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Abstract

Motivation: Triplet amino acids have successfully been included in feature selection to predict

human-HPV protein-protein interactions (PPI). The utility of supervised learning methods is

curtailed due to experimental data not being available in sufficient quantities. Improvements in

machine learning techniques and features selection will enhance the study of PPI between host

and pathogen.

Results: We present a comparison of a neural network model versus SVM for prediction of host-

pathogen PPI based on a combination of features including: amino acid quadruplets, pairwise se-

quence similarity, and human interactome properties. The neural network and SVM were imple-

mented using Python Sklearn library. The neural network model using quadruplet features and

other network features outperformance the SVM model. The models are tested against published

predictors and then applied to the human-B.anthracis case. Gene ontology term enrichment ana-

lysis identifies immunology response and regulation as functions of interacting proteins. For pre-

diction of Human-viral PPI, our model (neural network) is a significant improvement in overall per-

formance compared to a predictor using the triplets feature and achieves a good accuracy in

predicting human-B.anthracis PPI.

Availability and implementation: All code can be downloaded from ftp://ftp.sanbi.ac.za/machine_

learning/.

Contact: alan@sanbi.ac.za or pwitbooi@uwc.ac.za

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Infectious diseases result in millions of deaths each year. Extensive

research effort has been expended towards a better understanding of

how pathogens infect their hosts in order to identify potential targets

for therapeutics. For example, anthrax is an acute disease caused by

the bacterium Bacillus anthracis. Most forms of the disease are le-

thal, and it affects both humans and animals. Following incidents of

the use of anthrax spores as a weapon in biological warfare, there

has been renewed interest in the anthrax disease (Turnbull, 2008).

This paper is a contribution in this regard. Host-pathogen protein–

protein interactions (PPIs) play a vital role in initiating infections.

Surface proteins and molecules form the foundation of communica-

tion between a host and pathogen. The PPIs constitute an important

component of virtually every biological function on the molecular

level. Consequently, unravelling the physical interaction between

two proteins is essential for understanding the mechanisms of pro-

tein recognition at the molecular level and to reveal the global pic-

ture of protein interaction in the cell. There are many experimental

methods for detecting PPIs, but these methods are labour intensive
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and time consuming, see the review paper (Snider et al., 2015). On

the other hand, a range of computational methods has been pub-

lished that infer PPIs within single species (intra-species), reviewed

in (Pitre et al., 2008). However, regarding prediction of PPIs be-

tween host and pathogen proteins (inter-species), not much has been

published at this stage. See for instance (Dyer et al., 2010;

Jindalertudomdee et al., 2016; Kshirsagar et al., 2013; Kumar and

Nanduri, 2010; Wuchty, 2011).

Knowledge of the interactions between host and pathogen is cru-

cial to understanding the pathogenesis of the relevant disease

(Huang et al., 1998; Mogensen et al., 2006). Resources for studying

interactions between host and pathogen proteins are rather limited.

Recently, some computational approaches have been developed to

infer PPI between host and pathogen. Dyer et al. (2007) integrated

known intraspecies PPI data with protein domains profiles to predict

interspecies PPIs for human and Plasmodium falciparum. The appli-

cation of machine learning techniques have been successfully applied

to the prediction of human-virus interactions because of the abun-

dance of high throughput experimental data for human-virus pro-

tein interactions. Recently, Qi et al. (2006) proposed a solution to

the lack of training data by using semi-supervised learning for host-

pathogen PPIs. They combined true positive data with partial posi-

tives (indirect interactions) as training sets. However, high rates of

false positives are likely when using partial sets. It is of interest to

identify the features that contribute most significantly to the classifi-

cation of protein pairs. Not only does it help revealing relationships

between different data sources, but it can also suggest which data

should be generated by experiments to find novel interactions in

host-pathogen systems. Tastan et al. (2009) used a random forest

classifier to predict PPIs between human and HIV-1 by incorporat-

ing multiple features sets such as interacting domains, gene ontology

annotations, post-translation modifications, tissue distribution, gene

expression and topological properties of the human interactome net-

work. Another study by Wuchty (2011) used a random forest classi-

fier to predict PPI between human and Plasmodium falciparum

where researchers validated the results using co-expression data of

human genes in the presence of parasites. Cui et al. (2012) utilizes

amino acid triplets as a protein representation scheme that produced

an improved performance over results presented by Shen et al.

