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Background: This study aimed to explore the impact of hypoxic hepatitis (HH)

on survival in heart failure (HF) patients and to develop an effective machine

learning model to predict 30-day mortality risk in HF patients with HH.

Methods: In the Medical Information Mart for Intensive Care (MIMIC)-III and

IV databases, clinical data and survival situations of HF patients admitted to

the intensive care unit (ICU) were retrospectively collected. Propensity Score

Matching (PSM) analysis was used to balance baseline differences between

HF patients with and without HH. Kaplan Meier analysis and multivariate Cox

analysis were used to determining the effect of HH on the survival of CF

patients. For developing a model that can predict 30-day mortality in CF

patients with HH, the feature recurrence elimination (RFE) method was applied

to feature selection, and seven machine learning algorithms were employed

to model construction. After training and hyper-parameter optimization (HPO)

of the model through cross-validation in the training set, a performance

comparison was performed through internal and external validation. To

interpret the optimal model, Shapley Additive Explanations (SHAP) were used

along with the Local Interpretable Model-agnostic Explanations (LIME) and the

Partial Dependence Plot (PDP) techniques.

Results: The incidence of HH was 6.5% in HF patients in the MIMIC cohort.

HF patients with HH had a 30-day mortality rate of 33% and a 1-year mortality

rate of 51%, and HH was an independent risk factor for increased short-term

and long-term mortality risk in HF patients. After RFE, 21 key features (21/56)

were selected to build the model. Internal validation and external validation

suggested that Categorical Boosting (Catboost) had a higher discriminatory

capability than the other models (internal validation: AUC, 0.832; 95% CI,
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0.819–0.845; external validation: AUC, 0.757 95% CI, 0.739–0.776), and the

simplified Catboost model (S-Catboost) also had good performance in both

internal validation and external validation (internal validation: AUC, 0.801; 95%

CI, 0.787–0.813; external validation: AUC, 0.729, 95% CI, 0.711–0.745).

Conclusion: HH was associated with increased mortality in HF patients.

Machine learning methods had good performance in identifying the 30-

day mortality risk of HF with HH. With interpretability techniques, the

transparency of machine learning models has been enhanced to facilitate user

understanding of the prediction results.

KEYWORDS

hypoxic hepatitis, heart failure, machine learning, interpretability, prediction model

Introduction

Heart failure (HF) is a serious end-stage cardiac event where
hyperemia or hypoperfusion associated with reduced cardiac
output and cardiac dysfunction significantly lead to other organ
damage (1). Liver disease is common in patients with HF, as
it is highly sensitive to changes in blood flow. Approximately
20–30% of HF patients develop liver dysfunction as a result
of impaired cardiac function (2, 3). Hepatic congestion and/or
impaired arterial perfusion may contribute to liver damage in
the context of HF, including liver congestion, cardiac cirrhosis,
and, most severely, hypoxic hepatitis (HH) (3).

HH is a specific acute liver injury, also known as
“hypoxic liver injury,” “shock liver,” etc. and one of its
pathological features is a massive and transient increase in
serum transaminase activity resulting from hypoxic necrosis
of hepatocytes in centrilobular regions (4–6). In the intensive
care unit (ICU), HH is not uncommon; while, HF, respiratory

Abbreviations: HH, hypoxic hepatitis; HF, heart failure; MIMIC,
Medical Information Mart for Intensive Care; ICU, intensive care
unit; PSM, Propensity Score Matching; RFE, feature recurrence
elimination; HPO, hyper-parameter optimization; SHAP, Shapley
Additive Explanations; LIME, Local Interpretable Model-agnostic
Explanations; PDP, Partial Dependence Plot; Catboost, Categorical
Boosting; COVID-19,coronavirus disease 2019; EICU CRD/EICU, The
EICU Collaborative Database; ALT, alanine transaminase; AST, aspartate
transaminase; SQL, structured language; MV, mechanical ventilation;
RRT, renal replacement therapy; RBC, red blood cell; FFP, fresh frozen
plasma; SAPS II, simplified acute physiology score II; SOFA, sequential
organ failure; RFE-CV, feature recursive elimination- cross-validation;
XGBoost, eXtreme Gradient Boosting; SMOTE, Synthetic Minority
Oversampling Technique; LR, logistics regression; DT, decision tree;
SVM, support vector machine; RF, random forest; CatBoost, categorical
boosting; LightGBM, light gradient boosting machine; ROC, receiver
operating characteristic curve; AUC, area under the curve; MCC,
Matthews correlation coefficient; BUN, blood urea nitrogen; SCR, serum
creatinine; SPO2, saturation of pulse oxygen; MCHC, mean corpuscular
hemoglobin concentration; RDW, red blood cell distribution width;
S-Catboost, simplified Catboost model; DCA, Decision curve analysis;
ICE plot, individual conditional expectations plot; ICG-PDR, indocyanine
green plasma display rate; AKI, acute kidney injury.

failure, and septic shock are the disease basis in over 90% of
cases (5). HH was previously thought to be a hypoxic event
caused by rapid changes in hepatic blood flow. Henrion et al.
determined that the underlying mechanisms of HH in different
disease backgrounds may vary considerably by continuously
monitoring the hemodynamics of HH patients. Patients with
circulatory failure-related HH often experience a shocking state.
However, no hypotension or shock state episodes have been
observed in at least 50% of patients with chronic HF -related
HH (4). A similar phenomenon was also observed in the studies
conducted in Ebert EC and Tapper EB (7, 8).

