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Prediction of treatment outcome 
in neovascular age‑related macular 
degeneration using a novel 
convolutional neural network
Tsai‑Chu Yeh1,2, An‑Chun Luo3, Yu‑Shan Deng3, Yu‑Hsien Lee3, Shih‑Jen Chen1,2, 
Po‑Han Chang3, Chun‑Ju Lin3, Ming‑Chi Tai3,4 & Yu‑Bai Chou1,2*

While prognosis and risk of progression are crucial in developing precise therapeutic strategy in 
neovascular age-related macular degeneration (nAMD), limited predictive tools are available. We 
proposed a novel deep convolutional neural network that enables feature extraction through image 
and non-image data integration to seize imperative information and achieve highly accurate outcome 
prediction. The Heterogeneous Data Fusion Net (HDF-Net) was designed to predict visual acuity 
(VA) outcome (improvement ≥ 2 line or not) at 12th months after anti-VEGF treatment. A set of pre-
treatment optical coherence tomography (OCT) image and non-image demographic features were 
employed as input data and the corresponding 12th-month post-treatment VA as the target data to 
train, validate, and test the HDF-Net. This newly designed HDF-Net demonstrated an AUC of 0.989 
(95% CI 0.970–0.999), accuracy of 0.936 [95% confidence interval (CI) 0.889–0.964], sensitivity of 0.933 
(95% CI 0.841–0.974), and specificity of 0.938 (95% CI 0.877–0.969). By simulating the clinical decision 
process with mixed pre-treatment information from raw OCT images and numeric data, HDF-Net 
demonstrated promising performance in predicting individualized treatment outcome. The results 
highlight the potential of deep learning to simultaneously process a broad range of clinical data to 
weigh and leverage the complete information of the patient. This novel approach is an important step 
toward real-world personalized therapeutic strategy for typical nAMD.

Age-related macular degeneration (AMD) is a leading cause of irreversible blindness worldwide, and the num-
ber of affected population is expected to reach 288 million by 20401. It is a debilitating, chronic and progressive 
disease that independence and overall quality of life decline in parallel with visual impairment2. Over the past 
several years, anti-vascular endothelial growth factor (anti-VEGF) injection has become the mainstay of treat-
ment for neovascular AMD (nAMD), and has significantly improved visual outcomes and prevent vision loss in 
most patients3. However, high cost and the need for frequent injections result in substantial healthcare burden on 
both patients and physicians4,5. In addition, questions persist regarding whether an intensive anti-VEGF therapy 
may have negative effects on nonvascular tissues and influence in the retinal pigment epithelium (RPE) and cho-
riocapillaris integrity6–8. Moreover, each injection poses a small yet significant risk of complications threatening 
eyesight including endophthalmitis, retinal tear or detachment, and vitreous hemorrhage9. All these staggering 
disease burden and potential risks have prompted search for a more precise approach for dosage minimization.

Artificial intelligence (AI) has played an increasingly prominent role in every aspect of ophthalmology in 
recent years10,11. With the great potential of imitating the neural structure of the brain, deep learning has risen to 
the forefront in healthcare. Inspired by the structure of the primary visual cortex, convolutional neural network 
(CNN) represents the latest revolution of deep learning technologies, which is capable of effectively analyzing 
medical images12. Besides automated detection of features, successful application of AI has been reported for 
individualized treatment requirements and outcome prediction. Bogunovic et al. evaluated a total of 317 subjects 
with OCT images from baseline, month 1, and month 2 to predict anti-VEGF injection requirements13. Schmidt-
Erfurth et al. introduced a prognostic model using random forest machine learning to predict visual outcomes 
after 12 months of anti-VEGF injection in the setting of a randomized controlled trial14. Rohm et al. proposed a 
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model for visual acuity (VA) prediction based on clinical data from electronic medical records (EMR) and meas-
urement features from OCT15. Although prior studies have presented proof-of-principle evidence, longitudinal 
datasets and serial OCT images are often required to make predictions. Furthermore, previous deep learning 
models were often developed based on pre-defined extracted features associated with nAMD that were confirmed 
to be clinically relevant in literatures. CNN has been proven very effective for image classifications, thus, medical 
image analysis is one of the early applications of CNNs in healthcare. Nonetheless, even for imaging-based medi-
cal specialties, clinical data is crucial to guide image interpretation and clinical practice. Therefore, multimodal 
deep learning models that can ingest both image and clinical data have shown an increased role in healthcare.

