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Abstract

Background: While sex hormones and their receptors play well-known roles in pro-

gression of primary tumors through direct action on sex steroid hormone-responsive

cancer cells, emerging evidence suggest that hormones also play important roles in

metastatic progression by modulating the tumor microenvironment. Estrogens and

androgens synthesized in gonads and within the brain influence memory, behavior,

and outcomes of brain pathologies. Yet, their impact on brain metastatic colonization

and progression is just beginning to be explored.

Recent findings: Estradiol and testosterone cross the blood-brain barrier and are syn-

thesized de novo in astrocytes and other cells within the adult brain. Circulating and

brain-synthesized estrogens have been shown to promote brain metastatic coloniza-

tion of tumors lacking estrogen receptors (ERs), through mechanisms involving the

upregulation of growth factors and neurotrophins in ER+ reactive astrocytes. In this

review, we discuss additional mechanisms by which hormones may influence brain

metastases, through modulation of brain endothelial cells, astrocytes, and microglia.

Conclusion: A greater understanding of hormone-brain-tumor interactions may shed

further light on the mechanisms underlying the adaptation of cancer cells to the brain

niche, and provide therapeutic alternatives modulating the brain metastatic niche.
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1 | INTRODUCTION

In the past decade, major advances have been made in understanding

the cellular and molecular mechanisms that regulate brain metastasis

(reviewed in 1). Specific interactions within the tumor microenviron-

ment (TME) have emerged as key to the ability of cancer cells to colo-

nize distant sites, including the brain.2-6 While some of the

interactions between cancer cells and the microenvironment are com-

mon between primary tumors and metastases to various organs,

cancer cells that reach the brain encounter a more isolated, highly

reactive microenvironment protected by the blood-brain barrier

(BBB), which blocks entry of many circulating molecules and cells

found in other organs.7 It is now known that brain metastatic coloni-

zation is a relatively rare event in which circulating tumor cells are

arrested at brain capillaries, extravasate into the brain parenchyma,

survive anti-tumorigenic effects of brain immune-surveillance cells,

including microglia and astrocytes, and colonize the brain niche by

growing around existing vessels and adapting to the unique brain
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microenvironment.3,8-11 Interaction of cancer cells with brain endo-

thelial cells, glial cells, and pericytes are critical for the initial steps of

metastatic colonization as well as outgrowth to large mac-

rometastases, in a process that spans months to years from primary

tumor diagnosis.

It is well recognized that sex hormones influence both normal and

pathological brain functions (reviewed in 12-15), but until recently,

how the hormonal milieu could influence brain metastases remained

unexplored. While both males and females develop brain metastases,

age and sex influence the metastatic incidence within specific tumor

types. For example, lung brain metastases occur with similar fre-

quency between men and women (18.9% vs 21.8%, respectively),

while melanoma brain metastases occur more frequently in men than

women (8.7% vs 4.8%, respectively).16 Younger age and female sex

were reported as significant risk factors for subsequent brain metasta-

sis in a subset of advanced non-small cell lung cancer cases.17 In pre-

dominantly female breast cancer, young age is a predictive factor for

the development of brain metastasis independent of tumor subtype,

suggesting age-dependent and host-specific factors promote metasta-

ses in younger women.18-20

Although the function of sex hormones (estrogens and andro-

gens) in cancer progression has been best defined in terms of their

pro-tumorigenic function on sex hormone-receptor expressing cancer

cells (see key reviews on this topic21-25), their roles in the brain are

more varied and complex. Sex hormones act throughout the entire

brain of both males and females modulating many cellular and molecu-

lar processes, which in turn alter the structure and function of specific

brain compartments. In this review, we will discuss the known roles of

estrogens and androgens in brain function, and how they may impact

brain metastasis through their action on key components of TME.