About 49.1–94% of HH occurrences have the disease basis of
HF (9–11). HF can result in a long period of passive congestion
in the liver, impaired hepatic regulation of blood flow, and
minor hemodynamic disorders that can trigger hypoxic necrosis
of the liver. Hypoxia may also lead to liver injury when chronic
circulatory stress is present, when a reduced cardiac function
does not guarantee the proper perfusion and metabolism of
the liver, and when the hepatocytes are unable to compensate
for oxygen demand (8, 12, 13). A large retrospective study
found that HH is not uncommon in patients suffering from
HF and is found in approximately 5.4% of these patients (14).
A more serious challenge is the ultra-high mortality rate of
HF patients with HH, which can be as high as 24–40% (11,
15). There are currently several studies on HH that include
not only the entire population of HH patients in the ICU but
also studies based on specific disease backgrounds, such as
coronavirus disease 2019 (COVID-19), cardiogenic shock, and
cardiac arrest, among others (16–19). Though HF is the most
common disease basis for HH, only a few studies have been
performed on patients with HF-based HH. For this reason, we
focused on HF patients with HH in this study to understand
the impact of HH on the short- and long-term survival of these
patients. As there are no non-invasive and convenient tools to
assess the prognosis of these patients, we developed machine
learning models based on early clinical data to evaluate the
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mortality risk. To enhance model transparency and reveal the
effects of relevant features on the short-term survival of patients,
multiple machine learning interpretation techniques were used,
including the SHapley Additive Explanations (SHAP) (20, 21),
the Local Interpretable Model-Agnostic Explanations (LIME)
(22), and the Partial Dependence Plot (PDP) (23).

Materials and methods

Data source

The data for this retrospective study was obtained from
the Intensive Care Medicine Information Mart (MIMIC)
database. Clinical information of chronic HF patients admitted
to ICU was extracted from MIMIC-III (version 1.4) and
MIMIC-IV (version 2.0) databases (24, 25). The public
databases were provided by the Massachusetts Institute of
Technology’s Computational Physiology Laboratory (MIT,
Cambridge, Massachusetts, USA) (26), and include clinical
information on patients admitted to the ICU at Beth Israel
Deaconess Medical Center (BIDMC, Boston, MA, USA).
The EICU Collaborative Database (EICU CRD) (version 2.0)
contains patient information from numerous ICUs for external
validation of predictive models (27, 28). According to the
Health Insurance Portability and Accountability Act (HIPAA),
all patients participating in this program were de-identified. The
current project had no impact on clinical care and therefore
was exempt from the requirement to obtain individual consent.
The team members Run Sun, who had access to the above
databases, were responsible for data extraction after signing
the PhysioNet Credentialed Health Data Use Agreement (cite
number: 45997657).

Patient

This study examined adult patients with chronic HF who
were admitted to the ICU for more than 24 h, while patients with
multiple ICU admissions were analyzed using the first record.

Patients with other disorders potentially causing elevated
transaminase levels were excluded from the study (11, 29, 30):
(1) viral hepatitis; (2) liver failure or liver necrosis; (3) cirrhosis
and chronic liver diseases; (4) toxic hepatitis; (5) liver injury; (6)
Hepatic infarction; (7) autoimmune hepatitis; (8) liver and near
liver surgery; (9) Other conditions associated with abnormal
liver function tests, such as cholangitis and pancreatitis; (10)
Rhabdomyolysis (Supplementary Table 1).

Hypoxic hepatitis: There are currently no definitive
diagnostic criteria for HH. We referred to the diagnostic
criteria in the largest study of HH to date, which are based
on the presence of circulatory impairment and transaminases
[alanine transaminase (ALT)/aspartate transaminase (AST)]

exceeding five times the upper limit of normal after ruling out
other potential causes of liver function abnormalities (11). In
histological studies, HH has been shown to occur not only in
patients with extremely elevated transaminases but also in those
with moderately elevated transaminase levels (31). Notably, all
of the elevated transaminase levels in the HH patients included
in this study occurred during their ICU stay.

Data extraction and management

Based on structured language (SQL), the following data
were collected by Navicat premium version 15.0.12 (premium
soft Cybertech Ltd., Hongkong): (1) Length of hospital stay,
ICU stay, 30, 90, 180, 365 days survival status (first day of
ICU admission as day 0); (2) Demographic information: age,
gender; (3) Chronic comorbidities Hypertension, Dyslipidemia,
Diabetes, Coronary surgery history, Old myocardial infarction,
Cardiomyopathy, Atrial fibrillation, Chronic pulmonary
disease, Chronic kidney disease, Peripheral vascular diseases,
Cerebrovascular diseases, Hypothyroidism and Cancer; (4)
Vital signs and urine output within 24 h of the ICU stay, where
vital signs are recorded as the mean value; (5) First laboratory
test results within 24 h of ICU admission; (6) Treatment
within 24 h of ICU admission: mechanical ventilation (MV),
renal replacement therapy (RRT), vasoactive agents including
dopamine, epinephrine, norepinephrine and phenylephrine,
blood product transfusion including red blood cell (RBC) and
fresh frozen plasma (FFP); (7) simplified acute physiology score
II (SAPS II), sequential organ failure (SOFA) score within 24 h
of ICU admission.

