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Abstract

[18F]FAC (2’-deoxy-2’-[18F]fluoro-β-D-arabinofuranosylcytosine, 1) is a versatile probe for

imaging deoxycytidine kinase (dCK) expression levels in vivo. dCK is responsible for phos-

phorylation of deoxycytidine (dC, 2) and other nucleoside analogs, plays a key role in

immune activation and has demonstrated to be one of the key enzymes in activating nucleo-

side based drugs including gemcitabine. Reported synthesis of [18F]FAC is high yielding but

is quite challenging requiring bromination using HBr and careful drying of excess HBr which

is critical for successful synthesis. Here in we report a simplified trimethylsilyl trifluorometha-

nesulfonate (TMSOTf) assisted synthesis of [18F]FAC eliminating the need of bromination

and drying. [18F]FAC (β-anomer) was synthesized with average isolated decay corrected

yield of 10.59 + 4.2% (n = 6) with radiochemical purity of >98% and total synthesis time of

158 + 19 min.

Introduction

[18F]FAC (1-(2’-deoxy-2’-[18F]fluoro-β-D-(arabinofuranosyl)cytosine), 1) (Fig 1) is a close

analog of deoxycytidine (dC, 2) and is an efficient substrate for phosphorylation by deoxycyti-

dine kinase (dCK). It was developed by Radu’s group at UCLA for imaging lymphoid organs

and immune activation because of critical role played by dCK in these processes.[1, 2] Being a

critical enzyme, dCK is expressed constitutively in all cells at a low background level but signif-

icantly increased expression is observed in lymphoid cells and many cancer cells.[3] In addi-

tion to phosphorylation of dC, dCK catalyzes phosphorylation of other nucleosides such as

deoxyadenosine, deoxyguanosine.[4] This property has been utilized in development of several

nucleoside based prodrugs used in cancer chemotherapy including gemcitabine (Gem, 3).

Gem is first line of treatment for pancreatic patients and other solid tumors and has a very low

response rate (5–30%).[5] The low level of response can be partly attributed to low levels of
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dCK in the tumors [6]. Thus [18F]FAC can act as a PET tracer to non-invasively image the lev-

els of dCK in cancer patients. We have previously demonstrated that [18F]FAC can also act as

a surrogate marker for gemcitabine.[7]

Previous synthesis of [18F]FAC (Fig 2) was based on the original synthesis of cold fluorinated

analog FAC by Wright and Fox’s well known nucleophillic substitution method.[8] This multistep

Fig 1. Chemical structures of 2’-deoxy-2’-[18F]fluoro-β-D-arbiofuranosylcytosine ([18F]FAC) and its analogs.

https://doi.org/10.1371/journal.pone.0196784.g001

Fig 2. Classical synthesis of [18F]FAC employing HBr for activation and coupling to the cytosine silylether developed by Radu’s group.

https://doi.org/10.1371/journal.pone.0196784.g002
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synthesis has been adapted to synthesis of various fluorine-18 labeled nucleosides including 20-

deoxy-20-fluoro-5-iodo-1-β-D-arabinofuranosylcytosine ([18F]FIAC) [9] and other uridine deriv-

atives.[10] Briefly, [18F]FAC was synthesized starting from flourine-18 labeling of commercially

available precursor 4 followed by activation of C-1 of sugar with bromine using HBr in acetic acid

(HOAc) to facilitate condensation with cytosine silyl derivative. Excess of HBr is evaporated using

toluene before adding 7 followed by deprotection and HPLC purification of alpha and beta anom-

ers. This method provides moderate yields of [18F]FAC in our experience and has been success-

fully automated by other groups using Elixys1 radiosynthesizer with excellent yields.[11] In an

effort to reduce the complexity of the synthesis, a one step late stage fluorination of [18F]FAC was

developed by Meyer et. al. [12] with comparable total synthesis time and moderate yield of 4.3–

5.5% (d.c). This method presents advantages of elimination of many intermediate steps, but the

precursor synthesis is challenging and is not commercially available. Therefore we explored meth-

ods to reduce the complexity of the synthesis of [18F]FAC.