1.1 | Peripheral synthesis of sex steroid hormones

The predominant circulating sex steroid hormones after puberty are

estrogens in females and testosterone in males. In both sexes, the

gonads and adrenal glands synthesize estrogens and androgens and

release them into circulation. In females, three major forms of physio-

logical estrogens are present: estrone (E1), estradiol (E2), and estriol

(E3). Before menopause, E2 is the most potent circulating estrogen,

while E1 is more important after menopause. E3 is the least potent

estrogen, though it plays a larger role during pregnancy when it is pro-

duced in large quantities by the placenta.26

In premenopausal women estrogens are synthetized from cho-

lesterol, mainly in the ovaries and during pregnancy by the placenta,

acting as an endocrine factor to maintain ovulation and reproduc-

tive capability (reviewed in 27-29). The level of circulating estrogens

depends upon the reproductive status of the individual and is

highest during the reproductive years30 (Table 1). At menopause,

circulating estrogen levels undergo a sustained drop, but androgen

production experiences only a small, gradual decline by the ovaries

and adrenal glands. After menopause, the ovaries maintain secretion

of testosterone and androstenedione, which are converted to E2

and E1 in the breast and other tissues by aromatase enzyme

(CYP19).33

In males, the much greater levels of circulating testosterone pro-

duced by the mature testes generate and maintain the sexual pheno-

type (Table 1). However, testes also produce about ~20% of

circulating estrogens, with the remainder from local production by adi-

pose tissue, brain, skin, and bone, through conversion of testosterone

to estrogen by aromatase.34,36,37 Estrogens have thus emerged as the

active factors in mediating many of testosterone's effects on target

tissues in adult males.37,38

While peripheral sex hormone synthesis is generally well-

regulated in healthy individuals, cytotoxic drugs and radiation thera-

pies used to treat systemic and brain metastatic tumors can derail

these processes in some patients. When radiotherapy is used to treat

brain metastasis, inclusion of the hypothalamic-pituitary axis in the

radiation fields can lead to neuroendocrine dysfunction. In a longitudi-

nal trial of patients with brain gliomas, half of premenopausal women

TABLE 1 Circulating levels of sex hormones in adults

Hormone Female levels Male levels

E1 Early follicular:

Mid cycle:

Luteal:

Postmenopausal

190.13

(1.85-761.99)

pM31

290.37

(13.21-1908.68)

pM31

314.05

(33.03-1413.02)

pM

140.2 ± 51 PM*32

91.7 (48.8-164.2)

pM33

43-464 PM34

E2 Early follicular:

Mid cycle:

Luteal:

Postmenopausal:

194.20

(5.51-2301.72)

pM31

453.37

(5.51-3582.9)

pM31

466.22

(5.51-1997.02)

pM31

2.5 ± 8.9 PM*32

19.5 (9.9-40.4)

pM33

29-197 PM
34

T Early follicular:

Mid cycle:

Luteal:

Postmenopausal:

0.32 (0.04-0.85)

pM31

0.35 (0.09-1.01)

pM31

314.05

(33.03-1413.02)

pM31

721.2

(377.9-1362.6)

pM33

&17 680

± 5500

PM*35

Note: To facilitate comparisons, values originally reported as pg/mL,

ng/mL, and ng/dL were converted to SI units (pM) using the following

molecular weights: E1, 207.366 g/mol; E2, 272.29 g/mol; and

Testosterone, 288.42 g/mol. *Values are mean ± SD. All others are median

(range).
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at study entry developed premature menopause, and 37% of men

aged less than 50 years had low levels of testosterone.39 Similarly,

cytotoxic drug treatments in premenopausal women can induce pre-

mature ovarian failure, with consequently altered synthesis of ovarian

E2.40 Thus, sex hormone function alterations as a result of brain

metastasis treatments could also play a role in the progression of brain

metastasis.