(2007). Other contributions that are closely related to the current

study uses the multi-task learning approach (Kshirsagar et al., 2013)

while Jindalertudomdee et al. (2016) used a so-called ‘graphlet de-

gree vector’ of a protein in the human interactome graph as a feature

in their predictor.

In this study, we compare the performance of the model of Cui

et al. (2012) which uses triplets of amino acids as a feature, with our

new model using quadruplets of amino acids combined with net-

work features, for human-HPV PPI prediction. Our model is also

compared with the predictors of Kshirsagar et al. (2013) and

Jindalertudomdee et al. (2016). Thereafter we use our improved

model for the prediction of host-pathogen PPI between human and

B. anthracis.

2 Materials and methods

For prediction of PPIs using a supervised classifier we require train-

ing data. In the process of PPI prediction, pairs of proteins are classi-

fied into two classes that can be labeled as interacting (positive) or

not interacting (negative). The aim of the training step is to derive

a representative sample of the spectral signatures for each class.

The quality of the training data and the features set can significantly

influence the performance of the algorithm that is being employed,

and this has an impact on the classification accuracy (Chen and

Stow, 2002).

We present two cases of interspecies PPI prediction. In the first

case, we use the data as represented in Cui et al. (2012) on human-

HPV protein pairs. In the second case, for human and B.anthracis PPI,

the data was treated as we detail below. There is not enough intra-

species experimentally validated PPI data. We extracted PPIs for

Bacillus anthracis str A0174 from the PATRIC database (Wattam

et al., 2014). We obtained 554 human-B. anthracis experimentally

verified interacting pairs from IntAct database (Henning et al., 2004).

This dataset serves as a positive set for training the classifier. There is

no gold standard negative set available for training and testing pur-

poses. However, it is standard practice to create a negative dataset by

choosing protein pairs randomly from the set of protein pairs that are

not known to interact (Cui et al., 2012; Dyer et al., 2007; Tastan

et al., 2009). The number of truly interacting pairs of human-

B.anthracis is likely to be far less than the total set of proteins. These

randomly generated protein pairs were filtered to ensure that in the

positive dataset there were no protein pairs that are known to interact.

2.1 Feature representation
The paper by Cui et al. (2012) emphasized the value of encoding the

important information content of the protein sequence for PPI pre-

diction. In addition, the protein sequences of different lengths

should be converted into feature vectors of the same length. In this

study, we considered four types of features, including features that

are derived from the human interactome network.

2.1.1 Triplets of consecutive amino acids

The consecutive amino acid triplets are the short amino acid sub-

sequences of length three that occur in a protein. The cardinality of

the set of feature vectors, is approximately 8000. To reduce this

high dimension, the 20 amino acids alphabet is reduced to 6 catego-

ries of biochemical similarity [IVLM, FYW, HKR, DE, QNTP and

ACGS] (Cui et al., 2012). With this classification of amino acids,

there are 216 possible amino acid triplets.

2.1.2 Quadruples of consecutive amino acids

There are 1296 possible sub-strings of length 4 using the 6 amino

acid categories reported above. For both triplets and quadruplets we

used a binary space (V, F) to represent a protein sequence, in which

V is a vector space of feature vectors with a fixed length (number of

features) and F is a vector space of frequency vectors. A protein se-

quence is first mapped to a feature vector v of fixed length, then the

feature vector v is mapped to a relative frequency vector qi, of which

the co-ordinates are defined by Equation (1).

qi ¼ ðfi �M0Þ=ðM1 �M0Þ (1)

with

M0 ¼ min f1; f2; . . . ; f216 and M1 ¼ maxff1; f2; . . . ; f216gf

Here fi is the frequency of the ithth triplet (respectively,

quadruplet) in the sequence i¼ 1, 2, . . .., 216 (resp., i¼ 1, 2, . . ..,

1296).

2.1.3 Sequence similarity feature

For each pair of human-pathogen proteins, we calculated a pairwise

sequence similarity score using Emboss ‘WaterCommandline’.
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2.1.4 Human interactome graph properties

Three graph property features were derived from topological prop-

erties of the human intra-PPI network namely degree, clustering co-

efficient and betweenness centrality, see for instance (Barabási,

2004). The degree of a node in a network is the number of its neigh-

bours. Clustering coefficient is the ratio of the edges present among

its neighbours to all possible edges that could be present between

them. Betweenness centrality for a node is calculated as the fraction

of shortest paths between node pairs that pass through the node of

interest.