A continuous variable that exhibited missing rates exceeding
30% was excluded, and the remaining missing data were
subjected to multiple imputations by using the “mice” package in
R (32). Detailed information regarding missing rates, processing
methods, and data distribution before and after imputation can
be found in Supplementary Tables 2-1–2-3.

Data analysis

The Shapiro-Wilk test was performed to determine whether
or not the samples conformed to a normal distribution.
Continuous variables meeting a normal distribution
were expressed as mean + standard deviation (SD), non-
normal continuous variables as median (interquartile
range, IQR), and categorical variables as frequencies and
percentages, depending on the distribution. Data with non-
normal distributions or unequal variances were analyzed
with non-parametric tests (Mann-Whitney-U-test), and
categorical variables were analyzed with Pearson chi-square
tests. Propensity Score Matching (PSM) was employed
to balance 53 baseline characteristics of HF patients with
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and without HH. To study the impact of HH on the
mortality of HF patients, Kaplan Meier survival curves
and Log-rank tests were applied to compare the mortality
rates of the two groups at 30, 90, 180, and 365 days,
respectively. Multivariate Cox regression analysis was
undertaken to investigate the effect of HH on the mortality
rate of HF patients.

Variable selection and model
development

The predictive goal of the model was the 30-day
mortality in HF patients with HH. Generally, constructing
a model based on valuable variables can result in better
accuracy, but too many variables can cause a “dimension
disaster,” which reduces model accuracy and applicability.
Feature recursive elimination- cross-validation (RFE-CV)
was performed based on XGBoost (eXtreme Gradient
Boosting) to eliminate redundant features. This method
specifies a machine learning algorithm that obtains the
optimal number of features by computing the validation
scores for each subset and choosing the features with the
highest validation score. SAPS II and SOFA scores are
widely used in clinical practice to assess patient prognosis.
In models that included the disease score as a feature, the
score plays a key role in ensuring prediction accuracy.
In actual clinical practice, obtaining an accurate disease
score depends on the completeness of the information
constituting the score; thus, incorporating the score into
model construction may reduce its usefulness. In this study,
disease scores were not used for variable screening and model
construction but rather for comparison with the optimal
machine learning model.

HF Patients with HH from the MIMIC database were
randomly divided into training and testing sets by a 7:3
ratio, whereas the EICU dataset was designated for external
validation. The ratio of the survivor group to the non-
survivor group is about 2: 1, which is unbalanced, and in
this case, the model’s prediction results may be biased toward
a more class of events, leading to high precision but low
recall (sensitivity). The training set data were resampled
using the STOME resampling technique to address the data
imbalance. Models were constructed using seven machine
learning methods, including classical logistics regression (LR),
decision tree (DT), and support vector machine (SVM), along
with the integrated learning models random forest (RF),
categorical boosting (CatBoost), extreme gradient boosting
(XGBoost), and light gradient boosting machine (LightGBM).
Each model underwent hyperparameter optimization (HPO)
and 10-fold cross-validation on the training set, followed
by comparisons with an independent testing set and an

external validation cohort. HPO was performed based on
the open source optimization framework Optuna (version
2.10.0) (33). After determining an approximate search
interval for the hyperparameters based on the learning
curve (i.e., an interval within which there was no obvious
overfitting and model overfitting), HPO was performed to
obtain the best combination of model hyperparameters.
Each model was trained 300 times during the HPO process.
The main index of the performance evaluation was the area
under the receiver operating characteristic curve (AUC),
and the secondary indexes were Matthews correlation
coefficient (MCC) score (34), F1 score, accuracy, and
recall. In addition, the calibration was plotted to evaluate
the consistency between the model’s predicted probability
and the actual probability, and the Brier score was used
to assess the model’s calibration. A combination of SHAP,
LIME, and PDP was used to interpret the model at the
global and local levels to avoid the contingency caused by
a single model interpretation method. In this study, all
statistical analyses were performed using Python 3.9.0 (Python
Software Foundation) and R software 4.0.4 (R Foundation for
Statistical Computing, Vienna, Austria). Two-tailed tests were
performed, and P-values < 0.05 were considered statistically
significant. Supplementary Figure 1 is a flow diagram of the
overall study design.

Result

Characteristics of patients

The patient screening procedure is described in
Supplementary Figure 1. In the MIMIC cohort, 17,214
patients with chronic HF were included, 1,114 of whom
presented with HH, representing an incidence of 6.5%. The
EICU cohort included 6,923 patients with chronic HF, and 383
developed HH, representing a 5.5% incidence rate.

