0.2792

± 0.0981 (S1), 0.4653 ± 0.1312 (S2), and 0.2555 ± 0.1312 (S3).

Similarly, the KL distance between the empirical PMS space of the

healthy controls and the modeled PMS space obtained by the best-fit

model for the healthy controls was 3.99 � 10�5. The probabilities of

the three substates from the modeled BOLD time series were 0.2881

(S1), 0.5132 (S2), and 0.24876 (S3), and the corresponding probabili-

ties of the three substates from the empirical MDD BOLD data were

0.2419 ± 0.0083 (S1), 0.5110 ± 0.1224 (S2), and 0.2471 ± 0.0765(S3).

3.3 | Forcing brain state transitions between MDD
patients and healthy controls

Our results showed that we could successfully create whole-brain

models that fit the empirical fMRI data from MDD patients and

healthy controls. However, the primary purpose of our study was to

attempt to address the fundamental question of how to drive the

brain's transition between health and depressive disorders through

external stimulation, which is extremely important for the translation

to clinical contexts and demonstrable clinical utility. The whole-brain

computational model with DMF provided an effective way of

F IGURE 3 The optimal
spatiotemporal fit of the whole-
brain model to the probabilistic
metastable substate (PMS) space.
(a) Fitting of the whole-brain
model to all subjects by
optimizing the G parameter.
(b) Fitting the whole-brain model
to two radically different brain

states for major depressive
disorder (MDD) and health
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perturbing the substates of the brain by simply adding external excit-

atory or inhibitory stimulation to the excitatory neuron population

(Figure 4a). In our study, each brain region in the fitted whole-brain

model was systematically stimulated by an excitatory or inhibitory

stimulation. Then, we compared the resulting model-based PMS space

with the empirical data for the other target states. In particular, we

added excitatory stimulation (intensity = 0.02) to each brain region in

the fitted MDD model and then compared the modeled PMS distribu-

tion with the empirical PMS distribution from healthy controls. Our

results showed that forcing the transition of brain states from MDD

patients to healthy controls can be achieved by exciting the brain

activity of the insula (KL with the empirical PMS space from healthy

controls = 8.57 � 10�4), cuneus (KL = 2.5 � 10�3), posterior cingu-

late cortex (PCC; KL = 2.5 � 10�3), postcentral gyrus

(KL = 2.9 � 10�3), and orbitofrontal gyrus (KL = 3.6 � 10�3;

Figure 4b). Correspondingly, we also added the inhibitory stimulation

(intensity = �0.02) to each brain region in the fitted model for the

healthy and found that forcing the transition of the brain from health

to MDD can be achieved by inhibiting the activity of PCC (KL of the

empirical MDD PMS space = 7.4 � 10�3), amygdala

(KL = 1.3 � 10�3), caudate (KL = 1.5 � 10�3), precentral gyrus

(KL = 2.6 � 10�3), olfactory cortex (KL = 1.6 � 10�3), supramarginal

gyrus (KL = 1.4 � 10�3), and Heschel gyrus (KL = 1.0 � 10�3;

Figure 4c). We also examined the effect of different external stimula-

tion intensities (intensity = 0.01, 0.05, and 0.08) on forcing transitions

of brain states between MDD patients and healthy controls. Our

results showed that the brain regions that forced the transition of

brain states varied at different intensities of external stimulation. At

excitatory stimulation with small intensity (intensity = 0.01), the tran-

sition of brain states from MDD to healthy was mainly achieved by

the precentral gyrus, dorsolateral superior frontal gyrus, precuneus,

middle cingulate cortex, and angular gyrus. And the transition of brain

states was mainly achieved via the postcentral gyrus, inferior parietal

gyrus, PCC, putamen, and hippocampus under medium stimulation

(intensity = 0.05) and by the middle frontal gyrus and the inferior

occipital gyrus at high excitatory stimulation (intensity = 0.08;

F IGURE 4 Forcing the transition of brain states between major depressive disorder (MDD) and heath. (a) The whole-brain model with
external excitatory or inhibitory stimulation. (b) Schematic of the strategy for forcing the transition between source and target brain states.
(c) Forcing the transition from MDD to health by excitatory external stimulation (intensity = 0.02). (d) Forcing the transition from health to MDD
by external inhibitory stimulation (intensity = 0.02)
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Figure 5a). Similarly, the transition of brain states from health to MDD

was mainly achieved via the amygdala, superior parietal gyrus, precu-

neus, and the orbital medial frontal gyrus under low inhibitory stimula-

tion (intensity = �0.01), via the superior occipital, temporal gyrus,

cuneus, and hippocampus under medium inhibitory stimulation

(intensity = �0.05), and via the insula, pallidum, hippocampus, rectus

gyrus, and superior occipital under high inhibitory stimulation

(intensity = �0.08; Figure 5b).

