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Background: Resting-state functional magnetic resonance imaging (fMRI) studies have

uncovered the disruptions of functional brain networks in primary insomnia (PI) patients.

However, the etiology and pathogenesis underlying this disorder remains ambiguous,

and the insomnia related symptoms are influenced by a complex network organization

in the brain. The purpose of this study was to explore the abnormal intrinsic functional

hubs in PI patients using a voxel-wise degree centrality (DC) analysis and seed-based

functional connectivity (FC) approach.

Methods: A total of 26 PI patients and 28 healthy controls were enrolled, and they

underwent resting-state fMRI. Degree centrality was measured across the whole brain,

and group differences in DC were compared. The peak points, which significantly altered

DC between the two groups, were defined as the seed regions and were further used to

calculate FC of the whole brain. Later, correlation analyses were performed between the

changes in brain function and clinical features.

Results: Primary insomnia patients showed DC values lower than healthy controls in

the left inferior frontal gyrus (IFG) and middle temporal gyrus (MTG) and showed a higher

DC value in the right precuneus. The seed-based analyses demonstrated decreased FC

between the left MTG and the left posterior cingulate cortex (PCC), and decreased FC

was observed between the right precuneus and the right lateral occipital cortex. Reduced

DC in the left IFG and decreased FC in the left PCC were positively correlated with the

Pittsburgh sleep quality index and the insomnia severity index.

Conclusions: This study revealed that PI patients exhibited abnormal intrinsic functional

hubs in the left IFG, MTG, and the right precuneus, as well as abnormal seed-based FC

in these hubs. These results contribute to better understanding of how brain function

influences the symptoms of PI.
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INTRODUCTION

The central feature of primary insomnia (PI)
is dissatisfaction with sleep quantity or quality, which is
associated with difficulty falling asleep, maintaining sleep, or
early morning awakening (1). Insomnia is a very common health
problem that affects 30 to 35% of adults on an episodic basis
and 10 to 12% on a chronic basis (AAoS Medicine1)(2). One
third or more of the population suffers from a sleep disturbance
or excessive daytime sleepiness on a daily basis (3). Insomnia
is associated with an increased risk of Alzheimer’s disease (4),
Parkinson’s disease (5), hypertension (6), cardiovascular diseases
(7), depression (8), obesity (9), type 2 diabetes (10), and mortality
(11). Not surprisingly, insomnia has significant economic and
societal impacts. It causes a reduction of $63.2 billion in the total
American workforce from the estimated annualized population
level due to poor work performance and absenteeism (12). It
is crucial to understand the pathologic changes in insomnia
by exploring the central nervous system. Findings can offer
novel interventional treatments for these patients. However,
the etiology and pathogenesis underlying this disorder remain
uncertain.

Brain imaging technology has proven to be informative
for investigating the central mechanism of PI. Structural
neuroimaging studies have revealed brain tissue injury associated
with PI by using voxel-based morphometry (VBM) and diffusion
tensor imaging analyses (13, 14). Specifically, abnormal regional
gray matter volume or white matter integrity have been shown
in multiple brain regions, including the anterior cingulate
cortex (15), hippocampal (16), medial frontal, and middle
temporal gyri (13), thalamus, internal capsule, anterior corona
radiate, and corpus callosum (14). The structural changes are
usually accompanied by an impairment of brain function. Some
studies have reported the abnormal spontaneous functional
activity in PI patients by using low frequency fluctuations
(17), regional homogeneity (18), and the seed-based functional
connectivity (FC) approach (19). Although abnormal structural
and functional properties in many brain regions have been found
in PI patients, these observations failed to provide information
about integrated global brain function alterations. However, the
human brain is complex and well organized with coordination
of different brain regions as a functional network (20, 21). It is
necessary to investigate the brain connectivity within the whole-
brain network.