2 | CENTRAL SYNTHESIS OF SEX-STEROID
HORMONES IN THE ADULT BRAIN

Because of their lipophilic natures, estradiol and testosterone can

cross the BBB. However, the movement of these hormones across

the BBB is thought to reflect the combined effects of their lipid solu-

bility and the presence of circulating binding proteins such as albumin

or sex-hormone binding globulins.41-45 Therefore, the levels of circu-

lating hormones may not reflect local availability and function of sex

hormones in the brain. Korneyev et al demonstrated that pregneno-

lone, the first steroid formed by mitochondrial oxidative cleavage of

cholesterol, is synthesized in the forebrain, cerebellum, and olfactory

bulb of adrenalectomized and castrated Sprague-Dawley male rats

treated with trilostane (an inhibitor of pregnenolone metabolism from

progesterone), demonstrating the functionality of brain cytochrome

P450 side-chain cleavage (CYP11A1), as well as the ability of the brain

to produce sex hormones de novo.46 In the brain, astrocytes are the

most active steroidogenic cells (at least in murine models), expressing

CYP11A1, 17alpha-hydroxylase/C17-20-lyase (CYP17), 3beta-

hydroxysteroid dehydrogenase (3β-HSD), 17beta-hydroxysteroid

dehydrogenase (17β-HSD), and cytochrome P450 aromatase

(CYP19A1).47 Astrocytes have been shown to produce pregnenolone,

progesterone, dehydroepiandrosterone (DHEA), androstenedione, tes-

tosterone, E2, and E1. Oligodendrocytes express only CYP11A1 and

3β-HSD to produce pregnenolone, progesterone, and androstenedi-

one, but lack the enzymes necessary to produce DHEA, testosterone,

or estrogens. Neurons express CYP11A1, CYP17, 3β-HSD, and

CYP19A1 to produce pregnenolone, DHEA, androstenedione, and

estradiol, but do not express 17β-HSD or produce testosterone47,48

(Figure 1).

Brain E2 biosynthesis from androgenic precursors (testosterone

and androstenedione) by the aromatase enzyme has been recognized

for several years.54-56 Early studies using 3H-testosterone demon-

strated aromatase activity in homogenates of hypothalamus,57 amyg-

dala, and hippocampus58 from human fetuses, and also other

mammals.59-64 However, brain aromatase expression is regulated in a

species- and region-selective manner. In humans, the regional distri-

bution pattern of aromatase was found to be strikingly different from

the distribution reported in non-human primates (baboon and rhesus

monkey) and rodents.65,66 Biegon et al used a radiolabeled aromatase

ligand ([11C]vorozole) alone or in combination with the aromatase

inhibitor letrozole to trace regional aromatase distribution by positron

emission tomography, they reported a highly heterogeneous distribu-

tion of aromatase activity, with the highest levels in the thalamic

nuclei, followed by moderately high levels in amygdala, preoptic area

(POA), and medulla and low levels in cortex, putamen, cerebellum,

and cortical white matter.65 Premenopausal women showed higher

aromatase activity than postmenopausal women but brain uptake of

C-vorozole did not vary across the menstrual cycle in pre-menopausal

women,66 suggesting that brain E2 synthesis (or at least aromatase

function) is not regulated by circulating levels of E2. Males showed

increased brain aromatase activity compared to healthy females,

supporting the notion that brain estrogens mediate brain-functions in

males and females. Given that testosterone can also be reduced to

dihydrotestosterone in the brain (Figure 1), and that dihydrotestoster-

one is a more potent androgen than testosterone,15 regulation of aro-

matase and 17β-HSD is likely to play key roles in defining the ultimate

action of sex hormones in the male and female brain.

Neurons, astrocytes, and endothelial cells from rodents and

humans express aromatase.38,67-72 Increased brain aromatase

expression or activity have been demonstrated following hypoxia

and ischemia,73,74 increased pressure,68 and mechanically or chemi-

cally induced brain injuries in male and female rodents.75 Similarly,

F IGURE 1 Steroid hormone synthesis by the mammalian brain.
Steroid hormones are derived from cholesterol, and several cells
within the brain niche possess all the enzymes required to synthesize
sex-hormones de novo. Astrocytes and neuron express all enzymatic
machinery StAR (Steroidogenic acute regulatory protein); CYP11A1 or
P450scc (Cholesterol side-chain cleavage enzyme); 3β-HSD (3-beta-
hydroxysteroid dehydrogenase); CYP17 (17-alpha-hydroxylase/17,20
lyase) and 17β-HDS (17β-Hydroxysteroid dehydrogenase) and
aromatase to produce progesterone, testosterone, and E2 from
cholesterol. Microglia express StAR and 17β-HDS and are able to
synthetize testosterone and androstenodiol from androgenic
C19-steroids. Oligodendrocytes express StAR /CYP11A1 and 3β-HSD
to produce progesterone in the brain47,49-53
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aromatase upregulation appears to be a response to reactive gliosis

initiated by brain metastases, as aromatase can be detected in reac-

tive astrocytes from resected breast cancer brain metastasis

(unpublished data). Recent studies showed that ovariectomy com-

bined with the aromatase inhibitor Letrozole was more effective in

blocking brain metastatic colonization in an experimental model of

estrogen-unresponsive (triple negative) breast cancer brain metas-

tasis, compared to ovariectomy alone.76,77 This provided the first

pre-clinical evidence that both ovarian and peripheral E2 contribute

to brain metastatic colonization by acting on the brain microenvi-

ronment rather than the tumor itself. However, whether aromatase

inhibition could decrease metastatic colonization by other primary

tumors, and whether this function is similar in males and females,

remains unclear.