2.2 Neural network
An artificial neural network is a black box approach that has been

used successfully in predictive modeling. For the purpose of the ini-

tial step of training, all the characters describing the unknown situ-

ation must be presented to the neural network, along with their

classes (labels). There are many types of neural network algorithms.

In this study, we used the multi-layer feed-forward neural network

(MFFN). The MFFN is popularly used for a wide variety of classifi-

cation and prediction tasks, including PPI prediction as in (Knisley

and Knisley, 2011) for instance. A MFFN consists of neurons or

nodes that are ordered into layers. The first layer is called the input

layer, the last layer is called the output layer and the layers in-

between are called hidden layers. Each layer in the MFFN is con-

nected with other layers through weights which control the signal

transfer between nodes through the so-called transfer or activation

function. The training of an MFFN is to search for optimal values of

the weights. For the activation function f ðxÞ, the input ik to node

k is the weighted sum of the outputs of all nodes (j ¼ 1, 2, . . ., n)

connected to it.

Ik ¼ dk þ
X

oj wkj (2)

oj ¼ f ðIÞ (3)

Oj is the output of the node k, wkj is the linking weight between

nodes k and j, and dk is a bias.

Figure 2 shows the architecture of the neural network that we

used to predict host-pathogen PPI. Thus, we build a network con-

sisting of two hidden layers each with 20 nodes. In order to find a

set of optimal weights we use a stochastic gradient descent algo-

rithm. Therefore, we have tested different architecture and optimiza-

tion algorithms before implementing the above architecture.

2.3 Evaluation procedure
We use a 10-fold cross validation (CV) to evaluate the performance

of all algorithms to predict the PPI between human and B.anthracis.

In our initial data, the positive and negative data sets are of compar-

able cardinality. We use the receiver operating characteristic (ROC)

and the Precision-Recall curve to evaluate the performance of the

classifier. In addition we used the same metrics to evaluate our

model performance on previous work done (by Cui et al., 2012). We

also implement our model on datasets used in (Kshirsagar et al.,

2013), in which the set of negative data is many orders larger than

the positive data but their metrics are not sufficient to for such

unbalanced data. Therefore, we use the F1 score, Equation (4) to

deal with imbalance data.

F1score ¼ 2�precision:recall

precisionþ recall
(4)

Comparison in terms of sensitivity (SN), specificity (SP) and

accuracy (AC) with the HPV data, of the ‘triplets’ method of

Cui et al. (2012) versus the method using quadruplets of amino acids

combined with sequence similarity together with degree, between-

ness centrality and cluster coefficient of the human interactome net-

work graph.

2.4 Gene ontology analysis of human-B.anthracis

interactions
A sub-network of human-B.anthracis proteins was generated using

network analysis blogin within cytoscape software. The GO enrich-

ment analysis was done using Bingo blogin.

3 Results

3.1 Human-HPV: comparison of the model using quad-

ruplets of amino acids versus the model using triplets
We compared the results obtained through our quadruplets feature

combinations to that of Cui et al. (2012) where the authors used the

triplets feature. To keep the comparison fair we repeated our pro-

cedure using the same training and testing dataset that was used in

Fig. 1. Outline of the protocol followed in this study to find optimal features

sets, and to compare the performance of SVM and a neural network approach

when predicting host-pathogen interactions. Triplet versus quadruplet fea-

tures in isolation or in combination with other network features were used

Fig. 2. Neural Network Architecture. The architecture of the neural network

was used to predict host-pathogen PPI. Four layers and a varying number of

nodes in the input and hidden layers were used. This network has 16 nodes in

the input layer, 20 nodes in the first hidden layer, 20 nodes in the second hid-

den layer and 1 node in the output layer

PPI prediction using a neural network 4161



Cui et al. (2012) and used their performance evaluation procedures

to evaluate their model, namely sensitivity, specificity and accuracy.

The sensitivity is also called the true positive rate, or the recall rate:

it measures the proportion of actual positives that are correctly iden-

tified as such and is complementary to the false negative rate. The

specificity, sometimes called the true negative rate: it measures the

proportion of negatives that are correctly identified as such, and is

complementary to the false positive rate. The accuracy of a measure-

ment system is the degree of closeness of measurements of a quantity

to that quantity’s actual (true) value. Table 1 shows that our method

outperforms the previous work at 95.9% to 80.5% in terms of sensi-

tivity, 91.6% to 89.7% in terms of specificity and 88.6% to 85.1%

in terms of accuracy. This demonstrates the importance of the quad-

ruplets feature representation when combined with sequence simi-

larity and human interactome network graph properties such as

degree, betweenness centrality and cluster coefficient in advancing

the host-pathogen protein interaction predictions.

