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Abstract

Despite ethnic differences in allele frequencies of variants in dopaminergic genes associated with 

dopamine D2/D3 receptor availability (D2R), no study to date has investigated the relationship 

between genetic ancestry and striatal D2R. Here, we show that ancestry informative markers 

significantly predict dorsal striatal D2R in 117 healthy ethnically diverse residents of the New 

York metropolitan area using Positron Emission Tomography (PET) with [11C]raclopride 

(p<0.0001), while correcting for age, sex, BMI, education, smoking status, and estimated 

socioeconomic status (ZIP codes). Effects of ethnicity on D2R were not driven by variation in 

dopaminergic candidate genes. Instead, candidate gene associations with striatal D2R were 

diminished when correcting for ancestry. These findings imply that future studies investigating D2 

receptor genes should covary for genetic ancestry or study homogeneous populations. Moreover, 

ancestry studies on human neurobiology should control for socioeconomic differences between 

ethnic groups.
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Introduction

Three-dimensional cortical geometry 1, cortical surface and total brain volume have been 

shown to be associated with genetic ancestry 2, 3; which is consistent with a strong 

association between ancestry and the shape of cranial bones in humans 4. Thus, studies 

investigating genetic markers in human brain development may have to correct for genetic 

ancestry or self-reported ethnicity.

Individual differences in striatal dopamine D2/D3 receptor (D2R) expression have been 

implicated in motivated behaviors, movement, and neuropsychiatric diseases such as 

schizophrenia 5–8. D2R availability may be influenced by both environmental and genetic 

factors. Environmental factors that have been shown to influence D2R in monkeys and 

humans include social status and perceived social support 9–13. In addition, repeated 

exposure to drugs of abuse, including alcohol and nicotine, has been associated with 

decreased striatal D2R 14, as well as morbid obesity 15. Similarly, aging 16, 17, sleep 

deprivation 18–20, BMI 21, 22 and education 11 have been linked with reduced striatal D2R 

availability. Genetics are also likely to influence D2R; directly or by modulating 

environmental factors that affect striatal D2R expression. In monozygotic and dizygotic 

twins, variability in D2R availability was recently found to be a highly heritable trait (i.e., 

narrow sense heritability = 0.67) 23. Several polymorphisms have been associated with D2R 

availability and dopamine function in PET studies, including ANKK1 variant rs1800497, 

which is 10 kb downstream from DRD2 (Taq1A), DRD2 variants rs1079597 (Taq 1B), 

rs1076560, and rs6277 24, DRD3 rs6280, COMT 34680, OPRM1 rs1799971, DAT 
SLC6A3; among others (meta-analyzed in 25). Of these, the association between Taq1A with 

striatal D2R availability was most frequently observed; however these are all individually 

small studies and null findings have also been reported 2526. Despite known ethnic 

differences in allele frequencies of these genetic variants 27, it currently remains unknown 

whether D2R availability is associated with genetic ancestry and whether single gene 

findings may be driven or influenced by ancestry.

Here we investigated whether genetic ancestry predicts striatal D2R availability as measured 

with positron emission tomography (PET) and [11C]raclopride in 117 healthy volunteers 

with mixed ethnic background, while correcting for the potential confounding factors of age, 

sex, BMI, education, smoking status, and estimated socioeconomic status based on 

individuals’ ZIP codes. We further tested whether the effect of genetic ancestry on D2R 

availability was mediated by polymorphisms in candidate genes previously associated with 

striatal D2R availability, which are known to have ethnic differences in allele frequencies.

Materials and Methods

Participants

PET [11C]raclopride images and DNA of 120 healthy individuals (age: 18–49) were selected 

from our Brookhaven National Laboratory PET database. Participants resided in the New 

York metropolitan area and served as healthy volunteers in previous [11C]raclopride PET 

studies 19, 28–31 (see Supplementary Material S1 for PET protocol information). In addition, 

all participants provided written informed consent agreeing to provide a blood sample to 
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assess genetic effects on PET data. The genetics study was approved by the Committee on 

Research in Human Subjects at Stony Brook University (IRB net number 289072). For all 

PET studies, healthy volunteer exclusion criteria were: present or past history of substance 

use disorders other than nicotine and tobacco, present or past history of neurological or 

psychiatric disease including seizures, high levels of anxiety, panic attacks, psychosis; 

current medical illness that may affect brain function; current or past history of 

cardiovascular disease; head trauma with loss of consciousness > 30 minutes; urine positive 

for psychoactive drugs; history of vascular headaches. Due to missing data for education 

years (n=1) and participants’ ZIP codes (n=2), we proceeded with 117 healthy individuals 

for further analyses (22 female; 9 smokers, 4 past smokers). Table 1 provides participants’ 

demographics.