Recently, modern developments in graph theory have
delivered important insights into functional brain networks
(22). Graph theoretical analysis is a large-scale method and has
become an increasingly useful tool to explore the systematic
alteration of whole-brain functional organization and connection
(23). A graph theoretical analysis based on an automated
anatomical labeling atlas study found that chronic insomnia
patients showed altered topological characteristics of functional
brain networks, expressed as altered nodal in the default mode
network, dorsal attention network, and sensory-motor network
regions (24). Using graph theoretical analysis based on defined

1Aaos Medicine. International Classification of Sleep Disorders. 3rd Ed. Darien,

IaaOSM.

nodes and edges of the networks, previously, it was found
that healthy subjects with insomnia symptoms demonstrated
reduced regional degree and efficiency in the left inferior frontal
gyrus (IFG) compared with healthy subjects without insomnia
symptoms (25). Nevertheless, the altered topological properties
of the global functional brain network at the voxel level in PI
patients are unclear.

Voxel-wise degree centrality (DC) is a graph theory-based and
data-driven approach, which can evaluate the importance of each
voxel in the brain and every voxel represents its connectivity
strength (26). The index of DC is a better connectivity metric
than other measurements, because it can assign a higher value
to a voxel when this voxel has stronger connections with other
voxels in the brain network. Degree centrality emphasizes the
impact and significance of a network at voxel level, and it
reflects the properties of the functional brain network “hub” in
network information communication (27, 28). In a functional
brain network, hub regions play pivotal roles in the coordination
of information flow (29) and are consistent and stable in healthy
human brains but are highly vulnerable to pathological processes
(30, 31). Degree centrality measures based on resting-state
functional magnetic resonance imaging (fMRI) have been used to
observe the alterations of functional networks in diverse diseases,
and these measures exhibit relatively high test–retest reliability
(32). Focussing on the voxel-wise DCmay provide a novel insight
into the pathogenesis of PI.

In the present study, DC between PI patients and healthy
controls was compared to identify significant alterations in
intrinsic functional hubs. Subsequently, we performed further
seed-based FC analyses, using the seed regions with significant
alterations in the DC analysis, for better detecting the detailed
information regarding the connectivity in these hubs. Next, we
evaluated the relationships between the clinical features and the
DC or FC values. The current study will contribute to the further
understanding of the mechanism of PI and provide a bridge for
future studies.

MATERIALS AND METHODS

Participants
Participants were enrolled from September 2014 through
September 2016 at the Beijing Hospital of Traditional Chinese
Medicine Affiliated to Capital Medical University. The cohort
included 30 patients with PI and 30 healthy controls without
insomnia symptoms. Notably, PI patients were recruited in
outpatient clinics from the Department of Psychosomatic
Medicine, while healthy controls were recruited primarily
through advertisements in the community.

The inclusion criteria for PI patients were as follows: (i) age
from 25 to 60 years, (ii) right-hand dominance, (iii) meeting
the DSM-IV2 inclusion criteria for PI, (iv) reporting difficulty in
falling asleep, maintaining sleep, or early awakening at the same
time for at least 1 month, (v) absence of psychoactive medication
use for at least 2 weeks before and during the study. Patients
with PI were excluded if they had any of the following: (i) other

2DSM-IV. The Fourth Edition of the Diagnostic and Statistical Manual of Mental

Disorders.

Frontiers in Neurology | www.frontiersin.org 2 November 2018 | Volume 9 | Article 856

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Yan et al. Abnormal Functional Connectivity in Insomnia

sleep disorders (e.g., hypersomnia or parasomnia), (ii) insomnia
associated with specific reasons such as drugs, alcohol, or physical
and mental illness, (iii) history of heart disease, stroke, nephritis,
or psychiatric diseases, and (iv) abnormalities in brain structure
such as tumors or subdural hematomas.

The healthy controls were age-, sex-, hand dominance-, and
education-level-matched to PI patients and were included if they
met the following criteria: (i) good sleep quality and a Pittsburgh
sleep quality index score< 3, (ii) regular sleep habits, (iii) absence
of significant heart disease, lung disease, neurological or major
psychiatric disorders, (iv) normal conventional brain magnetic
resonance imaging (MRI).