The baseline data for non-HH and HH patients are given
in Supplementary Table 3. Before PSM, the HH group was
older and had a higher proportion of male patients. The HH
group also has a higher proportion of patients with chronic
lung disease, cardiomyopathy, and cerebrovascular disease, as
well as a lower proportion of hypertensive patients. Patients in
the HH group obtained a higher disease score on their first
day of ICU admission, as well as higher heart and respiratory
rates, lower blood pressure levels, and lower 24-h urine output.
Laboratory tests showed that patients in the HH group had
more severe anemias, electrolyte imbalances, and impaired
coagulation functions. Furthermore, a greater percentage of
patients in the HH group received FFP infusions, vasoactive
drug support, RRT, and MV. After PSM, 1,096 patients were
included in each of the two groups, and the standardized
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TABLE 1 Characteristics between survivor and non-survivor groups of heart failure patients with hypoxic hepatitis in MIMIC and EICU database.

MIMIC database EICU database

Variables Survivor
(n = 736)

Non-survivor
(n = 378)

P-value Survivor (n = 225) Non-survivor
(n = 82)

P-value

Age 71 (60.79) 77 (68.84) <0.001 68 (57.76) 73 (63.81) 0.001

Gender (female), % 293 (39.81) 151 (39.95) 0.965 83 (36.89) 37 (45.12) 0.191

Atrial fibrillation, % 346 (47.01) 190 (50.26) 0.303 60 (26.67) 19 (23.17) 0.535

Systolic pressure, mmHg 109 (101.119) 106 (98.115) <0.001 105 (97.118) 103 (95.111) 0.072

SpO2, % 97 (96.98) 97 (95.99) 0.908 97 (92.98) 96 (59.98) 0.926

Urine output, ml/24 h 1690 (945,
2694)

1019 (435, 1870) <0.001 1275 (708, 2450) 525 (208,1376) <0.001

Hemoglobin, g/dL 11.3 (9.5, 13.0) 10.7 (9.3, 12.2) <0.001 11.6 (9.4, 13.4) 10.7 (9.3, 13.0) 0.292

MCHC, g/dL 33.2 (32.2,
34.2)

32.6 (31.4, 33.9) <0.001 32.9 (31.8, 33.7) 32.3 (31.4, 33.1) 0.017

Platelet, × 10ˆ9/L 208 (156,275) 199 (140,281) 0.068 188 (142,246) 178 (136,250) 0.558

RDW, % 14.5 (13.5,
16.2)

15.3 (14.2, 16.9) <0.001 15.6 (14.3, 17.3) 16.7 (14.9, 18.4) 0.005

WBC, × 10ˆ9/L 12.8 (9.9, 16.6) 14.4 (9.9, 19.3) 0.005 11.8 (9.0, 15.7) 13.7 (9.7, 19.8) 0.035

Anion gap, mmol/L 16.0 (14.0,
18.0)

18.0 (15.0, 21.0) <0.001 12.1 (10.0, 16.0) 15.0 (10.8, 19.0) 0.03

Sodium, mmol/L 138 (135,140) 138 (135,141) 0.289 137 (133,140) 138 (135,140) 0.405

BUN, mg/dL 26 (18.44) 37 (24.55) <0.001 32 (22.53) 37 (26.59) 0.016

SCr, mg/dL 1.2 (0.9, 1.8) 1.6 (1.1, 2.6) <0.001 1.6 (1.1, 2.5) 1.9 (1.4, 2.8) 0.011

ALT 140 (70,273) 128 (49,265) 0.017 152 (45,422) 87 (34,237) 0.044

Lactate 2.2 (1.6, 3.3) 2.9 (1.8, 5.2) <0.001 2.5 (1.6, 4.5) 2.6 (1.7, 7.2) 0.116

RBC trans, % 151 (20.52) 94 (24.87) 0.097 11 (4.89) 3 (3.66) 0.648

Dopamine, % 123 (16.71) 96 (25.40) 0.001 14 (6.22) 4 (4.88) 0.657

Norepinephrine, % 214 (29.08) 197 (52.12) <0.001 39 (17.33) 29 (35.37) 0.001

MV, % 351 (47.69) 253 (66.93) <0.001 71 (31.56) 45 (54.88) < 0.001

SpO2, saturation of pulse oxygen; MCHC, mean corpuscular hemoglobin concentration; RDW, red blood cell distribution width; WBC, white blood cell count; BUN, blood urea nitrogen;
SCr, serum creatinine; ALT, alanine transaminase; RBC trans, red blood cell transfusion; MV, mechanical ventilation.

FIGURE 1

Kaplan-Meier survival curves of HF patients with and without HH. (A) Before PSM; (B) after PSM. The differences between the HF with- and
without-HH groups were measured by the two-side log-rank test with a P-value < 0.05. HH, hypoxic hepatitis; HF, heart failure; PSM,
propensity score matching.
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FIGURE 2

Hyperparameter optimization process for the Catboost model. (A) Parallel coordinate system plot of the hyperparametric distribution
corresponding to different levels of AUC values, where darker colors correspond to greater AUC values; (B) optimization history plot illustrating
the evolution of optimal values during hyperparameter optimization; (C) slice plot visualizing the correlation between each parameter and the
AUC. CatBoost, categorical boosting.

mean difference (SMD) between the groups was significantly
lower than before (Supplementary Figure 2). Except for the
white blood cell count and glucose (P < 0.05), there were no
significant differences in the characteristics between the two
groups (Supplementary Table 3).