3 | SEX HORMONE SIGNALING IN BRAIN
METASTASIS: DIRECT ACTION ON CANCER
CELLS

Direct mechanisms of sex hormone function on cancer cells have

been extensively described in the context of hormone receptor-

positive (HR+) breast and prostate cancer (reviewed in 24, 78, and

79), and similar mechanisms likely impact HR+ growth in the brain

(Figure 2A,B). In this section, we will briefly review mechanisms of

direct hormone signaling in cancer cells, followed by evidence linking

hormone receptor function to brain metastasis progression of HR+

brain metastasis. In Figure 2, we provide an integrated summary of

how sex hormones acting directly on cancer cells and the brain niche

may participate in brain metastasis.

F IGURE 2 Mechanisms by which sex hormones may influence brain metastasis. A, Direct action of local estrogens is likely to influence
proliferation of ER+ breast cancer brain metastasis. B, Direct action of androgens on AR+ brain metastasis can have proliferative and anti-
proliferative effects in tumor cells. C, Estrogen may influence the ability of metastatic cancer cells to form pseudosynapses with neurons.
D, Estrogens can modulate BBB permeability by regulating endothelial tight junctions and pro-angiogenic factors (VEGF, HIF). E, E2 acts through
ER+ reactive astrocyte to increase secretion of growth factors that activate canonical oncogenic epidermal growth factor receptor (EGFR) and
TRKB on brain metastatic cancer cells. F, Estradiol may promote microglia polarization and recruitment of immunosuppressive cells to the brain
niche
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Estrogens act via estrogen receptors (ERs, ERα, and ERβ) or

through G protein-coupled ER1 (GPER1, also known as GPR30).80,81

Estrogen binding to these receptors initiates classic nuclear-initiated

steroid signaling (NISS, also known as genomic signaling) and

membrane-initiated steroid signaling (MISS, previously known as non-

genomic signaling).82 During NISS, E2 binding triggers intracellular

localization of ERα and ERβ, which dimerize and enter the nucleus,

binding to E2 response elements (EREs), or activator protein-1 (Ap1)