The aim of this study is to introduce a novel CNN architecture automatically and simultaneously process 
real-world image and non-image data for VA outcome prediction after 12-months of anti-VEGF treatment. Since 
it is of great interest to be able to predict treatment outcomes for each patient at the very beginning of the thera-
peutic course, we use only basic patient demographics, baseline OCT image and baseline BCVA. An important 
additional aim of this study is to compare the accuracy with traditional CNN algorithm to unleash the potential 
of deep learning and facilitate resource management, therapeutic decision making, and patient counseling.

Materials and methods
Data sources and study population.  We retrospectively reviewed the medical records of patients with 
nAMD who underwent an intravitreal injection (IVI) of anti-VEGF drugs in the interval of three consecutive 
monthly injections and pro re nata injections (PRN) at the Taipei Veterans General Hospital from November 
2013 to July 2018. The inclusion criteria were as follows: (1) age ≥ 55 years; (2) a diagnosis of typical nAMD con-
firmed with fluorescein angiography (FA), indocyanine green angiography (ICGA), or OCT angiography; (3) no 
documented IVI of anti-VEGF within 6 months prior to study entry; (4) Patients with one-year follow-up data 
available. The exclusion criteria were: (1) Patients with other intraocular vascular, inflammatory, infective, or 
ischemic diseases such as polypoidal choroidal vasculopathy, uveitis, or retinal vein occlusion…etc.; (2) Patients 
with history of intraocular operation other than IVI within the following 12-month treatment period, including 
cataract surgery and vitreoretinal surgery. This study followed the tenets of the Declaration of Helsinki and was 
approved by the Institutional Review Board of the Taipei Veterans General Hospital.

Data and OCT image pre‑processing.  The pretherapeutic spectral-domain (SD) OCT images were 
acquired at baseline with AngioVue Imaging System (RTVue-SD OCT; Optovue Inc, Fremont, CA, USA). The 
OCT images consisted of the 10-mm horizontal and vertical B-scans of the cross line report of the macular scan, 
which were cut and resized to 620 × 620 pixel centered at fovea using the region of interest (ROI) cutting tech-
nique. The two images of the same eye were allocated into the same dataset.

For patient demographics and clinical data, baseline best-corrected visual acuity (BCVA), gender, and age 
were extracted from the electronic medical records. SD-OCT scans were preprocessed using motion artifact 
removal to reduce image artifacts caused involuntary eye motion during acquisition. OCT images were randomly 
separated into the training, validation and testing dataset. There were no images of the same patient simultane-
ously assigned to the two datasets. The analysis of visual outcome is evaluated at baseline and 12th months after 
treatment. We defined the “improved case” to consist of patients with visual acuity increase ≥ 2 lines of Snellen 
chart at 12th month after treatment. Patients with visual acuity increase < 2 lines were defined as “unimproved 
case” (Fig. 1A).

Overview of the AI model.  HDF-Net was designed as a deep learning model that could predict treatment 
outcome using baseline clinical data and OCT image by Industrial Technology Research Institute of Taiwan 
(Fig. 1B). The HDF-Net described herein was granted provisional patent 63/091,280 on Oct. 13th, 2020.

Contrary to conventional classification approach in which extracted features are fed into algorithms, HDF-Net 
automatically learn representative complex features directly from the image and numeric data itself. The overall 
structure of the HDF-Net is shown in Fig. 2. The baseline OCT image and clinical data are the input dataset to the 

Figure 1.   (A) Illustration of the pre-process flow. (B) The flowchart of the HDF-Net process.