We have previously published trimethylsilyltriflate (TMSOTf)-assisted methodology based

on Vorburggen’s trimethylsilyl triflate[13] assisted coupling to synthesize fluorine-18 labeled

20-deoxy-20-fluoro-5-iodo-1-β-D-arabinofuranosyluracil (FIAU) and other 5 substituted uracil

derivatives to give alpha and beta anomers of 5-substituted uridine derivatives directly from

the 1-benzoyl sugar (5) instead of corresponding 1-bromo-derivative(6).[14–16] This method

using TMSOTf or strong Lewis acid such as SnCl4 as a catalyst completely reduced the overall

synthesis by 2 steps—bromination and evaporation of excess HBr.

Here in we report an alternative trimethylsilyl trifluoromethanesulfonate (TMSOTf) assis-

ted three step synthesis of [18F]FAC that eliminates the need for bromination and drying steps

with comparable time and yields for total synthesis. The reduction in number of steps, purifi-

cations and reaction times makes this method amenable to manual synthesis in one pot.

Materials and methods

All reagents and solvents were obtained from Sigma-Aldrich or Thermo Fisher Scientific and

used without further purification. No-carrier added [18F]fluoride in water was obtained from

the Radioisotopes and Molecular Imaging Probes core facility at MSKCC. FAC was purchased

from Carbosynth, Berkshire, UK (CAS: 56632-83-8, Product code: ND08343). 2-(O)-(trifluor-

omethylsulfonyl)-1,3,5-tri-O-benzoyl-α-D-arabinofuranose (4) was purchased from Carbo-

synth, Berkshire, UK (CAS: 97614-41-0, Product code: MT07900). Sep-Pak Accell plus QMA

plus Short Cartridge, 360 mg Sorbent per Cartridge, 37–55 μm Particle Size, (WAT020545)

were purchased from Waters (MA, USA). C18-mini column (Strata C18-E (55 μm, 70 Å)

50mg/1mL) [8B-S001-EAK] were purchased from Phenomenex1, CA. HPLC purification

and analysis were performed on a Shimadzu HPLC system equipped with a binary high pres-

sure gradient solvent delivery module LC 10A and SPD-20A UV dual wavelength detector

connected to a bioscan flow-count radio-HPLC detector system for gamma detection. Crude

products were purified and analyzed for purity on reversed phase C18 column using Waters

XBridge™ 5 μm, 10 x 250 mm [186008167] (for preparative scale) and Phenomenex1 Gemini

5 μm, 250 x 4.6 mm 110 Å [00G-4435-E0], (for analytical HPLC). Purification was carried out

using an isocratic solvent system of 2% acetonitrile in 0.1% trifluoroacetic acid at a flow rate of

8 mL/min. Analysis of the purified product was carried out using 3% acetonitrile in 0.1% tri-

fluoroacetic acid at a flow rate of 1 mL/min. Microwave systems used for the reactions were

obtained from Biotage Inc (Initiator 2.5, Charlotte, NC) and microwave was not used unless

explicitly mentioned. The yields are reported as average ± standard deviation. The yields

reported are isolated yields from 6 independent experiments and decay corrected to the time

at the elution of fluorine-18 radioactivity from the QMA cartridge.

Concise synthesis of [18F]FAC
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Synthesis of [18F]FAC (2’-deoxy-2’-[18F]fluoro-β-D-(arabinofuranosyl)

cytosine) (1)

Overall synthetic strategy is given in Fig 3. The synthetic approach was based on our earlier

method for synthesis of FIAU and its analogs originally developed by Vorbruggen and opti-

mized for pyrimidine nucleosides. [17] Synthetic scheme consists of four major steps as

described below.

1. Synthesis of cytosine silyl ether (N-(trimethylsilyl)-2-((trimethylsilyl)oxy)pyrimidin-

4-amine, 7): Cytosine silyl ether (7) was synthesized by heating a mixture of cytosine (10)

Fig 3. Synthetic scheme for the synthesis of [18F]FAC using TMSOTf assisted coupling of 1.3.5-tribenzoyl-2-deoxy-2-[18F]fluoro-arabinofuranose with cytosine

silyl ether using microwave heating.

https://doi.org/10.1371/journal.pone.0196784.g003
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12 mg (0.11 mmoles), TMSOTf (100 μL, 123 mg, 0.55 mmoles), and 1,1,1-Trimethyl-N-(tri-

methylsilyl)silanamine (HMDS, 100 μL, 0.47 mmoles) in acetonitrile (300 μL) at 120˚C for

20 min in a microwave vial. The product was used for coupling reaction, without any fur-

ther purification.