4 | DISCUSSION

In this study, we constructed a biophysically based large-scale dynamic

model of human brain activity that fits the PMS spaces of the unequal

brain states of participants with MDD and healthy controls. Then, we

explored the forced transition between different brain states from MDD

and health via excitatory or inhibitory stimulation. In particular, we imple-

mented a large-scale dynamical system at the whole-brain level, using a

balanced DMF model, and optimized the whole-brain dynamic model to

fit the respective PMS space of MDD patients and healthy controls.

Through excitatory or inhibitory external stimulation of the whole-brain

dynamical model, we successfully predicted the optimal brain regions to

promote the transition of brain states between MDD and health. Collec-

tively, our findings suggest that we can build large-scale whole-brain

models to characterize all brain states for depression and health and

potentially optimize the external stimulation strategy by changing the

cloud of metastable substates from that found in depression to health.

Brain state definition in systems neuroscience has justifiably

drawn and continues to draw a great deal of attention. Early attempts

have been made to define brain states in various ways and focused on

brain states in a state space, a high-dimensional coordinate system

characterizing the brain's activity at a given time. Lastly, some

approaches have proposed describing a brain state as an attractor of

interacting brain regions but have failed to capture all aspects of the

rich functional dynamics of brain states (Deco & Jirsa, 2012; Gu

et al., 2018; Shanahan, 2010; Tognoli & Kelso, 2014). Our study

adopted a novel framework called LEiDA to characterize PMSs as a

stochastic subdivision of regular and persistent brain states (Cabral

et al., 2017; Deco et al., 2019). This approach uses the BOLD phase

signal to determine the state of whole-brain synchronization between

different brain regions across various time points (Deco et al., 2017).

This was computed for all participants, and group results were clus-

tered to find the metastable substates where their probability of

occurrence characterizes a given brain state. The LEiDA framework is

highly flexible, robust, and precise and can detect and characterize

recurrent substates for resting states or tasks in the healthy brain

(Cabral et al., 2017; Stark et al., 2019). It can also distinguish between

brain states in disease (Figueroa et al., 2019) and even in altered

states, such as the effects of psilocybin (Kringelbach et al., 2020; Lord

et al., 2019) and sleep (Deco et al., 2019). Therefore, we adopted the

LEiDA framework to detect the metastable substates from resting-

state fMRI for MDD patients and healthy controls and found a signifi-

cant alteration in the characterization of MDD substates. Notably, our

results from the whole-brain model fitting also showed that the

F IGURE 5 Impact of different external stimulation intensities on the transition between major depressive disorder (MDD) and health and vice
versa. (a) Forcing transitions from MDD to health by excitatory stimulation with different intensities. (b) Forcing transitions from health to MDD
by inhibitory stimulation with different intensities
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simulated PMS space could describe the necessary and sufficient

dynamic features of the functional empirical data, consistent with the

previous study.