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:5871  | https://doi.org/10.1038/s41598-022-09642-7

www.nature.com/scientificreports/

HDF-Net. The first stage of HDF-Net is the image feature extraction network, which consists of five convolutional 
layers (from Conv1 to Conv5) and three maximum pooling layers. Output signal of the final pooling layer, which 
is the feature map extracted from the OCT image, is flatten to be reshaped into a vector as the input signal of 
the next stage. The classification network consists of two fully connected layers (FC6 and FC7) with a dropout 
probability of 0.5 and a final 1 × 2 softmax layer (FC8, output layer) served as a two-class classifier. An addition 
input layer is designed for the corresponding numeric data, and is concatenated with the layer FC6. Layer FC7 
hybridizes the image features extracted from the first stage and the numeric features from baseline patient data. 
Rectified linear unit (ReLU), the most commonly used activation function, is applied after each hidden layer. To 
normalize layer inputs, a batch normalization (BN) layer is added after layer FC6.

Performance comparison between HDF‑Net, ResNet50 and AlexNet.  The performance of the 
three models (HDF-Net, ResNet5016 and AlexNet17) was evaluated using cross-validation techniques with the 
dataset split randomly into 80% and 20% for training and testing sets, respectively. The AlexNet classifier was 
trained with baseline OCT image dataset using Caffe deep learning framework. The transfer learning technique 
was applied by initializing the five convolutional layers of AlexNet with the weights pre-trained on ImageNet, 
and the base learning rate was set to 0.001 for the stochastic gradient descent (SGD) to re-train the whole 
AlexNet model with a batch size of 100. In comparison, we trained HDF-Net with heterogeneous dataset includ-
ing not only baseline OCT images but the corresponding numeric clinical data (pretherapeutic BCVA, gender, 
and age). The batch size and the base learning rate were the same as those set in the training process of ResNet50 
and AlexNet.

Evaluation of model and statistical analysis.  To evaluate the performance and to assess how the 
results would generalize to an independent data set, we used a holdout cross validation method. We randomly 
assign data points to the training and testing dataset, following a training/validation splitting ratio of 0.75/0.25. 
The quantitative performance of the two predictive models across all the validated predictions is summarized 
with an area under the receiver operating characteristic (ROC) curve and presented as sensitivity and specificity 
at an operating point.

Ethical statement.  The authors are accountable for all aspects of the work in ensuring that questions 
related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Informed consent statement.  Patient consent was waived due to the privacy rule, as deemed by the 
Institutional Review Board.

Results
Patient characteristics.  The demographics of all patients/eyes included are summarized in Table 1. Of all 
698 evaluable patients, 232 were male (33.24%) and 466 were female (66.76%). The mean (± SD) age of patients 
was 78.47 (± 9.88) years. 165 patients had at least 2-line VA improvement, and 533 failed to achieve VA improve-

Figure 2.   The architecture of HDF-Net. The feature extraction network consists of five convolution layers. The 
first convolutional layer has 96 kernels within the size of 11 × 11, presented as "Conv1, 11 × 11 conv, 96", while 
the second convolutional layer has 256 kernels within the size of 5 × 5, the third and fourth convolutional layer 
has 384 kernels within the size of 3 × 3, and the fifth convolutional layer has 256 kernels within the size of 3 × 3.
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ment ≥ 2 line. The mean baseline BCVA of the “improved cases” and “unimproved cases” was 0.32 ± 0.15 and 
0.19 ± 0.15, respectively; The mean 12th-month BCVA was 0.62 ± 0.16 and 0.16 ± 0.16, respectively, after treat-
ment.