2. Synthesis of 2-deoxy-2-[18F]fluoro-1,3,5-tri-O-benzoyl-α-D-arabinofuranose (5)

(Fluorination of 2-O-[(Trifluoromethyl)sulfonyl]-1,3,5-tri-O-benzoyl-α-D-ribofura-

nose (4)): 18F in the form of [18F]HF, was loaded onto QMA cartridge preconditioned by

passing 5 mL of 0.25 M KHCO3 followed by 20 mL of deionized water and eluted with 1

mL of 90% acetonitrile containing KHCO3 (1.6 mg, 15.9 μmol) and kyrptofix (10 mg,

26.4 μmol) into a 10 mL reacti-vial™. The water acetonitrile azeotrope was removed by heat-

ing the vial to 105–110˚C under a slow stream of argon gas (150–175 mL/min). To the

dried reacti-vial™, an additional 0.7 mL of anhydrous acetonitrile was added and the solvent

was removed as described above and the whole process was repeated 2 additional times.

The reacti-vial™ was cooled to room temperature (RT) and radioactivity was extracted

using anhydrous acetonitrile (0.4 mL) and added to 2-O-(trifluoromethylsulfonyl)-1,3,5-

tri-O-benzoyl-α-D-arabinofuranose (4) (15 mg) in a sealed microwave vial and the reaction

mixture was heated at 120˚C for 30 minutes. The product was used for reactions without

any further purification.

3. Synthesis of 3’,5’-O-dibenzoyl-(2-[18F]fluoro-β-D-(arabinofuranosyl) cytosine (8) (Cou-

pling of cytosine silyl ether (7) and 2-deoxy-2-[18F]fluoro-1,3,5-tri-O-benzoyl-α-D-ara-

binofuranose(5)): The reaction mixture was cooled to RT and added to vial containing silyl

ether (7) solution and TMSOTf (100 μL) and HMDS (100 μL) in acetonitrile (300 μL) and

the reaction mixture was heated to 120˚C for 25 min using microwave reactor under sealed

conditions. Then reaction mixture was cooled to RT and passed through a silica Sep-Pak1

plus column (pre-conditioned with 5 mL of hexane) and eluted into a 10 mL reacti-vial™
with 10% MeOH in CH2Cl2 (2 x 1.25 ml). The solvents were removed by heating the reacti-

vial™ under argon flow at 100 ˚C and used for the next step directly.

4. Deprotection of 3’,5’-O-dibenzoyl-(2-[18F]fluoro-β-D-(arabinofuranosyl) cytosine (8):

To the vial containing 8, 0.5 mL of 4.6 M sodium methoxide in MeOH (25% w/v) was

added and the reaction mixture was heated at 80 ˚C for 10 min for deprotection of the

benzoyl groups. The reaction mixture was treated with glacial acetic acid (120 μL) and the

solvent was removed under argon stream at 80˚C. The residue was formulated in 1% aceto-

nitrile and passed through C18-mini column (Strata C18-E (55 μm, 70 Å) 50mg/1mL) to

remove insoluble impurities. The crude product was purified using reversed phased HPLC

(on the preparative column) using an isocratic solvent system of 1% acetonitrile in 0.1% tri-

fluoroacetic acid in water. The radioactive fraction corresponding to the product peak [18F]

FAC (9, β-anomer) was collected and solvent evaporated under reduced pressure. The iden-

tity of the product [18F]FAC (9) was verified by co-injecting with commercially available

non-radioactive analog on an HPLC analytical column using an isocratic solvent system of

3% acetonitrile in 0.1% trifluoroacetic acid in water.

Results

[18F]FAC was synthesized in yields (d.c.) ranging from 2.2–11.2% with average yield of 5.95 +

1.6% with radiochemical purity of>95%. The molar activity of [18F]FAC was found to be

125–700 mCi/μmol (13–26 GBq/μmole) and α- to β-anomer ratio of about 2:1. We did not

Concise synthesis of [18F]FAC
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attempt to improve specific activity of the product as the uptake of FAC is not influenced in

given specific activity ranges. Manual synthesis was accomplished in 158 + 19 min from

obtaining flourine-18 in water.

Discussion

An alternative method for synthesis of [18F]FAC (1) was developed that reduces the number of

steps of conventional synthesis by 2 with comparable yields and synthesis times. Lewis acid

TMSOTf was utilized for direct coupling of un-activated deoxysugar with cytosine.