Socioeconomic Status

Characteristics of neighborhoods were assessed by mapping the subjects’ addresses to the 

2000 census tract boundaries (http://factfinder.census.gov) and used as a surrogate for 

socioeconomic status (SES). U.S. census tract boundaries are based on 4,000–6,000 persons, 

determined in collaboration with local committees to represent demographically 

homogeneous areas approximating neighborhoods 32. Address matching was available for 

117 participants from the New York metropolitan area. The variables “per capita household 

income” and “percent of occupied housing units that are occupied by the owner” were 

divided by the national average, and used for our regression model.

Ancestry Informative Markers (AIMs)

Ethnic origin for individual study subjects was characterized using a panel of 2500 ancestry-

informative markers and individual comparison to the 51 worldwide populations represented 

in the Human Genome Diversity Cell Line Panel of the Human Genome Diversity Project 

(HGDP) and Centre d’Etude du Polymorphisme Humain (CEPH), which includes 1,051 

individuals (http://www.cephb.fr/HGDP-CEPH-Panel). Genotyping for the study cohort was 

performed using the Illumina human OmniExpressExome array (Illumina, San Diego) and 

compared to data from the Human HapMap 550K array for the CEPH diversity panel.

Ancestry scores were calculated using Structure, version 2.2 (http://pritch.bsd.uchicago.edu/

structure.html) where data for the CEPH diversity panel was run along with data for a single 

study subject so that the derived scores for each study participant were not influenced by 

others within that cohort 32, 33. This “anchored” approach yields a stable factor structure 

interpretable in the context of worldwide genetic diversity and is unaffected by the addition 

of samples to the study cohort unlike factors derived by principal components analysis. The 

number of ethnic clusters (K) was defined by running the data with different K values and 

computing the probability of K=n. The six-factor solution was optimal for this marker set 

and closely replicates solutions found by Rosenberg, Pritchard 34 for the same 51 reference 

populations determined with short tandem repeat markers and SNPs 34, 35, and by the 186 

SNP panel described 33, wherein all the non-Arabic African populations in the Human 

Genome Diversity Cell Line Panel are identified by a single African factor in this six-factor 

solution.
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Multivariate Pillai’s Trace analysis showed that in the current sample self-reported ethnicity 

strongly predicted genetic ancestry scores (V=1.28, F(30, 550)=6.34, p<0.0001) 

(Supplementary Fig. 1). Separate univariate ANOVAs showed that self-reported ethnicity 

significantly predicted African (F(5,116)=102.7, p<0.0001), European (F(5,116)=142.9, 

p<0.0001), American (F(5,116)=8.11, p<0.0001) and Asian (F(5,116)=3.2, p=0.01) genetic 

ancestry scores, but not Far East Asia or Oceania (p>0.05).

PET imaging, processing and analyses

All [11C]raclopride scans were performed on a Siemens, HR+ scanner (resolution 4.5 × 4.5 

× 4.5 mm full width half-maximum, 63 slices) at the BNL PET Imaging Center. The 

procedures for subjects positioning and scanning protocols have been described previously 
36, 37. In short, emission scans were started immediately after injection of 4–8 mCi (specific 

activity 0.5–1.5 Ci/μM at end of bombardment or EOB). Twenty dynamic emission scans 

were obtained from time of injection up to 60 min and arterial sampling was used to 

quantify total carbon-11 and unchanged [11C]raclopride in plasma. A total of n=62 

participants (53%) received a placebo during PET scanning, whereas the other 55 (47%) 

were tested at a baseline condition. All placebo scans were done before active 

pharmacological intervention scans (i.e., methylphenidate challenges), thus participants had 

not been exposed methylphenidate prior to the placebo. D2R measures between the 

participants studied at baseline versus studied after placebo did not differ for any striatal 

region (all p>0.1). This indicates that in the healthy controls without prior experience with 

methylphenidate there were no effect of drug expectation when given placebo, justifying the 

integration of the data sets obtained under a baseline and a placebo condition.

We calculated regional measures of non-displaceable binding (BPND) for hand-drawn 

caudate, putamen and ventral striatum (VS) regions of interest (ROIs) using a procedure 

previously described 38. ROIs had the same size and shape across subjects. The ratio of the 

distribution volume in striatal regions was computed to that in the cerebellum was computed 

to obtain BPND measures, which corresponds to Bmax/Kd – 1 and reflects D2R availability 
39.

Statistical analyses

Multiple linear regression was used to predict D2R availability, independently for caudate, 

putamen and VS, as a function of the independent AIMs (IBM, Armonk, New York). 

Covariates were: age, sex, BMI, education, smoking status (9 smokers, 4 past smokers), and 

ZIP code’s consensus tracts “per capita income” and “housing units occupied per owner” as 

estimates of socioeconomic status. Table 2 provides zero-order Pearson correlations between 

all variables in the regression models.