Demographics, including age, sex and years of education, of PI
patients and healthy controls were collected. Self-rating anxiety
scale (SAS), the self-rating depression scale (SDS), Pittsburgh
sleep quality index (PSQI), and insomnia severity index (ISI)
were also measured. All participants underwent an MRI scan.
Four PI patients and two healthy controls were excluded before
data analysis because of incomplete MRI data or excessive head
motion.

Standard Protocol Approvals,
Registrations, and Patient Consents
All the study procedures were approved by the Research Ethical
Committee of Beijing Hospital of Traditional Chinese Medicine
Affiliated to Capital Medical University (reference: 2014BL-003-
01). Written informed consent was obtained from participants.
All experiments were performed in accordance with relevant
guidelines and regulations.

MRI Acquisition
Participants were imaged with a Siemens 3.0 Tesla scanner
(Skyra, Siemens, Erlangen, Germany) in the Department of
Radiology of the Beijing Hospital of Traditional Chinese
Medicine Affiliated to Capital Medical University. Their heads
were positioned within a 20 channel headcoil, and foam padding
was provided to minimize head movement. During the resting-
state fMRI scans, participants were required to keep awake, close
their eyes, and move as little as possible. Functional data were
collected by an echo planar imaging (EPI) sequence with scan
parameters of repetition time (TR) = 3,000ms, echo time (TE)
= 30ms, flip angle (FA) = 90◦, field of view (FOV) =220 ×

220 mm2, and slice thickness = 3mm. Sagittal structural images
were acquired using a magnetization prepared rapid gradient
echo (MP-RAGE) three-dimensional T1-weighted sequence (TR
= 2,300ms, TE= 2.32ms, FA= 8◦, FOV= 240mm× 240mm).

Functional Data Preprocessing
Data analyses were performed with the Resting-State fMRI
(DPARSF) toolbox (33) and SPM8 (http://www.fil.ion.ucl.ac.uk/
spm/software/spm8) base on MATLAB. Firstly, the removal of
the first 10 volumes, slice timing, and head-motion correction
were done by preprocessing functional data. Later, the functional
images were spatially normalized to the standard Montreal
Neurological Institute (MNI) echo-planar imaging template
and resampled to 3 × 3 × 3 mm3. Participants should have
had no more than a maximum displacement of 3mm in
the x, y, or z axis and 3 degrees of angular motion. The

regressing out of nuisance signals, including Friston 24 head
motion parameters (34) and white matter and cerebrospinal
fluid signals (33), was performed. Finally, linear trend and
band-pass filtering (0.01–0.08Hz) were performed to remove
the influence of low-frequency drift and high-frequency noise
(35).

Voxel-Wise Degree Centrality Analysis
The resting-state fMRI degree centrality analysis “REST-DC”
toolkit (REST1.8; http://www.restfmri.net) was used to calculate
DC measures according to the methods used in a previous study
(26). For each participant, whole-brain voxel-wise connectivity
matrix was obtained by computing Pearson’s correlation
coefficient between the time courses of one voxel with that of
every other voxel within a predefined graymatter mask. This gray
matter template has been released as part of the tissue priors in
SPM8 that included tissue with gray matter probabilities larger
than 20%. Depending on the adjacency matrix of a graph, we
calculated voxel-wise DC as in Equation (1) (26)

DC (i) =
∑N

j=1
rij(rij > r0), (1)

where rij is the temporal Pearson’s correlation of time series
between voxel i and voxel j. The term r0 is a correlation threshold,
which can eliminate the weak correlation (26, 36). In order
to improve normality, each participants’ correlation matrices
were transformed into a Z-score matrix using Fisher’s r-to-z
transformation (37). As previously described, binary version DC
was used to provide centrality characterization of functional
brain networks (38). We defined FC in the whole brain between
a given voxel with every other voxel based on the different
correlation thresholds (r0 = 0.15, 0.2, 0.25, 0.3, and 0.35) (37, 39).
The DC maps of each participant were then transformed to z-
score maps in order to accord with the Gaussian distribution.
The z-score transformation is achieved by subtracting the mean
(DC of all voxels in brain mask) and dividing the standard
deviation (DC of all voxels in brain mask). Subsequently, a
6mm full-width-at-half-maximum (FWHM) Gaussian kernel
was applied to decrease spatial noise. A two-sample t-test was
conducted to investigate the voxel-wise DC differences in brain
regions between PI patients and healthy controls in the DPARSF
software. The analysis was two-tailed and was conducted after
adjusting for age, gender, education level, SAS, and SDS. Multiple
comparisons were corrected at the cluster-level using Gaussian
random field (GRF) theory (|Z| > 1.960, cluster-wise p < 0.005,
corrected).