and specificity protein-1 (Sp1), on the promoter of E2 responsive

genes to regulate transcription. In the MISS pathway, E2 binds to

membrane-bound ERα and ERβ receptors as well as GPR30 to rapidly

activate nuclear transcription factors via the MAPK pathway.56,83-85

By contrast, androgens bind to one androgen receptor (AR) and signal

through NISS.86 The AR is primarily located in the cytoplasm. Follow-

ing ligand-binding, AR translocates to the nucleus to bind androgen

response elements. This enables recruitment of histone

acetyltransferases, coactivators, and other proteins crucial for tran-

scriptional machinery.87-89 Some studies suggest that MISS can be

induced by testosterone; however, whether this occurs via

membrane-bound AR or an unknown receptor remains unclear.83,90,91

Estrogens are well known to play a mitogenic role in breast

cancer via direct activation of ERα and endocrine therapy (ie, Selec-

tive ER Modulators, ER-antagonists, and aromatase inhibitors) are

the main form of targeted therapy for these tumors. The direct role

for estrogens on brain metastasis of ER+ breast tumors has

received less attention, due to the clinical observations that (a) the

incidence of brain metastasis is lowest in patients with ER+ breast

tumors compared to breast tumors lacking ER (ie, HER2+ or Triple

Negative Breast cancer, TNBC)92,93; (b) receptor conversion, partic-

ularly loss of hormone receptors, is a common event in brain metas-

tases from breast cancer, and endocrine therapy may increase its

incidence94-96; and (c) metastatic disease in ER+ disease is often a

late life event occurring mostly in post-menopausal women with

low levels of circulating estrogens. Yet, around 11% of ER + Her2-

and 15% of Her2+ ER+ patients with metastatic breast cancer

develop brain metastases,97 suggesting that extragonadal hormone

production in the brain and other organs might drive the slow but

eventual development of hormone-dependent metastases in post-

menopausal women. Supporting this hypothesis, a recent study

investigating the impact of endocrine therapy after diagnosis of

brain metastasis on outcome and clinical course of disease in

patients with ER+ metastatic breast cancer, found that continuing

endocrine therapy after brain metastasis diagnosis was associated

with a significantly prolonged overall survival.98 Unfortunately,

models of brain metastatic ER+ breast cancer are limited, and ER+

breast cancer cells commonly used to study primary tumor growth

in xenograft models require estrogen supplementation to mimic

estrogen levels found in humans. Thus, a model of ER+ brain metas-

tasis that grows in a postmenopausal setting common to ER+ breast

cancer brain metastasis remains a challenge.

Androgens also play a role in breast, melanoma, and lung cancer

primary tumor growth, and may impact their metastasis through simi-

lar mechanisms.24,25,99,100 AR is expressed in several types of lung

cancer, including small cell, adenocarcinoma, and squamous cell

carcinoma,100 and dihydrotestosterone (DHT) induces a proliferative

response in lung cancer cells through cross-talk of AR and EGFR.99 In

breast cancer, 60% to 90% of human breast tumors express AR,101,102

though biological effects of androgens vary in different breast cancer

models,103-105 with both anti-proliferative106-109 and proliferative

effects reported.110,111 However, the extent to which androgen/AR

function plays a direct role on brain metastases from breast or other

tumors remains to be defined.

4 | SEX HORMONE SIGNALING IN BRAIN
METASTASIS: INDIRECT ACTION ON THE
BRAIN NICHE

Androgens regulate a wide array of neural functions, from reproduc-

tion to mood and cognitive abilities.91,112 In the human brain, nuclear

and cytoplasmic AR immunoreactivity has been shown in frozen and

paraffin-embedded sections of the temporal cortex, specifically in

neurons, astrocytes, oligodendrocytes, and microglia cells.113 In

rodents, both male and female brains show strong AR activity in spe-

cific regions of the brain including the cerebral cortex, thalamus, and

pituitary gland.114

Estrogens act via ERα and ERβ and signal through NISS and

MISS.115,116 ERs are expressed widely in different brain regions and

cells, mediating E2-signaling in a cell type and region specific man-

ner.117 The expression of ERα is strongly in brain regions such as the

POA, bed nucleus stria terminalis (BNST), amygdala, periventricular

nucleus, ventrolateral part of the hypothalamic ventromedial

nucleus, and the arcuate nucleus. Likewise, ERβ is found in many of

the same regions than ERα but is more highly expressed in the BNST,

POA, paraventricular nucleus of the hypothalamus, and supraoptic

nuclei, with some variation across species. ERα and ERβ are also

found in other brain regions including the hippocampus, midbrain,

cortex, diagonal band of Broca, and basal nucleus of Meynert

(reviewed in 117). High GPR30 expression has been shown in the

hypothalamic-pituitary axis, hippocampal formation, and brainstem

autonomic nuclei.118 There is evidence that GPR30 receptors are

two to four times more abundant than ERα or ERβ in the prefrontal

cortex of the rat.119

Expression of specific ERs varies during aging120 and also during

brain pathology. For example, brain ischemia models demonstrate a

twofold to threefold increase in ERα, whereas ERβ expression in neu-

rons decreases.121,122 Importantly, ERα, ERβ, and/or GPR30

are expressed in key subcellular compartments within the brain meta-

static niche, including neurons, endothelial cells, astrocytes, and

microglia.123,124 In the next section, we explore the mechanisms by

which sex hormones can influence these cell types and their potential

impact on brain metastases. Given the difficulty in differentiating

between the effects of T vs those of brain-produced E2, we will focus

on the better-understood roles of estrogen in regulating neuronal

function, the BBB, and neuro inflammation that could influence brain

metastasis.