Table 1 depicts the characteristics selected based on FRE
between survivor and non-survivor groups of HF patients with
HH. As shown in the MIMIC cohort, patients in the non-
survivor group were older, had lower systolic blood pressure,
and greater severity of anemia and infection. The non-survivor
group also had worse renal function, as reflected by higher blood
urea nitrogen (BUN), serum creatinine (SCR), and less urine
output. Further, the non-survivor group had a higher anion gap
and lactate value, indicating more severe acidosis. Regarding
therapy, a higher proportion of patients in the non-survivor
group received MV and vasoactive drugs. Except that there were
no statistical differences between survivors and non-survivors
in hemoglobin and lactate, the EICU cohort followed similar
trends to the MIMIC cohort. Surprisingly, ALT levels were lower
in the non-survivor group than in the survivor group, both in
the MIMIC and EICU cohorts. The full characteristics of HF
patients with HH are presented in Supplementary Table 4.

Hypoxic hepatitis is independently
associated with the mortality of
patients with heart failure

Figures 1A,B are the Kaplan-Meier survival curves between
the HH and non-HH groups before and after PSM. The all-cause
mortality rates of the HH group at 30, 90, 180, and 365 days were
33, 41, 47, and 51%, respectively, and the log-rank test indicated
that these rates are significantly higher in HH patients than in
non-HH patients before and after the PSM (P < 0.0001). After
adjusting for variables from demography, comorbidity, vital
signs, laboratory examination, and disease score, multivariate
COX regression showed that HH was an independent risk factor
for increased 30-day (Before PSM: aHR = 1.722, 95% CI 1.530–
1.938, p < 0.001;After PSM: aHR = 1.798, 95% CI 1.518–2.128,
p < 0.001), 90-day (Before PSM: aHR = 1.565, 95% CI 1.408–
1.738, p < 0.001; After PSM: aHR = 1.690, 95% CI 1.456–1.962,
p < 0.001), 180-day (before PSM: aHR = 1.564, 95% CI 1.418–
1.725, p < 0.001;After PSM: aHR = 1.709, 95% CI 1.487–1.964,
p < 0.001), and 365-day (before PSM:aHR = 1.450, 95% CI
1.321–1.591, p < 0.001; After PSM: aHR = 1.570, 95% CI 1.379–
1.788, p < 0.001) all-cause mortality in both the original cohort
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FIGURE 3

Performance of the models in internal and external validation. (A) ROC curves of the seven models in internal validation; (B) calibration curves of
the seven models in internal validation; (C) ROC curves of the seven models in external validation; (D) calibration curves of the seven models in
external validation. ROC, receiver operating characteristic curve; AUC, area under the curve; SVM, support vector machine; XGBoost, eXtreme
gradient boosting; CatBoost, categorical boosting; LightGBM, light gradient boosting machine.

and PSM cohort. Detailed results of multivariate Cox regression
analysis are presented in Supplementary Figures 3-1–3-4.

Development and evaluation of models

In conducting FRE-CV on the 56 variables associated
with prognosis, the accuracy scores peaked when the number
of variables was 21 (Supplementary Figure 4). The feature
rankings of variables in the FRE process are shown in
Supplementary Table 5. Using these 21 variables, seven
models were subjected to HPO in the training set, and the
hyperparameter combination with the highest AUC score
in cross-validation was identified after 300 trials. Figure 2
illustrates the HPO process for the Catboost model. Figure 2A
shows the distributions of parameters within the Catboost
model during hyperparameter optimization, with darker colors
representing higher target values (AUC) levels. Figure 2B
illustrates the trajectory of best value change with an increasing
number of training sessions during the HPO process (Orange

Line). Figure 2C shows the correlation between each parameter
and AUC. The HPO process of other models is depicted in
Supplementary Figures 5-1–5-6; the hyperparameter range and
final set parameters are given in Supplementary Table 6; and
cross-validation results are shown in Supplementary Table 7.

In internal validation, Catboost achieved the highest AUC
score (AUC, 0.823; 95CI%, 0.819–0.845) (Figure 3A), while
the calibration of the LightGBM and XGBoost models was
the best (Brier score, 0.168; 95% CI, 0.162–0.174), followed
by the calibration of the Catboost model (Brier score, 0.169;
95% CI, 0.162–0.174) (Figure 3B). As a result of external
validation, the Catboost had the highest AUC among other
models (AUC, 0.757; 95% CI, 0.739–0.776) (Figure 3C), and in
terms of calibration, the Catboost outperformed other models as
well (Brier Score, 0.207; 95%CI, 0.202–0.211) (Figure 3D). The
overall performance of the seven models in internal and external
validation can be found in Table 2, where the Catboost model
outperformed others in terms of MCC score, F1 score, recall,
and accuracy. The learning curve of each model in the training
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TABLE 2 Summary of models’ performance in internal and external validation.