According to the previous studies, five thresholds were used to
compute DC in this study to avoid our primary results that were
dependent on the chosen threshold (36, 40). The weighted DC
was also computed, assuring the robustness of the findings with
nearly identical results as shown in Figure S1.

Seed-Based FC Analysis
To explore more details about resting-state FC alterations, a seed-
based interregional correlation analysis was performed using
the DPARSF software package. The seed region was derived
from the activated brain region (PI patients’ DC vs. healthy
controls’ DC) by creating a seeded spherical 5-mm region of
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interest (ROI) around the activated center of mass coordinates.
Later, FC maps were generated by calculating both positive and
negative correlations between the ROIs and other brain voxels.
Finally, the resultant correlation maps were transformed to z-
score maps using a Fisher’s transformation. For each seed, group
comparisons were analyzed using a two-sample t-test to detect
voxels showing significant correlations with the seed (p < 0.005,
GRF correction). The assessments were two-tailed and were
conducted after adjusting for age, gender, education level, SAS,
and SDS.

Statistical Analysis
Demographic Analysis
Non-imaging statistical tests were performed in SPSS Statistics
for Windows Version 22.0 (IBM Corporation, Armonk, NY,
USA). The threshold for statistical significance was set at α

< 0.05, and all hypothesis tests were two-tailed. Tests of data
normality were performed using the Shapiro-Wilk test, and
observations of histograms were made. Continuous variables
with normal distribution were analyzed using independent t-
tests. Otherwise, a Mann–Whitney U statistic was used to analyze
the data with non-normal distribution. For categorical variables,
the chi-square (χ2) test was used to compare the gender ratios.

Brain-Behavior Correlation Analysis
Pearson’s correlation analysis was performed to examine the
association between the values of DC or FC and the clinical
variables such as PSQI, SAS, SDS, and insomnia duration. Mean
DC or FC values of each spherical ROI with the centroid at its
corresponding peak voxel (radius = 5mm) were extracted. The
significance level was set at P < 0.05, for the two-tailed test.

RESULTS

Clinical Data
Baseline characteristics have previously been described in detail
(41). A total of 26 PI patients and 28 healthy controls were
enrolled. Analysis of demographic variables revealed that no
group differences were detected in age, sex, and years of
education (all p > 0.05). Significant differences were observed
in PSQI, SAS, and SDS between the two groups (all p < 0.000,
two-sample t-tests).

Degree Centrality Analysis
The DC maps of the two groups are shown in Figure 1. The
results obtained from the two sample t-test clearly showed highly
similar intragroup differences of binary DC between the two
groups in several thresholds at r0 = 0.10, 0.15, 0.20, 0.25, 0.30,
and 0.35. The functional hubs weremainly localized in themiddle
temporal gyrus (MTG), IFG, calcarine, and precuneus (Table S1).
For this reason, the study mainly reported the results for DC at
r0 = 0.25.

Primary insomnia patients exhibited a significantly decreased
DC in the left IFG and MTG, when compared with the healthy
controls (Table 1, Figure 2). These patients also demonstrated a
significantly increased DC in the right precuneus region.