Whole-brain models aim to balance complexity and realism to

describe the most important functional features of the brain in vivo

(Breakspear et al., 2010; Deco et al., 2010). The fundamental principle

links anatomical structures with functional dynamics (Deco

et al., 2009; Jirsa et al., 2002). The anatomy can be represented in

many ways, ideally through large-scale tract-tracing providing direc-

tional anatomical connectivity, which can be obtained using diffusion

MRI combined with probabilistic tractography (Basser &

Pierpaoli, 1996; Hagmann et al., 2010; Markov et al., 2013). Func-

tional global dynamics emerge from the mutual interactions of local

node dynamics coupled with the underlying empirical anatomical con-

nectivity. Local neuronal dynamics can be expressed as a spiking neu-

ronal network (Deco & Jirsa, 2012), mean-field model (Deco &

Kringelbach, 2014; Deco, McIntosh, et al., 2014; Honey et al., 2007),

or mesoscopic model (Deco et al., 2018; Freyer et al., 2012). Then,

these models fit the empirical data by optimizing the global coupling

parameter that scales the underlying structural connectivity or adapt-

ing the effective connectivity that models potential heterogeneity in

conductivity. Recent developments have shown that whole-brain

models can provide insights into the underlying dynamics of the brain,

including static FC and dynamic measurements. In addition, whole-

brain models can be used to explain brain activity on faster timescales

(ms) (Kringelbach & Deco, 2020). Therefore, based on the PMS cap-

tured by LEiDA, we constructed a large-scale whole-brain dynamical

model based on the dynamical mean-field model and optimized the

global coupling parameter to fit the PMS space from all empirical data.

Then, we further optimized the whole-brain model by adapting the

effective connectivity and successfully fitting the PMS space of the

two radically different brain states of MDD and health.

The large-scale whole-brain model improves our understanding

of human brain function. More importantly, it has enormous poten-

tial for studying stimulation-induced state transitions, derived from

its powerful ability for exhaustive searching and optimizing all

underlying parameters and locations. In particular, we can exhaus-

tively stimulate offline a realistic whole-brain model that can accu-

rately model different brain states. Then, we can detect the best

strategy of stimulation that is most effective in forcing a transition

from an initial state to the desired target state. A recent study vali-

dated this basic idea by constructing a whole-brain model that suc-

cessfully fit the PMS space of the two radically different brain

states of human sleep and wakefulness and investigated the best

strategy of stimulation to force transitions between these states

(Deco et al., 2019). In clinical practice, the desired transition would

aim for a homeostatic rebalancing of healthy whole-brain dynamics

from inordinate whole-brain dynamics to predict the best strategy

for recovery. Based on these basic ideas, we stimulated the opti-

mized whole-brain model by adding excitatory or inhibitory exter-

nal stimulation to each brain region to detect the most efficient

stimulation loci to force the transition of brain states between

MDD and health.

Determination of the optimal method of controlling the brain and

its transition from depression to health still involves many unknown

challenges. However, our study provides the first evidence for the

externally controlled transitions of brain states between MDD and

health utilizing stimulation of the whole-brain model. We found that

the transition from MDD to health could be achieved by enhancing

the excitation of local microcircuits in the insula, cuneus, PCC, medial

orbitofrontal cortex, and postcentral gyrus. The insula is a critical brain

structure for integrating affective and cognitive memory, saliency pro-

cessing, and attention switching (Chiarello et al., 2013; Uddin

et al., 2017; Wang, Wei, et al., 2020). Numerous evidence has shown

that structural and functional abnormalities in the insula are widely

observed in patients with MDD. Meanwhile, an increasing number of

MRI studies have also found that structural and functional abnormali-

ties in the insula can be normalized after optimizing treatments,

including modified electroconvulsive therapy (mECT) (Dichter

et al., 2015; Moon et al., 2021; Wang, Wei, et al., 2020), transcranial

magnetic stimulation (Fu et al., 2021), transcranial direct current stim-

ulation (Sagliano et al., 2019; Sankarasubramanian et al., 2017). For

example, a recent study found that pretreatment decreased FC with

the insula and normalization of this area's function after mECT (Wang,

Wei, et al., 2020). In addition, the PCC is a key region of the DMN

with strong connectivity with the entorhinal cortex in primates. The

PCC is consistently engaged in a range of tasks that examine episodic

memory, including autobiographical memory, the imagination of the

future, spatial navigation, and scene processing (Vann et al., 2009). It

has also been shown that the PCC's FC is related to rumination in

depression and the antidepressant effects of mECT and other treat-

ments, such as deep brain stimulation. In particular, a recent study

found that voxels in the PCC had significantly increased FC with the

orbitofrontal cortex; in participants receiving medication, FC between

the lateral orbitofrontal cortex and PCC decreased back to that in the

controls (Cheng, Rolls, Qiu, Xie, et al., 2018). The orbitofrontal cortex

in primates, including humans, is the key brain area in emotion and in

the representation of reward value and non-reward, which does not

obtain an expected reward (Grabenhorst & Rolls, 2011; Rolls, 2014).