Model AUROC (95% CI) Accuracy Recall F1-score MCC Brier-score (95% CI)

Internal validation

LR 0.788 (0.774–0.801) 0.71 0.700 0.690 0.386 0.186 (0.182–0.191)

SVM 0.702 (0.677–0.721) 0.678 0.669 0.658 0.324 0.215 (0.211–0.220)

DT 0.709 (0.691–0.730) 0.654 0.657 0.639 0.298 0.218 (0.211–0.227)

Random forest 0.823 (0.811–0.839) 0.755 0.74 0.734 0.470 0.180 (0.176–0.185)

CatBoost 0.832 (0.819–0.845) 0.758 0.747 0.738 0.480 0.169 (0.165–0.174)

LightGBM 0.820 (0.805–0.832) 0.752 0.736 0.730 0.462 0.168 (0.162–0.174)

XGBoost 0.810 (0.796–0.825) 0.755 0.736 0.732 0.465 0.168 (0.162–0.174)

External validation

Logistic regression 0.651 (0.633–0.667) 0.593 0.645 0.578 0.257 0.330 (0.320–0.340)

SVM 0.710 (0.693–0.727) 0.567 0.639 0.558 0.249 0.251 (0.246–0.258)

Decision tree 0.643 (0.623–0.666) 0.580 0.616 0.561 0.206 0.261 (0.252–0.270)

Random forest 0.750 (0.735–0.767) 0.674 0.665 0.635 0.298 0.214 (0.210–0.218)

CatBoost 0.757 (0.739–0.776) 0.691 0.692 0.655 0.345 0.207 (0.202–0.211)

LightGBM 0.751 (0.736–0.766) 0.678 0.691 0.647 0.340 0.216 (0.209–0.225)

XGBoost 0.748 (0.733–0.763) 0.681 0.681 0.645 0.326 0.214 (0.207–0.222)

AUROC, The area under the receiver operating characteristic curve; CI, confidence interval; MCC, matthews correlation coefficient; SVM, support vector machine; CatBoost, categorical
boosting; LightGBM, light gradient boosting machine; XGBoost, eXtreme gradient boosting. Bold values are to highlight how well the model performed on a certain metric.

process with final parameters is provided in Supplementary
Figure 6.

The entire 21 features were subjected to the COX univariate
analysis, and those with differences (P < 0.05) were included
in the multivariate COX analysis. Variables included in the
multivariate analysis were checked for collinearity, and we
found no significant collinearity (Supplementary Table 8).
The results suggested that age, saturation of pulse oxygen
(SpO2), mean corpuscular hemoglobin concentration (MCHC),
lactate, urine output, red blood cell distribution width (RDW),
creatinine, norepinephrine, and MV were independent factors
for 30-day mortality in HH-HF patients (Figure 4A). Based on
these independent factors, we developed a simplified Catboost
model (S-Catboost), which achieved an AUC of up to 0.801
(95%CI, 0.786–0.812) in internal validation and outperformed
SAPS II (AUC, 0.740; 95%CI, 0.723–0.756) and SOFA scores
(AUC, 0.713; 95%CI, 0.696–0.729) (Figure 4B). In addition,
in external validation, although the accuracy of the S-Catboost
model decreased slightly compared with the full Catboost
model, it still maintained a high level of discrimination with an
AUC of 0.729 (95%CI, 0.711–0.745) (Supplementary Figure 7).
Decision curve analysis (DCA) suggests that the Catboost and
S-Catboost models can provide greater clinical utility than
SAPS2 and SOFA scores (Figure 4C). The results of Delong’s test
for each ROC curve are shown in Supplementary Table 9.

Model interpretation

The importance of features in the full Catboost model
was largely consistent according to the model’s importance

and the SHAP values, with MV, age, urine output, and
lactate ranking highest (Supplementary Figure 8). According to
feature importance in the S-Catboost model, the top five most
important features were: urine output, lactate, age, creatinine,
and RDW (Figure 5A). According to SHAP values, the top
five features were age, MV, lactate, urine output, and creatinine
(Figure 5B). The SHAP summary plot also illustrates features’
positive and negative effects on prediction results. The increase
in age, MV, high lactic acid, and low urine output were associated
with an increased risk of death, but the effects of creatinine and
RDW on death risk do not follow a linear pattern (Figure 5B).

Figure 6 illustrates the relationship between the four
continuous variables of higher importance and the final
predicted outcome in the S-CatBoost model. The role of
individual features on the final prediction outcome can be
directly observed in scatter plots based on the SHAP values.
To further clarify the impact of particular features on the final
predicted outcome, we also introduced PDP and individual
conditional expectations (ICE) plots, another strategy for
exploring the relationship between eigenvalues and predicted
results. By visualizing the feature dependency for each case, the
ICE plot shows the changing trend of the predicted outcome as
the feature changes, while DPD calculates the mean level of the
feature across all samples. The risk of death rapidly increased
with age between the ages of 50 and 70, a trend that was more
pronounced for ages between 60 and 70 (Figure 6A), while the
trend began at 55 in the PDP, and the trend for ages 60–70 was
consistent with the scatter plots (Figure 6B). It can be seen from
Figure 6C that when urine output is less than 1,000 ml, the risk
of death increases rapidly with decreasing urine output, and a
similar trend can be seen in PDP (Figure 6D). The changing
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FIGURE 4