CONTRERAS-ZÁRATE AND CITTELLY 5 of 13



4.1 | Hormonal regulation of neuronal function

Recent studies have demonstrated that brain metastatic growth of

breast cancer cells depends on their ability to form synapses with gluta-

matergic neurons.125 Breast cancer lines selected for their proficiency in

causing brain metastases showed high expression of phospho-GluN2B

and other subunits of N-methyl-D-aspartate receptor (NMDAR), as well

as NMDAR-mediated currents and calcium transients in response to glu-

tamate or NMDA.126 Similar findings in glioma cells127,128 suggest that

the existence of synaptic structures involving presynaptic neuros and

tumor cells post-synapsis may be common to brain metastasis and pri-

mary brain tumors. Hormones could influence this newly recognized

“synaptic” interaction of cancer cells with neurons.

For example, estrogen plays important roles in cognitive function,

mediated by its ability to rapidly enhance excitatory synaptic trans-

mission, especially via NMDAR-mediated synaptic activity and long-

term potentiation (LTP).129-133 Estrogen promotes the formation of

new dendritic spines and excitatory synapses in the hippocampus and

cortex134 via the activation of membrane ERs,135 which subsequently

enhance NMDAR transmission and LTP.136,137 Acute E2 treatment

results in the recruitment of postsynaptic density protein 95 (PSD-95)

to novel dendritic spines, and the NMDA receptor subunit GluN1 is

recruited to nascent synapses in cortical neurons.138 Androgens and

the receptor have also been shown to play a role in remodeling of

spine synapsis in limbic brain areas,139 suggesting that both estrogens

and androgens could influence the ability of cancer cells to form syn-

apses in some brain regions. Future studies should address the extent

to which estrogen and potentially androgens modify the ability of can-

cer cells to form pseudosynapses.

4.2 | Hormonal regulation of brain endothelial
function

Brain endothelial cells are the first cell-type encountered by dissemi-

nated cancer cells at metastatic sites, and studies have shown that

cancer cells produce a variety of molecules that destabilize

endothelial-tight junctions and allow extravasation. Brain endothelial

cells express ERs and E2 is a well-known regulator of endothelial cell

function,140 however, a comprehensive characterization of the effects

of E2 on brain endothelial cells and its impact on the blood-tumor bar-

rier are largely unknown.

E2 has been shown to promote primary tumor progression and

metastasis by increasing intratumoral vessel density and improving

vessel stabilization to prevent tumor hypoxia and necrosis,141 thus it

could be predicted that similar pro-tumorigenic effects take place at

the blood-tumor barrier. Since brain metastases have been shown to

grow in close attachment to existing vessels (vessel co-option), it is

likely that estrogenic function in brain endothelial cells plays a role

regulating cell migration and intravasation of circulating cancer cells

through the brain parenchyma and outgrowth of micrometastases.

However, E2 regulates endothelial cells and BBB function in manners

that would predict pro-metastatic and anti-metastatic effects. For

example, E2 induces vasodilatation by increasing nitric oxide synthesis

through ERα-dependent MISS, activation of Pi3K/AKT pathway and

GPR30 signaling.142-145 Increased vascular permeability and vasodila-

tion at early stages of brain metastases may promote brain metastasis

by increasing tumor blood flow. On the other hand, estrogens

decrease BBB permeability by directly regulating expression of tight

junction proteins such as claudin 5.146 In a mouse model of lipopoly-

saccharide (LPS)-induced inflammation, ovariectomy alone did not

affect the degree of basal Evans blue dye extravasation, but the pres-

ence of LPS (3 mg/kg body weight i.p. assessed 4 hours post-injection)

significantly enhanced paracellular permeability.147 Thus, increased E2

levels could predict a decrease in paracellular permeability that would

oppose cancer cell extravasation and brain colonization. How para-

crine effects of E2 on brain endothelial function may impact brain

metastases remains to be addressed experimentally.

4.3 | Hormonal regulation of neuroinflammation

4.3.1 | Direct effects on astrocytes

Interactions of metastatic cells with astrocytes occur at both early and

late stages of the colonization process and play pro-tumorigenic as well

as anti-tumorigenic role. Induction of astrogliosis (activation of astro-

cytes and microglia) is an early event during metastatic colonization.148

Valiente et al proposed that early contacts between tumor cells and

astrocytes result in tumor cell death of the majority of tumor cells

reaching brain, and only a subset of cells can adapt to avoid this pro-

apoptotic fate.10 Both testosterone and estrogens decrease astrogliosis

elicited by various brain insults in animal models. For example, early and

delayed administration of testosterone or E2 resulted in a significant

decrease in the number of vimentin-immunoreactive astrocytes as well

as reactive microglia in a model of brain injury in rodents.149 Thus, it is

tempting to speculate that increased local levels of estrogens (ie, in

brains of younger females and males) or testosterone (in male brains)

could suppress early cancer-cell elicited astrogliosis and favor the sur-

vival of disseminated tumor cells.