The fluorination of 2-O-(trifluoromethylsulfonyl)-1,3,5-tri-O-benzoyl-α-D-arabinofura-

nose (4) has been well established and therefore no attempts to optimize the reaction were

attempted. The crude fluorinated product was used directly without any Sep-Pak1 purifica-

tion and therefore saving about 10–15 min of time for the step.

Coupling of 1,3,5-tribenzoyl-2-deoxy-2-[18F]fluoro-arabinofuranose (5) with cytosine silyl

ether (7) was achieved using 100 μL of trimethylsilyl triflate in acetonitrile. This resulted in an

efficient coupling reaction and [18F]FAC was obtained after deprotection. The coupling was

performed in acetonitrile as solvent as this gave more consistent yields and easier evaporation

post Sep-Pak1 purification albeit with higher α-anomeric product. Due to usage of polar

CH3CN for the coupling reaction, the undesired α-anomer was a major product with α- to β-

anomer ratio of about 2:1. [18] As demonstrated by Alauddin et al, [19] the anomeric ratios

are highly dependent on the polarity of the solvent used for coupling step with non-polar sol-

vents favoring β-anomer over α-anomer.

Microwave heating was employed as it gave consistent results. Heating the coupling reac-

tion on a heating block also provided us with the product, albeit in lower yields (<1% d.c.).

However we did not attempt to optimize coupling reaction with conventional heating.

This method offers an advantage of employing freshly synthesized cytosine silyl ether

(which also employs TMSOTf for protection) without further purification in the synthesis of

[18F]FAC, which in our hands showed considerable increase in the product yields. It was

observed that the product yields were the highest when TMSOTf was used freshly after open-

ing the vial and the coupling and overall yields declined with storage. This could be attributed

to the high reactivity of TMSOTf that results in hydrolysis of TMSOTf even when all precau-

tions were observed.

The HPLC purification of crude product containing a mixture of alpha and beta anomers

(α:β = 2:1) was easily accompanied using regular C-18 RP column (250 x 10 mm). Under the

given HPLC conditions (1% acetonitrile in water, 0.1%TFA), [18F]FAC eluted with a retention

time of ~17 min preceded by alpha anomer at ~13.5 minutes (Fig 4). For the HPLC purifica-

tion it is important to ensure that the crude product is completely free of polar acetonitrile and

methanol and reformulated in 1% acetonitrile in water. Presence of polar solvent can result in

elution of product in dead volume and therefore has to be minimized. Ensuring the evapora-

tion of polar solvents results in a clean separation of the free fluoride, free sugar, and the α-

anomer from the product. The crude compound was purified and coinjected with cold FAC

on the HPLC to confirm the identity of the product.

While TMSOTf assisted synthesis [18F]FAC reduces the synthesis time and purification

steps, it has its own drawbacks. It has to be noted that the hydrolysis product triflic acid could

be as corrosive as HBr/AcOH and bromine vapors, products of traditional synthesis. Moreover

TMSOTf is highly reactive and fumes violently in presence of moisture posing handling issues

to untrained personnel. As mentioned earlier, the yield of the final product decreased with

storage. Additionally, the coupling reaction is efficient only using the microwave as very poor

yields resulted using the conventional heating methods.

Concise synthesis of [18F]FAC
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To summarize, the current method that utilizes TMSOTf assisted synthesis of [18F]FAC

reduces the number of steps while providing sufficient yields for carrying out in vivo studies.

The reduction in number of steps is a big advantage for laboratories that lack automated syn-

thesizers and where manual synthesis is routinely employed.

Conclusions

An alternative shorter method for synthesis of [18F]FAC is developed. Overall synthesis was

shortened by eliminating the bromination and evaporation steps and by employing microwave

heating for the coupling of deoxysugar with the cytosine. This method provides reliably repro-

ducible yields and is easily amenable for manual synthesis.
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Fig 4. a) HPLC chromatogram showing the purification of [18F]FAC using a semi preparative HPLC system. Blue

line: radioactive signal from radioactive detector Red line: UV signal from UV detector @ 254 nm. b) Quality control

analysis of [18F]FAC with analytical HPLC system showing coinjection of purified [18F]FAC from preparatory column

and non-radioactive FAC.

https://doi.org/10.1371/journal.pone.0196784.g004
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