Model development and performance for S-CatBoost. (A) Univariate and multivariate Cox analyses of 21 features used to construct model;
(B) ROC curve of CatBoost, S-CatBoost, SAPS II score, and SOFA score in internal validation; (C) DCA curve of CatBoost, S-CatBoost, SAPS II
score and SOFA score in internal validation. Catboost, Categorical Boosting; S-Catboost, simplified Catboost model; AUC, area under the curve;
DCA, Decision curve analysis; SAPS II, simplified acute physiology score II; SOFA, SOFA Score; SPO2, saturation of pulse oxygen; MCHC, mean
corpuscular hemoglobin concentration; WBC, white blood cell count; BUN, blood urea nitrogen; RDW, red blood cell distribution width; RBC
trans, red blood cell transfusion; ALT, alanine transaminase; MV, mechanical ventilation.

relationship between lactate values and the predicted outcome
was consistent in Figures 6E,F. It appears that, below 5 mmol/L,
the risk of death increased sharply with increasing lactate,
and this trend slowed down between 2 and 3 mmol/L, but
hardly increased at all after exceeding 7.5 mmol/L. Additionally,
creatinine showed a relatively consistent trend in the PDP and
scatter plots. When creatinine did not exceed 2 mg/dl, the risk
increased with increasing creatinine. However, the risk began to
decrease after creatinine exceeded 2 mg/dl, although this trend
was more pronounced in the scatter plots (Figures 6G,H). The
scatter and PDP plots for other continuous variables are shown
in Supplementary Figure 9.

Examples of applying the S-Catboost model for risk
prediction in individual patients are shown in Figure 7. The
predicted outcome for the first patient was the occurrence of

30-day death. Figures 7A,B describe the interpretations of the
predicted outcome based on the SHAP and LIME, respectively:
according to both interpretations, oliguria, high creatinine, and
MV were the most important factors in determining a patient’s
death within 30 days. The second patient was predicted to
survive within 30 days. The absence of the need for MV, higher
urine output and lower lactate levels were the most important
determinants of their survival, as seen in SHAP and LIME
(Figures 7C,D).

Discussion

In this study, the MIMIC database was retrospectively
reviewed for HF patients and HF patients with HH. While it was
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FIGURE 5

Feature importance ranking of S-Catboost model. (A) Feature importance ranking based on S-CatBoost; (B) feature importance ranking based
on the SHAP value. The vertical axis is from top to bottom, and the importance of features decreases. The position of the point on the
horizontal axis indicates the feature’s influence on the model’s predicted value, and the point’s color reflects the feature’s value. For the
numerical variable, the blue and red points represent lower and higher values; for categorical variables, blue and red dots correspond to yes or
no, respectively. S-Catboost, simplified Catboost model; MV, mechanical ventilation; SPO2, saturation of pulse oxygen; MCHC, mean
corpuscular hemoglobin concentration; RDW, red blood cell distribution width.

believed previously that HH was a rare hepatic complication in
patients with HF, the incidences of HH in HF patients admitted
to the ICU were not low, with 6.5% occurring in the MIMIC
dataset and 5.5% in the EICU dataset. This study found that
this incidence is even higher than that reported in several
previous large-scale studies of patients in ICU (11, 30). This
study revealed 30-day mortality of 33.3% for HF patients with
HH, whereas Van den Broecke et al. reported a 28-day mortality
of 40.1% for HH patients in the HF subgroup, which was slightly
higher than this study (11). The 1-year mortality rate of HF
patients with combined HH was as high as 51%, which is in
line with the 2-year mortality rate of 55% for HH reported by
Taylor et al. (15). Furthermore, the effect of HH on survival
impact in HF patients is clarified in this study: whether PSM
was performed to eliminate baseline differences or not, HH
increased both short—and long-term mortality in HF patients.

Despite the extremely high mortality rate associated with
HH, there are currently no very effective therapies available.
A case of rapid improvement of liver function in HH patients
by artificial liver therapy was reported in the study by Drolz
et al. (35). In another prospective study conducted by Drolz
et al., statin use in prehospital hospitals was found to reduce
28-day mortality in HH patients (36). Nonetheless, these studies
were performed on a small scale, and the effectiveness of
these treatments on the survival of HH patients was not well
documented, nor is there sufficient evidence to recommend
their regular use. These treatments’ efficacy in improving HH
patients’ survival requires more careful consideration. It is
currently the main treatment strategy for HH to correct the
underlying disease status and primary cause, yet the mortality
rate remains high (37). Clinical decisions can be made more
effective provided that clinicians can use predictive tools to
identify high-risk patients early and optimize their clinical

management. Horvatits et al. found that indocyanine green
plasma display rate (ICG-PDR) could be used as a predictor of
the prognosis of HH patients. However, ICG-PDR acquisition,
dependent on an intravenous injection into the central line
and good peripheral perfusion, is an invasive operation, and
its practical application in the clinic is challenging. In addition,
the sample size of this study was relatively small, comprising
only 57 patients with HH (38). A wide variety of machine
learning methods have been successfully applied to medicine
with great flexibility and precision and have been employed
in early diagnosis, risk stratification, and trend prediction. It
has previously been reported that machine learning models
have been used in cardiology for predicting survival in
patients with HF and its complications (39–41). In this study,
machine learning techniques were applied to develop the first
prediction model that could be used to predict the mortality
risk in HF patients with HH accurately. Despite its precise
predictions, the “black box” nature of the prediction process
hinders its generalization for practical use. Recently, the study
of interpretability, which facilitates the transparency of the
predictive process, has become an important focus in the
field of machine learning, and progress has been made in
many areas of this study (42). It should be noted, however,
that interpretations of model results generated on different
theoretical bases may vary considerably, and interpretations
based on only one theoretical approach may be subject to
some contingencies, resulting in unconvincing interpretations.
Several interpretability techniques were used to interpret the
model to reduce the chances of this occurring. A combination
of both forms of interpretation was used at each level of the
model (global, feature, and individual) to ensure stability and
objectivity in the interpretation of the results. Moreover, the
S-CatBoost model developed based on Cox multivariate analysis
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FIGURE 6