Functional Connectivity Analysis
The center points of the peak t value in brain regions (left
IFG, left MTG, and right precuneus) that showed significant
differences in DC between PI patients and healthy controls were
defined as spherical ROIs (r = 5mm). We further examined
seed-based FC between the three ROIs and the whole brain
regions. As compared with healthy controls, decreased FC
of the left MTG found in PI patients was mainly located
in the left posterior cingulate cortex (PCC) areas (Table 1,
Figure 3). When compared with healthy controls, PI patients
exhibited a lateralized increase in FC between the right precuneus
and the right lateral occipital cortex (LOC). However, PI patients
failed to reveal any suprathreshold clusters between the ROI of
the left IFG and the whole brain regions.

Correlation Results
The mean DC or FC values were extracted from five regions (left
IFG, left MTG, and right precuneus, left PCC, and LOC) with
significant group differences. As shown in Figure 4, the Pearson’s
correlation analyses demonstrated that the reduced DC value
of the left IFG was positively correlated with PSQI (r = 0.527,
p = 0.006) in PI patients, and it was also positively correlated
with SAS (r = 0.393, p = 0.038) in healthy controls. Besides,
the decreased DC value in the left MTG was positively correlated
with SAS (r = 0.400, p = 0.035) and SDS (r = 0.467, p = 0.012)
in healthy controls. Finally, the reduced FC between the left MTG
and PCC was positively correlated to ISI (r = 0.426, p = 0.003).
The decreased DC in the precuneus and its abnormal FC with
right LOC had no relationship with any clinical variable.

DISCUSSION

In the current study, we investigated the abnormal intrinsic
functional hubs and the functional whole-brain network in PI
patients by using a combination of voxel-wise DC and seed-
based FC analyses. Using a data-driven approach to investigate
the degree of centrality, the results revealed that a set of cortical
hubs persisted, including significantly lower DC values in the left
IFG and MTG and higher DC value in the right precuneus. The
seed-based FC analyses described more details about the altered
functional networks anchored in these regions. Notably, these
intrinsic functional hubs and the altered connectivity strength
revealed linear correlation with clinical features.

Our results revealed that the IFG is one of the main cortical
hubs in the brain network affected by PI. This finding is in
line with the previous studies that showed the involvement of
the prefrontal cortex in insomnia (13, 42–45). For example, the
IFG demonstrated verbal fluency-related brain hypoactivation
in chronic insomnia patients that recovered after sleep therapy
(43). In addition, with the use of low frequency fluctuations
(ALFF), Li et al. (45) found that PI patients showed lower
ALFF value in the left IFG, and a negative correlation between
the duration of PI and the ALFF value in the left IFG was
observed (45). Specifically, using graph theoretical analysis, Lu
et al. (25) observed that healthy participants with insomnia
symptoms presented reduced regional degree and efficiency in
the left IFG compared with subjects without insomnia symptoms
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FIGURE 1 | Compared with healthy controls, PI patients exhibited remarkably similar altered DC brain areas in different correlation thresholds (r0 = 0.15, 0.2, 0.25,

0.3, and 0.35). The effects are significant at a single voxel p < 0.05, GRF corrected cluster level p < 0.005. The hot (cool) color indicates significantly increased

(decreased) DC in the brain area.

(25). In the present study, we observed diminished DC value in
the left IFG, and the DC value was positively correlated with
PSQI in PI patients. Hence, our findings might speculate that
IFG is a vulnerable region in the pathological process of PI.
Interestingly, a positive correlation between the SAS and the DC
value in the left IFG was also found in healthy controls. The
prefrontal cortex has long been considered to play a vital role in
emotional processing (46). Our current study provides evidence
that impaired connectivity in the prefrontal cortex, specifically
the IFG, might be associated with poor sleep quality under the

state of insomnia, whereas the connectivity in the IFG might
be associated with anxiety in healthy subjects without insomnia
symptom.

The left MTG demonstrated significantly reduced DC value
in PI patients in this study. The MTG is known to be a
key region during both encoding and retrieval of emotional
episodic memories (47, 48) and is thought to be involved in
dream encoding and recall in both rapid eye movement (REM)
and non-REM (NREM) sleep (49), which is also thought to
be involved in the pathology of insomnia (13, 45). Using the
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TABLE 1 | Significant differences in degree centrality (r0 = 0.25) and functional connectivity between two groups.