Prediction of visual outcomes.  We evaluated the performance of the model in an internal validation 
set. A total of 1396 image series representing 698 individuals was successfully exported from the image archive. 
75% were used for model training. The HDF-Net predicts the one-year VA outcome with AUC of 0.989 (95% 
CI 0.970–0.999), accuracy of 0.936 (95% confidence interval [CI] 0.889–0.964), sensitivity of 0.933 (95% CI 
0.841–0.974), and specificity of 0.938 (95% CI 0.877–0.969). While the metrics for ResNet50 were AUC of 0.924 
(95% CI 0.870–0.934), accuracy of 0.852 (95% CI 0.841–0.933) sensitivity of 0.795 (95% CI 0.716–0.896), and 
specificity of 0.895 (95% CI 0.822–0.952); and the metrics for AlexNet were AUC of 0.936 (95% CI 0.894–0.978), 
accuracy of 0.895 (95% CI 0.841–0.933), sensitivity of 0.824 (95% CI 0.716–0.896), and specificity of 0.942 (95% 
CI 0.880–0.973). Figure 3 describes the area under the receiver operating characteristic (ROC) curve (AUC) and 
demonstrates learning curves of internal validation.

Attention maps generated on OCT images by HDF‑Net.  Consequent to the evaluation of OCT 
images using the HDF-Net, attention maps were generated and overlaid on the OCT images to represent in 
a quantitative manner the relative contributions that areas in each image made to the ascertainment decision. 
Moving on to model explanation, heatmaps demonstrated that areas contributed most consequentially to visual 
outcome identified by HDF-Net are fovea contour, the ellipsoid zone (EZ), and other pathological features asso-
ciated with nAMD, in agreement with what clinicians deem relevant in prognosis. Examples of these attention 
maps representing true and false outcome forecast are shown in Fig. 4. This verification allows us to safely sug-
gest that the HDF-Net displays a degree of validity and is making classifications based on anatomical integrity 
and pathological features rather than systemic errors that cannot be explained. A common classification error is 
seen on OCT images with subretinal hyperreflective material (SHRM), which may be a collection of neovascular 
tissue, fibrosis, exudate or hemorrhage.

Discussion
AI is making precision medicine a reality, strengthened by digital healthcare revolution including integrated 
electronic health records and advancement of computational power. In fact, prediction is not new to ophthal-
mology. A variety of risk scores have been investigated to determine individual risk for different ocular diseases, 
in search for a personalized medicine approach. However, it was only until the rise of deep learning algorithms 
that the concept of forecasting precise treatment outcome can be realized. Our study demonstrates that a deep 
learning neural network was effective at predicting one year treatment outcome from baseline OCT images 
(AlexNet accuracy: 0.895, sensitivity: 0.824, specificity: 0.942, AUC: 0.936), and the accuracy was even higher 
when clinical data were combined using a novel CNN model (HDF-Net accuracy: 0.936, sensitivity: 0.933, 
specificity: 0.938, AUC: 0.989).

The prediction of nAMD visual outcome derived from OCT features has been previously studied by other 
groups13,18. For instance, Schmidt-Erfurth et al. introduced a model to predict visual outcomes in the setting of 
a randomized controlled trial, and demonstrated R2 = 0.34 if only the baseline data was considered14; Rohm and 
colleagues developed and validated a model in 456 patients, and showed successful VA prediction within an 
error margin of 8 letters after one year of real-world anti-VEGF therapy15. All of these studies were particularly 
comprehensive in including “pre-defined” OCT measurement data, such as central retinal thickness, subretinal 
fluid (SRF) and intraretinal fluid (IRF), into the machine learning model. However, some important anatomic 

Table 1.   Patient demographics.