Results

African and European ancestry differentially predict D2R in Caudate and Putamen

The following six genetic ancestry scores were obtained: Africa, Europe, Asia, Far East 

Asia, Oceania, America. Since African and European ancestry scores explained 93% of 
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variance (other scores explained <5%, Table 1), we performed regression analyses for 

African and European ancestry only.

Regression models showed that African and European ancestry significantly predicted 

striatal D2R availability in dorsal but not ventral striatum. That is, African ancestry 

negatively predicted D2R availability in bilateral caudate (β =−0.30, t(107)=−4.14, p<0.0001) 

and putamen (β=−0.33, t(107)=−4.74, p<0.0001), but not VS (β=0.03, t(107)=0.37, p=0.71) 

(Fig. 1; Supplementary Table 1).

European ancestry, however, positively predicted availability in Caudate: β=0.29, 

t(107)=4.01, p<0.0001; Putamen: β=0.33, t(107)=4.67, p<0.0001; but not in VS: (β=−0.03, 

t(107)=−0.31, p=0.75) (Fig. 2; Supplementary Table 2).

Age predicted D2R in both models for all 3 striatal ROIs (all p<0.0001; Supplementary 

Table 1 and 2), which is in line with previous studies 16, 17. There were no other significant 

predictors of D2R, although Per capita income and Housing units occupied per owner 

reached trend levels for D2R Caudate and D2R Putamen (p<0.09).

Candidate genes associated with genetic ancestry did not mediate effects on D2R

Candidate genes ANKK1 Taq 1A, DRD2 SNPs, rs6277, rs6274, rs6278, and rs1076560, 

DRD3 rs6280, COMT rs4680, OPRM1 rs1799971 and Leptin rs12706832 were associated 

with African and European ancestry scores (Table 3). However, none of the candidate genes 

predicted D2R availaiblity when corrected for multiple comparisons. Therefore, effects of 

African ancestry on striatal D2R availability in caudate and putamen were not mediated by 

known candidate gene variants.

Discussion

Our data indicate a strong association between striatal D2R availability and genetic ancestry 

in a healthy human population of mixed ancestry from the New York metropolitan area. 

Specifically, we show that African genetic ancestry negatively predicts striatal D2R 

availability in the caudate and putamen, whereas European genetic ancestry was a positive 

predictor of D2R in these striatal areas. There were no effects for the VS. Effects were both 

present without covariates, as well as when corrected for the potential confounding factors 

age sex, BMI, education, smoking status, and estimated socioeconomic status. In the current 

study, however, the only significant predictors of striatal D2R were age (ventral and dorsal 

striatum) and ethnicity (dorsal striatum only). Although genetic ancestry has previously been 

associated with cortical geometry 1, cortical surface and total brain volume 2, 3, this study is 

the first in reporting an association between genetic ancestry and striatal D2R.

If replicated, the findings reported here may have implications for pharmacological 

treatment targeting D2R, and ethnic differences in psychopharmacological responses have 

been previously described 40, 41. For example, evidence exists that vulnerability attributed to 

genetic ancestry is seen in long term use of antipsychotic D2R antagonists, with increased 

risk of tardive dyskinesia in African Americans when compared to Caucasian Americans 
42–44. An association has been found between a polymorphism in AKT1, a gene acting 
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downstream of D2R, and tardive dyskinesia present in African Americans but not in 

Caucasians 45. However, evidence for an ethnic association with tardive dyskinesia is 

preliminary and in need of further clinical and neurobiological investigation.

We further showed that African and European ancestry was strongly associated with 

candidate genes previously associated with D2R (reviewed in: 25): Taq 1A, DRD2 SNPs 

rs6277, rs6274, rs6278, rs1076560, and DRD3 rs6280, COMT rs4680, OPRM1 rs1799971 

and Leptin rs12706832; but not DRD2 rs1079597 (Taq 1B). This was in line with allele 

frequencies in the NCBI 1000 genome dataset (https://www.ncbi.nlm.nih.gov/variation/

tools/1000genomes) and previous reports 27. Nevertheless, in our sample only small 

associations were found between genotype and D2R for rs6277 (Caudate and Putamen), 

Taq1A (Caudate only), Taq 1B (VS only) and OPRM1 (VS only), significance levels did not 

remain after correction for multiple comparisons. Exploratory tests showed that candidate 

gene associations were diminished when correcting for ancestry (p>0.05), whereas the 

strong association between genetic ancestry and striatal D2R availability were not driven by 

variation in DRD2 candidate SNPs (all p<0.0001). Thus, previous effects of single genes on 

D2R availability in mixed population samples may have been largely a result of population 

structure, as this was often not controlled for. Five out of 25 PET D2R studies corrected for 

genetic ancestry or self-reported ethnicity 242526. Future D2R imaging genetic studies should 

thus correct for genetic ancestry, e.g., 46, 47, or study populations that are relatively 

homogenous and hence not subject to the problem of unrecognized stratification 48.