Brain regions Side Condition MNI coordinates Cluster size Peak t-value

Type x y z

DEGREE CENTRALITY

Inferior frontal gyrus Left PI < HC −54 24 15 540 −4.62

Middle temporal gyrus Left PI < HC −66 −27 −9 1054 −4.65

Precuneus Right PI > HC 36 −63 27 763 4.08

IFG_L-seeded connectivity No Suprathreshold clusters – – – – – – –

MTG_L-seeded connectivity Posterior Cingulate Cortex Left PI < HC −3 −48 18 944 −4.35

Precuneus_R-seeded connectivity Lateral Occipital Cortex Right PI > HC 42 −78 −6 633 3.24

IGG, inferior frontal gyrus; MTG, middle temporal gyrus; L(R), left (right) hemisphere. PI, Primary insomnia; HC, healthy controls.

FIGURE 2 | Scatter plot of DC for the significantly decreased (increased) clusters between PI patients and healthy controls (r0 = 0.25). The difference between PI

patients and healthy controls based on the DC in the left inferior frontal gyrus (A), left middle temporal gyrus (B), and right precuneus (C); Red dots: PI patients; black

dots: healthy controls. Error bars represent standard deviation of the mean (**P < 0.001).

ALFF algorithm, Li et al. (45) observed that PI patients showed
higher spontaneous regional brain activity in the MTG (45).
These findings suggests that insomnia is associated with altered
MTG function. Structurally, PI patients had smaller volumes of
gray matter in the area of MTG (13). The brain morphological
results further confirmed that functional abnormalities of MTG
in insomnia have an anatomical basis. In the current study, the
left MTG exhibited decreased FC with the left PCC in PI patients.
Previous neuroimaging studies have identified that abnormal FC
in the PCC could account for insomnia disorders (50). By using
positron emission tomography scans, Kay et al. (51) examined the
relative regional cerebral metabolic rate for glucose (rCMRglc) in
PI and controls with a normal sleep pattern during both morning
wakefulness and NREM sleep at night, and significant group-
by-state interactions in relative rCMRglc were found in the PCC
during non-REM sleep (51). This finding suggests that insomnia
is associated with impaired disengagement of brain regions in the
PCC. To supplement this, we found that reduced FC between
the left MTG and the left PCC might reflect a relationship with
insomnia.

The affected brain regions, the MTG and PCC, are
considerably overlapped with the default-mode network (DMN),
which plays an important role in consciousness modulation
(52). Previous neuroimaging studies have pointed out that
structural and functional abnormalities in insomnia are related to
DMN alterations (19, 53–55). For instance, decreased structural
connectivity between anterior and posterior regions of the DMN
in the PI group has been found by using structural MRI.
Moreover, decreased structural covariance within the DMN has
correlation with higher PSQI scores (19). These results indicate
that the disrupted DMN may implicate commonly observed
sustained sleep difficulties in insomnia. Similarly, a correlation
between FC values in left PCC and ISI scores was found
in the current study. Our results support the fact that the
functional disruption of DMN can probably be used to assess
the severity of insomnia. Besides, the DC value in the left MTG
was positively correlated with SAS and SDS in healthy controls.
The DMN is believed to underlie self-reflective processes (56),
while it is directly proportional to the subject’s anxiety level
when performing a task (57), and resting-state FC variations
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FIGURE 3 | Group differences in seed-based functional connectivity. The seeds were defined as left middle temporal gyrus and right precuneus. Scatter plot of FC for

the significantly increased or decreased clusters between PI patients and healthy controls. Red dots: PI patients; black dots: healthy controls. Error bars represent

standard deviation of the mean (*P < 0.05, **P < 0.001).

have repeatedly been verified in relation to depression (58).
Our findings reveal that, in healthy subjects, higher connectivity
density in the left MTG may reflect lower levels of anxiety and
depression, although more studies are needed to confirm it.