Accumulating evidence shows that reactive astrocytes switch

from a tumor-suppressive stage to a tumor-promoting role at later

steps of the metastatic cascade and that astrogliosis is exploited by

the tumor cells to support their growth.5,150-152 Reactive astrocytes

surrounding human brain metastasis as well as experimental brain

metastasis models express ERs, and E2-treated astrocytes have been

shown to activate key pro-metastatic pathways in cancer cells to pro-

mote brain metastatic colonization.76,77 For example, E2 was shown

to upregulate brain-derived neurotrophic factor (BDNF) and epidermal

growth factor in ER+ astrocytes, which then activate their cognate

receptors tropomyosin receptor kinase B (TrkB) and EGFR in breast

cancer cells, promoting tumor-initiating capability, migration and inva-

sion. These studies provided a molecular mechanism by which E2 can

influence oncogenic signaling in cancer cells to promote brain coloni-

zation. Importantly, testosterone has been shown to increase BDNF

expression in hippocampal neurons,153 suggesting that upregulation
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of BDNF by androgens may impact metastatic colonization in males

as well. This can be particularly relevant for brain metastasis derived

from primary lung cancer, which is often dependent on tyrosine

receptor kinase signaling.154

It has been shown that the formation of gap junctions between

astrocytes and tumor cells through connexin 43 (CX43), allows the

passage of cyclic guanosine monophosphate-adenosine monop-

hosphate, which activates the stimulator of interferon genes (STING)

pathway in astrocytes and promotes expression of IFNα and TNFα to

further facilitate brain metastatic growth.155 Interestingly, hypotha-

lamic CX43 expression is regulated by steroid hormones in a brain

region-specific and sexually dimorphic manner. Estrogen alone or in

combination with progesterone significantly increased CX43 protein

levels in some regions of the female rat brain, while both hormones

significantly decreased CX43 levels in equivalent regions of male rat

brains.156 Therefore, gap junctional communication with astrocytes

can differentially influence brain metastatic colonization in males and

females under various hormonal stages.

Immunosuppressive mechanisms are vital to the survival and out-

growth of disseminated cancer cells157 and astrocytes play key roles in

the modulation of innate and acquired immunity in brain metastases.3,158

Consistent with pro and anti-tumorigenic roles of astrocytes in brain

metastatic progression, estrogens can induce pro-inflammatory (tumor

suppressive) and immune-suppressive (tumor promoting) features in

astrocytes. Physiological and pharmacological concentrations of E2

exhibit potent anti-inflammatory activity in the central nervous system

(CNS) by suppressing production of pro-inflammatory cytokines, such as

IL-6, IL-1β, and TNFα in many neurological disorders.159 However, many

studies that address the anti-inflammatory properties of E2 in the brain

and periphery have yielded different results depending on many factors,

including the disease model, species, experimental outcome, whether the

study is in vivo or in vitro, estrogenic formulation, and concentration of

E2 or other estrogens.160-162 In the brain, activation of ERα by E2,

directly repressed NFκβ-dependent transcription and suppressed TNFα-

induced NFκB recruitment to the CCL2 enhancer in reactive astrocytes,

suppressing astrocytic CCL2 production in a model of experimental aller-

gic encephalomyelitis.163-165 In contrast, E2 did not attenuate CCL2

levels in a model of LPS-induced neuroinflammation.166 Given that

CCL2-expressing astrocytes mediate the extravasation of T lymphocytes

in the brain, and that CCL2 facilitates the process of both migration and

infiltration of several cell systems such as monocytes, natural killer cells,

T lymphocytes, and memory cells,167 defining how E2 modulates astro-

cytic CCL2 expression during different stages of metastatic colonization

may shed light into the specific contribution of E2 to the transition of a

tumor-suppressive early brain niche to a tumor-promoting immunosup-

pressive late brain niche.