3.2 Comparison of the model using quadruplets of

amino acids versus a model using multi-task learning

(Kshirsagar et al., 2013)
The issue of imbalanced data on machine learning is an area of on-

going research. In general for PPI prediction, there is no experimen-

tal evidence for the negative sets. Therefore, it is common practise to

have randomly generated PPI negative data that is equal in size or is

comparable to the positive data. On the other hand Kshirsagar et al.

(2013) proposed a multi-task learning method to predict PPI be-

tween host and pathogen. In the latter work, the initial positive and

negative data are out of balance. We tested our new combination of

features and the neural network algorithm on human-B.anthracis

data obtained from Kshirsagar et al. (2013) and our model showed

an improvement (Table 2).

From the comparison of F-scores (Jindalertudomdee et al., 2016,

Fig. 6) between its own predictor and that of (Kshirsagar et al., 2013), it

can be seen that our quadruplet predictor compares very well.

3.3 Comparison of support vector machine and neural

network using triplet features
Having demonstrated the performance of quadruplet features, we

proceeded to compare support vector machine (SVM) and Neural

Network approaches using triplet and quadruplet features.

For predicting human-B.anthracis PPIs, we select the triplets feature

combined with sequence similarity and the three human interactome

features to train the neural network. The result in Table 3 shows the

performance of the triplet feature and the combinations of triplet with

each of the other features in order to evaluate the importance of each

single feature combined with triplets. In addition, Table 3 shows the

comparison of two algorithms namely, Neural Network and SVM.

The model average columns show combined average accuracy of the

training, testing and validation and the second column present the train-

ing accuracy and similarly for the third and fourth columns. We observe

that the model average is improving from 84.0% when using the triplets

feature alone, to 91.3% when combining the triplets feature with all

other features. This result shows the importance of sequence similarity

and graph properties features. The results presented in Table 3 are

visualized using ROC and PR curve (Supplementary Figs S1–S8). The

combination of triplets with all other features performs best.

3.4 Comparison of SVM and neural network using

quadruplet features
For the main human-B.anthracis PPI predictor we ran a procedure

similar to the previous one, i.e. of Sub-section 3.3, but with the

Table 1. Comparison of performance of model generated using the

triplets feature as in Cui et al. (2012) versus the quadruplets feature

of the current paper

Method SN (%) SP (%) AC (%)

Triplets 80.5 89.7 85.1

Quadruplets 92.5 91.1 88.3

Table 2. Comparison of performance on Indep (B.anthracis) of

multi-task learning model of (Kshirsagar et al., 2013) versus the

quadruplets feature (of the current paper)

F1 score Std

Our model 57.36 0.089

Kshirsagar et al., 2013 27.8 4.0

Note: Table 2 reports the performance of our model on the dataset used by

(Kshirsagar et al., 2013). The datasets is a subset of their multi-task, specific-

ally we used human-B.anthracis on Indep task.

Table 3. Model performance (average accuracy, CV score, F1_score and Std)% of 12 different features set, implemented using SVM and

Neural network

SVM Neural network

Accuracy Score F1_score Std Accuracy Score F1_score Std

Triplet 90.49 87.00 61.23 00.00 91.5649 83.7794 61.2016 00.1683

Triplet_degree 89.94 81.39 65.2106 01.2978 91.1869 81.6814 66.2411 01.2448

Triplet_cluster 91.04 81.39 65.6041 01.3876 90.7026 82.2588 65.9132 01.7797

Triplet_between 90.09 80.88 65.2766 00.4142 90.7799 81.5668 65.9522 00.7874

Triplet_similarity 89.99 81.84 65.0589 01.2321 92.0279 81.7859 65.6692 01.3124

Triplet_all 91.09 82.20 65.6563 00.7196 93.2626 83.0365 65.5762 00.8151

Quadruplet 91.693 81.3968 66.3107 00.7334 91.0106 82.8321 65.7306 00.7615

Quadruplet_degree 92.317 83.9685 66.6005 01.8392 91.4632 82.8311 66.0958 00.3209

Quadruplet_between 92.492 82.6440 66.3309 01.7438 90.8393 82.9580 65.6902 01.6715