The precuneus, a part of the parietal lobe, is also one of the key
regions of the DMN, ascending projections to the somatosensory,
cognitive, and visual cortex, and has been proven to be involved
in the interwoven network of the self-conscious neural correlates
during rest (59, 60). This result is consistent with selective
hypometabolism in the precuneus, which has been observed in
mental states of decreased or abolished consciousness, such as
sleep, drug-induced anesthesia, and vegetative states (59). During
wakefulness, cerebral glucose metabolism in the precuneus is at
the highest level. Whereas, during slow-wave sleep and REM
sleep, the precuneus is one of most deactivated brain areas
(61). Furthermore, PI patients exhibited decreased spontaneous
regional brain activity values in the precuneus (62). These results

indicate that the abnormal precuneus functions might influence
sleep quality, and our study provides the evidence of disrupted
global function in the precuneus.

Moreover, an increase in FC between the right precuneus
and the right LOC was observed in PI patients. Altered
metabolism and spontaneous activity in the occipital cortex
had been found in PI patients. The mean occipital gamma-
aminobutyric acid (GABA) level was 33% lower in PI patients
than in normal subjects, which was found by using single-
voxel proton magnetic spectroscopy (63). Gamma-aminobutyric
acid (GABA), an inhibitory neurotransmitter, has a role in
the etiology and/or maintenance of insomnia (64). Decreased
GABA in the occipital cortex suggests that increased activity
in some neurons in the occipital cortex may result in a
hyperarousal state in insomnia. Besides, an increase in parietal-
occipital electroencephalographic (EEG) gamma activity was
found in persons after meditative training during NREM
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FIGURE 4 | (A) The correlation between the PSQI scores and DC values in the left inferior frontal gyrus; (B) The correlation between SAS scores and DC values in the

left inferior frontal gyrus; (C) The correlation between SAS scores and DC values in left middle temporal gyrus; (D) The correlation between SDS scores and DC values

in left middle temporal gyrus. (E) The correlation between ISI scores and FC values in left posterior cingulate cortex. Red dots: PI patients; black dots: healthy controls.

sleep (65). Based on this finding, we might suppose that
parietal-occipital EEG gamma power was a sensitive measure
on brain function in sleep. We observed an increase in FC
between the right precuneus and the right LOC in insomnia.
The result shed new light on the pathological mechanism in
insomnia.

The limitations of our study are noted below. First, as
our study sample is relatively small, the results in this study
need further verification in a large sample. Second, this was
a cross-sectional study, and it is inadequate to identify the
pattern of changes in brain activation. Thus, further longitudinal
imaging studies with treatments are needed. Third, the significant
association of clinical features and the pattern of changes in
the brain reported in the present study should be regarded
as exploratory in nature owing to the fact that no correlation
persisted (P < 0.05) after false discovery rate (FDR) correction
for multiple comparisons. Future studies with rigorous multiple
testing correction need to be performed. Fourth, fMRI data
from wakefulness and a deep sleep state are essential for us to

understand how brain function is influenced by insomnia. A
major methodological constraint is that sleep in a scanner will
be difficult to achieve, therefore, only waking state fMRI data
were obtained in this study. Besides, the affected areas in PI
patients in our study are diffuse, and it is difficult to establish
their participation in the insomnia disorder. However, a meta-
analysis clearly indicated that a wide range of brain alterations
was presented in insomnia disorder (66). Further studies on
the pathogenic mechanism of insomnia are needed to reveal
the specific role of these affected brain regions in insomnia
disorder.

In summary, this research used voxel-wise DC and seed-
based FC to investigate the intrinsic functional hubs or whole
brain functional connection changes in PI patients. The results
revealed that PI patients exhibited lower DC values in the left
LFG and MTG and higher DC values in the right precuneus.
Decreased FC strength was observed between the left MTG and
the left PCC, and increased FC was also found between the
right precuneus and the right LOC. Furthermore, reduced DC
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in left the LFG and decreased FC in the left PCC were positively
correlated with sleep quality. The findings of this study provide
a better understanding of the nature of disconnection in PI
patients, which may be helpful to figure out the neurobiological
mechanism of insomnia.
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