Our findings may well have been a result of environmental exposures that are likely to differ 

between ethnic groups. Human genetic variation largely differs within - not between - 

human populations, and structural inequality in society largely explains racial differences in 

health status for common disease 49. We attempted to correct for socioeconomic status, but 

could not do so extensively; since our measure of SES (i.e., average per capita income based 

on a person’s ZIP code) was negatively associated with ancestry as well as positively with 

D2R, the problem of residual confounding arises 50. From studies in animals we have 

learned that higher-ranking cynomolgus monkeys 9, 10, 12 and rats 51 have higher levels of 

D2R in striatum than subordinate ones, and SES has been shown to be correlated with 

striatal D2R in humans 11, 13. Therefore, caution must be taken when interpreting the current 

results as a result of genetic ancestry, for they may have been influenced by social stressors 

known to differ between ethnic groups in the US such as perceived discrimination, social 

exclusion, childhood trauma, nutrition, general health and other factors 525354. In our study, 

it is therefore not possible to disentangle the contribution of social factors known to 

influence D2R expression in the brain from intrinsic biological factors, as is the case in 

many studies where the intent is to determine causal explanations of disparities 55. Further 

limitations include the limited sample size; while our sample comprised of 117 healthy 

participants is larger than any previous PET imaging genetics studies that assessed brain 

D2R as an outcome measure (ranging from N=12 25 to N=84 24), it is nevertheless small 

compared to samples of behavioral genetic studies limiting our ability to detect diversity 

within ethnic subgroups.

In this study we corroborate an association between genetic ancestry and D2R availability in 

dorsal but not in ventral striatum. Since the dorsal striatum predominantly contains D2 
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receptors whereas the ventral striatum contains equivalent levels of D2 and D3 receptors, the 

differences in these regions might indicate that the association with D2R availability 

predominantly reflect D2 and not D3 receptors. However, it is also possible that the 

differences reflect greater sensitivity of dorsal rather than ventral striatal regions to 

environmental factors 56.

The findings have two major implications: (1) future studies investigating D2 receptor genes 

should include covariate adjustment for genetic ancestry, or study a homogeneous 

population; and (2) given significant SES differences between racial/ethnic groups in the 

USA, our results may be consistent with prior preclinical and human studies showing 

adverse effects of social stressors on striatal D2R. A more thorough evaluation of 

environmental correlates of ethnicity that potentially mediate its effects on striatal D2R is 

needed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
African ancestry negatively predicted D2R availability in the caudate and putamen 

(p<0.0001), but not ventral striatum (VS); corrected for age, sex, BMI, education, smoking 

status and estimated socioeconomic status based on individuals’ ZIP codes (per capita 

income and housing units occupied by owner).
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Figure 2. 
European ancestry positively predicted D2R availability in the caudate and putamen 

(p<0.0001), but not ventral striatum (VS); corrected for age, sex, BMI, education, smoking 

status and estimated socioeconomic status based on individuals’ ZIP codes (per capita 

income and housing units occupied by owner).
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Table 1

Demographics, ancestry informative markers and striatal D2R availability in N=117 volunteers. Measures of 

D2R availability correspond to non-displaceable binding potential (BPND).

Characteristic

Healthy Volunteers N=117

Mean SD Range

Age, years 33.1 8.4 18–49

Years of education 14.2 2.1 9–20

BMI 25.4 3.1 18.5–31.2

Census tract: per capita income/national average 1.0 0.62 0.4–3.8

Census tract: housing units occupied by owner/national average 0.52 0.36 0.05–1.4

AIMs Africa 0.44 0.36 0.00–0.98

AIMs Europe 0.49 0.35 0.00–0.99

AIMs Asia 0.02 0.02 0.00–0.11

AIMs Far East Asia 0.01 0.02 0.00–0.13

AIMs Oceania 0.01 0.01 0.00–0.08

AIMs America 0.04 0.08 0.00–0.60

D2R Caudate 2.6 0.52 1.5–4.0

D2R Putamen 3.3 0.57 2.0–4.8

D2R VS § 2.9 0.45 1.8–4.0

Abbreviations: Aims = Ancestry informative markers; BMI = body mass index, D2R = Dopamine D2/D3 receptor availability, VS = ventral 
striatum

§
In VS [11C]raclopride reflects binding to both D2 and D3 receptors whereas in caudate and putamen it largely reflects binding to D2 receptors.
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