Scatter plot (A,C,E,G) and PDP (B,D,F,G) of continuous variables in S-CatBoost model. (A,B) Age; (C,D) urine output; (E,F) lactate; (G,H)
creatinine. PDP, partial dependence plot; S-Catboost, simplified Catboost model.

is relatively easy to understand and use, and it also performs

well on EICU datasets consisting of multiple ICUs in terms of

stability and generalizability.

The multivariate Cox analysis showed that age was an

independent risk factor for 30-day mortality in HF patients

with HH and an important factor in the prediction model.
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FIGURE 7

Specific prediction and interpretation of the S-CatBoost model for two patients. (A,C) Individual prediction interpretation based on SHAP; (B,D)
individual prediction interpretation based on the LIME method. S-Catboost: simplified Catboost model. SHAP, Shapley Additive Explanations;
LIME, Local Interpretable Model-agnostic Explanations; MV, mechanical ventilation; SPO2, saturation of pulse oxygen; MCHC, mean
corpuscular hemoglobin concentration; RDW, red blood cell distribution width.

According to Aboelsoud et al., a retrospective study of 563
HH patients reached the same conclusion, hospital mortality
increased by 19% for every 5-year increase in the age of HH
patients (30); Furthermore, both Jonsdottir’s and Fuhrmann’s
studies revealed that age was an independent risk factor for HH
patient mortality (29, 43). Both models’ interpretability suggests
that the risk of death increases with age, and this trend is
highly noticeable in individuals aged 60–70. Several studies have
demonstrated a close connection between acute kidney injury
(AKI) and prognosis in HH patients, with approximately 67–
81% of HH patients having comorbid AKI and AKI being an
independent risk factor for mortality in HH patients (30, 44,
45). As it is very difficult to accurately assess whether a patient
has developed AKI within 24 h of admission to the ICU, AKI
was not directly included in this study. However, the impact of
AKI can still be reflected in urine output and creatinine taken as
independent risk factors for prognosis in HH patients, and we
found that both decreased urine output and higher creatinine
were strongly associated with increased mortality risk, while
oliguria and high creatinine were among the most prominent
markers of AKI. In AKI, imbalances in mechanisms such as
glomerulo-tubular homeostasis, sodium excretion regulation,
and others can cause hemodynamic disturbances throughout
the body, leading to or aggravating the hypoxic state of the
body, which will undoubtedly cause serious hypoxic damage
to the liver in severe congestions. MV and high lactate levels
are also manifestations of hypoxia’s impact on hemodynamics
in HH patients. A higher proportion of patients in the non-
survivor group required MV on the first day of admission,
and the use of MV increased mortality risk, a finding that was
also reported by Chavez Tapia et al. (46). Typically, lactate
elevation results from improved anaerobic metabolic processes

triggered by tissue hypoxia, which can be observed in many
severe diseases and is strongly associated with prognosis. Lactate
also plays a substantial role in the prognosis of HF patients
with HH, with higher lactate causing a greater risk of death.
According to Jonsdottir S’s study, elevated lactate was also a
relevant prognostic factor in HH (29).

We explored the survival impact of HH in HF patients
and applied a machine learning model to predict prognosis.
This was the first tool to accurately predict the prognosis of
HF patients with HH using clinical information that was quite
convenient to obtain. Nevertheless, there are some limitations
to our study. First, we used relatively low transaminase criteria
for HH diagnosis, which, while increasing the sensitivity of
the study population, also undermines specificity. Due to the
limited follow-up timeframe in the MIMIC dataset, we were
only able to analyze survival within 1 year, while the longer-term
survival impact of HH on HF patients is unclear. Additionally,
we only examined the overall survival impact, and a detailed
analysis of survival impacts across different periods is needed.
This study was limited to HF patients with HH within the ICU
due to the lack of direct information about cardiac functional
grades. The morbidity and prognosis of HF patients in different
cardiac functional grades were not examined. As a result of the
higher rate of missing data, cardiac-related indicators such as
cardiac output, BNP, and myocardial markers were not included
in the study, resulting in the loss of some potentially useful
data. All of the predictive features used in this study were
acquired within 24 h of admission to the ICU, thus allowing for
early prediction. However, it must be acknowledged that these
variables have a limited impact on subsequent morbidities and
longer-term outcomes.
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Conclusion

In patients with HF, HH is an independent risk factor
for increased short- and long-term mortality. The machine
learning model effectively predicted 30-day mortality in
HF with HH with good generalization ability. Multiple
interpretability techniques can increase the transparency of
the model and the stability of the interpretation, which
will facilitate the understanding of the model and its
application in practice.
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