Quadruplet_cluster 92.755 84.0455 66.5803 00.6979 92.3635 83.9358 66.5801 01.0428

Quadruplet_similarity 92.464 82.2044 66.5126 01.0792 92.6595 82.7353 65.6109 00.4150

Quadruplet_all 92.271 85.4418 66.2581 00.4571 94.5758 86.9634 66.4710 00.3613

4162 I.Ahmed et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty504#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty504#supplementary-data


triplets feature replaced by quadruplets. The results in Table 3,

Figures 3 and 4 shows the performance of the quadruplets feature

combined with human interactome graph properties and sequence

similarity between host and pathogen. We also plot ROC and PR

for quadruplets with each of the single features, in order to evaluate

the importance of each single feature combined with quadruplets,

(Supplementary Material). Each column in Table 3 represents the

model accuracy. The model average columns show the combined

average accuracy of the training, testing and validation. The second

column present the training accuracy and similarly for the third and

fourth columns. From Table 3, we observe that the model average is

improving from 70.7% when using the quadruplets feature alone, to

93.4% for the combination of all features. This result shows the im-

portance of the graph properties and the sequence similarity fea-

tures. The combination of quadruplets with all other features

performs best as shown in Figures 3 and 4. Finally in the overall

comparison of model performance we observe that the quadruplets

feature combined with other features is the best model so far. This

model, i.e. the one that we built with the quadruplets feature com-

bined with the sequence similarity and human interactome graph

properties were chosen as the optimal model. We use this model to

make predictions of human-B.anthracis PPIs.

3.5 Functional enrichment analysis of sub-network
Functional enrichment analysis uses statistical methods to find func-

tions that are over-represented in a subset of genes. Thus it is very im-

portant for identifying the functional relevance of proteins involved in

the host-pathogen PPIs. The top 10 significantly enriched GO

terms (Molecular Function) are presented in Table 4. The full list of sig-

nificantly enriched GO terms was computed and are available,

(Supplementary Tables SA1 and SA2). These functions include roles in

metabolic pathways, transcriptional and immune regulation. Similarly

the top human-B.anthracis protein–protein interactions (Supplementary

Tables SA1 and SA2) shows pathogen proteins targeting human genes

involved in apoptosis and immune regulators. Similar characteristics of

human-pathogen interactions were identified in (Dyer et al., 2010)

when studying human-B.anthracis protein interactions.

4 Conclusion

Knowledge of interactions between host and pathogen proteins is

important for understanding the pathogenic process. The goal of

this study was prediction of physical interactions of proteins of

B.anthracis with human proteins, using a neural network trained

with human-B.anthracis PPIs data. Different combinations of

features were used, to test the model performance. A novel neural

network host-pathogen PPI predictor based on a combination of fea-

tures including quadruplets of amino acids was found to perform

well when tested on Human-HPV data.

This motivated the application of the model to human-

B.anthracis data by comparing an SVM approach to a neural net-

work approach besides a published PPI predictor.

The best performance was the Neural network model trained with

amino acid quadruplets, pairwise sequence similarity and human interac-

tome properties of degree, cluster coefficient and betweenness centrality.
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Fig. 3. Precision-Recall curve showing a neural network implementation for

the quadruplet feature combined with network features and sequence

similarity

Fig. 4. ROC curve showing a neural network implementation for the quadru-

plet feature combined with network features and sequence similarity

Table 4. Molecular function enriched GO terms for human proteins

predicted to interact with proteins of B.anthracis based on artificial

neural network using the DAVID database

GO Term Description P-value

GO: 0008066 Glutamate receptor

activity

3.6253776435E–033

GO: 0020037 Heme binding 3.9274924471E–017

GO: 0046906 Tetrapyrrole binding 3.9274924471E–018

GO: 0010851 Cyclase regulator activity 1.5105740181E–011

GO: 0004672 Protein kinase activity 8.4592145015E–09

GO: 0004674 Protein serine/threonine

kinase activity

6.6465256798E–014

GO: 0051119 Sugar transmembrane

transporter activity

1.8126888218E–09

GO: 0005355 Glucose transmembrane

transporter activity

1.5105740181E–006

GO: 0019825 Oxygen binding 2.1148036254E–013
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