4.3.2 | Direct effects on microglia

Additional to their effects on astrocytes, sex hormones can also

directly influence microglia activation and polarization states. Follow-

ing brain lesions, microglia become active and assume an amoeboid

phenotype and a high metabolic rate, synthesizing and secreting sev-

eral cytokines, such as interleukin IL6, IL1β, and TNFα.168,169 E2 also

inhibited microglia activation via GRP30 in a model of ischemic

stroke.170 In ovariectomized rats, low-dose E2 profoundly suppressed

microglia activation and quantitatively shifted microglia from their

“activated,” amoeboid morphology to a “resting” state. Further studies

using previously defined nomenclature to classify macrophage polari-

zation states into pro-inflammatory, anti-tumor M1 macrophages, and

immune-suppressive, tumor-promoting M2 macrophages, showed

that E2 robustly suppressed the “pro-inflammatory” M1 phenotype,

while enhancing the “anti-inflammatory/immune-suppressive” M2

microglia phenotype in the hippocampus after global cerebral ische-

mia.171 In vitro, E2 acts via estrogen receptor β (ERβ) to enhance the

phagocytic clearance of apoptotic cells, and stimulation of either ERβ

or GPR30 promoted the adoption of an anti-inflammatory/immune

suppressive phenotype.172,173 However, in a model of endotoxin-

induced brain inflammation, expression of genes encoding key cyto-

kines involved in the transfer from the innate to adaptive immunity

(TLR2, TNF-α, and IL-12) in microglial cells was largely inhibited in the

brain of ovariectomized mice at 24 hours post-challenge, and E2 res-

cues this effect in an manner dependent on ERα.174 Specific studies

addressing how hormones alter microglial function in the context of

brain metastases are necessary to fully understand their contribution

to the pathogenesis of brain metastasis.

4.3.3 | Effects on systemic immune infiltration in
the brain

Recent studies have shown that E2 plays a pro-tumorigenic role in pri-

mary tumors that lack ERs through driving the mobilization of

myeloid-derived suppressor cells (MDSCs) and enhancing their intrin-

sic immunosuppressive activity in vivo.175-177 This effect of E2

appears to involve direct as well as paracrine function of E2 on

MDSC. Direct E2 binding to ERα activates the STAT3 pathway in

human and mouse bone marrow myeloid precursors by enhancing

JAK2 and SRC activity,175 and directly enhances both the expansion

and suppressive activity of M-MDSCs.178 Indirectly, estrogen stimu-

lates cancer-associated fibroblasts to secrete SDF-1α, which can

recruit tumor-infiltrating MDSCs to the TME.179 Additional to effects

on MDSCs, E2 can increase the immune tolerance of tumors by pro-

moting proliferation of the immunosuppressive CD4+ CD25+ Treg

phenotype,180 and increasing FOXP3 expression in Treg via ERα.181

However, there are no reports defining whether similar mechanisms

play a role in the context of brain metastasis, particularly in early

stages of brain metastatic colonization where the BBB is still intact

and traffic of MDSCs to the brain niche might be limited.

5 | CONCLUDING REMARKS

While the critical role of the brain microenvironment in brain metastases

is now well recognized, the complexity of the interactions between
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cancer cells and specialized cells within the brain niche adds to the chal-

lenge of identifying effective and safe therapeutic strategies to target the

pro-metastatic events occurring within the brain niche. Preclinical data

using ER- breast cancer models in female mice suggest that sex-hor-

mones, particularly E2, plays a pro-metastatic function at least in this

subset of tumors. While the mechanisms by which E2 promotes metasta-

sis remain to be fully elucidated, a promising therapeutic strategy may

involve the use of estrogen-depletion therapies including aromatase

inhibitors, which are already FDA-approved for the treatment of ER+

breast cancers. Given the pleiotropic roles of estrogens in normal brain

functioning, it is critically important to balance the antitumoral benefits

of such therapies with the possible mood and cognitive impairments

associated with brain estrogen-deprivation. Additional studies are

needed to define whether aromatase inhibition has therapeutic value in

males and in brain metastases from lung cancer and melanoma, and to

further elucidate the mechanisms by which sex-hormones alter early and

late stages of brain metastatic colonization.
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