Previous studies have also suggested that the orbitofrontal cortex is a

key target to ameliorate depression (Rolls, 2016, 2017). Meanwhile,

some aspects of depression may be related to over-responsiveness of

the lateral orbitofrontal cortex to nonreward and punishment condi-

tions, and under-responsiveness of the medial orbitofrontal cortex

could contribute to other aspects of depression such as anhedonia.

Consistent with these results above, our findings show that the insula,

PCC, and orbitofrontal cortex play important roles in the neuropathol-

ogy of MDD and antidepressant treatment.

Furthermore, we also found that the transition from MDD to

health could be achieved by enhancing the inhibition of local microcir-

cuits in the PCC, amygdala, olfactory cortex, caudate, precentral gyrus,

Heschel gyrus, and supramarginal gyrus. The amygdala, a pivotal com-

ponent of the affective network, is a critical brain region for both

bottom-up and top-down processes of emotion generation and regu-

lation, highlighted in the pathology of MDD. The caudate, the main

sub-region of the striatum, is a central locus for reward-based
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behavioral learning and is therefore intricately involved in pleasure

and motivation. Decreased connectivity and the amygdala and cau-

date have been reported to be strongly implicated in hopelessness

and anhedonia, the debilitating symptoms of MDD (Ramasubbu

et al., 2014). In addition, the olfactory system and emotion share many

common structures, which provide a framework for bridging gaps

between cognitive and olfactory function via a similar neuropathologi-

cal basis of depression. A recent study showed that participants with

MDD had mood dysregulation, coupled with significantly impaired

response inhibition and olfactory functions (Wang, Jin, et al., 2020).

Consistent with these findings, our study showed that inhibiting the

activity of regions including the PCC, amygdala, olfactory cortex, and

caudate can force the transition of brain states from health to MDD.

The whole-brain model provides a possible basis for the precise

prediction of the effects of external perturbations needed to force

transitions of brain states between MDD and health. However, the

limitations of the current study should be considered. First, to reduce

the complexity of modeling, the brain is typically divided into a mean-

ingful parcellation based on structural and functional information. In

our study, we used the AAL template to obtain the structural connec-

tivity from DTI and BOLD time series from rs-fMRI. Previous studies

have suggested that the AAL atlas is not encouraged in functional

connectivity analysis (Sala-Llonch et al., 2019; Smith et al., 2011).

However, the different parcellations maybe increase the spatial granu-

larity, but they come with the cost of increasing the complexity of the

model and decreasing its robustness of the model. Previous studies

on the whole-brain model have suggested the brain can be divided

into 80–150 ROIs to reduce the complexity of modeling (Eickhoff,

Constable, & Yeo, 2018; Eickhoff, Yeo, & Genon, 2018; Kringelbach &

Deco, 2020). Meanwhile, the AAL template also has relatively robust

results on PMSs and the whole-brain model (Deco et al., 2019;

Deco & Kringelbach, 2014; Figueroa et al., 2019; Kringelbach

et al., 2020). Second, the white matter (WM) signal was regressed out

to focus on the gray matter (GM) signals, which might be another limi-

tation of our study. However, more and more evidence suggested

brain white-matter (WM) signals obtain using BOLD-fMRI provide

functional information about intrinsic activity and can be used to char-

acterize its connectivity (Gong-Jun Ji et al., 2017; Li et al., 2019; Li

et al., 2021). A recent study has identified and replicated robust

decreased small-world topology in two completely independent sam-

ples of MDD. The small-world topology of the WM functional con-

nectome may be the potential biomarker of MDD-related early

prognosis and diagnosis (Li, Chen, et al., 2020). In addition, other stud-

ies also suggested that the WM function connectome is unlikely to be

generated by noise and may provide important information to under-

stand the underlying mechanisms of cognition and behavior (Li,

Biswal, et al., 2020). Therefore, WM function connectomes might be

contributed to the whole-brain model construction and optimization

and further improve the robustness and generalization of the model.

Overall, our findings suggest that large-scale whole-brain imaging

has great clinical potential by providing novel biophysical evidence for

the neural mechanism of MDD and its recovery and opening possibilities

for discovering novel stimulation targets for the treatment of MDD.
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