Total
Improved Group (VA increase ≥ 2 
lines)

Unimproved Group (VA increase < 2 
lines)

Case number 698 165 533

 Treatment-naïve (%) 467 (66.91%) 103 (62.42%) 364 (68.29%)

 Non-treatment-naïve (%) 231 (33.09%) 62 (37.58%) 169 (31.71%)

Age years (± SD) 78.47 ± 9.88 78.47 ± 9.88 83.28 ± 9.94

Gender

 Male (%) 466 (66.76%) 97 (58.79%) 369(69.23%)

 Female (%) 232 (33.24%) 68 (41.21%) 164(30.77%)

Pre-therapeutic BCVA (mean ± SD) 0.21 ± 0.16 0.32 ± 0.15 0.19 ± 0.15

12th month Post-therapeutic BCVA 
(mean ± SD) 0.19 ± 0.19 0.62 ± 0.16 0.16 ± 0.16

Anti-VEGF injections in 12 months 
(mean ± SD) 4.19 ± 2.11 4.50 ± 2.15 4.18 ± 2.11

Anti-VEGF agent

 Aflibercept (%) 544 (77.94%) 134 (81.21%) 410 (76.92%)

 Ranibizumab (%) 154 (22.06%) 31 (18.79%) 123 (23.08%)
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aspects had been missed out since they were difficult to capture in currently available automated segmentation 
methods. In fact, the conventional machine learning approach such as random forest requires the input data to 
be in the form of a feature vector instead of an OCT image itself, which makes the whole process highly time-
consuming in feature labelling and highly dependent on the feature extraction technique19.

Based on prior evidence, baseline BCVA has become an important prognostic factor for final visual 
outcomes20. However, to date, automated analysis of “raw” retinal OCT images in combination with baseline 
BCVA in a single CNN model has not yet been explored to predict treatment outcome in nAMD. To address 
these limitations, we developed the HDF-Net to predict visual outcome simply by using baseline OCT image 
and three demographic covariates (age, gender, and baseline BCVA). In contrast to traditional machine learning 
approach, CNN model accepts a sample as an image and performs feature extraction and classification via hidden 
layers. But the challenges remain in how to input hybrid heterogeneous image and non-image data into a single 
CNN architecture. Unlike conventional CNN approaches which can only allow single type of data as input, we 
used a data fusion approach that enables simultaneous processing of multiple types of data with heterogeneous 
features extracted from different sources. Thereby, the power of CNN can be unleashed for image and non-image 
data all at the same time.

The difference between HDF-net and other published data fusion CNN approaches, such as HDF-CNN is the 
input method of numeric data. The HDF-CNN uses the matrix format to perform heterogeneous data fusion21. 
Hence, all heterogeneous data becomes a single input instance, and the heterogeneous data features are extracted 
through CNN. However, there may be some information loss in numeric data after the convolutions and pool-
ing. Furthermore, pertinent features among numeric data extracted by convolution layers may turn out to be 
insignificant. In contrast, the HDF-net we proposed here is designed to merge image features and numeric data 
into a single feature vector after the feature extraction layers. The classification layer of HDF-Net will later on 
automatically determine the feature weight among various input data. In this work, we showed that the HDF-Net 
approach is superior to models such as ResNet50 and AlexNet at accurately predicting VA outcome in a real-
life population. HDF-Net encompasses many advantages including automatic feature extraction in non-labeled 
samples, finding hidden structure from sparse and hyper-dimensional data, and non-image data hybridization. 
Therefore, it holds the potential to offer a robust decision support with non-image data integration as genetic 
factors are known to be involved in determining nAMD prognosis22,23.

A strength of this study is that it is a model validated based on real-world population comprising not only 
treatment-naive individuals. Previous studies regarding AI predicting treatment outcome frequently used trial 
dataset, such as that from the HARBOR study, as it offers a standardized imaging data and well-designed treat-
ment protocol from a large sample size. Nonetheless, real-world nAMD studies showed discrepancies in several 
aspects when compared to randomized controlled trials (RCTs). An analysis of 49,485 eyes assessing anti-VEGF 
intensity and VA change found that real-world nAMD patients receive fewer injections and experience worse 
visual outcomes compared with patients receiving fixed, frequent therapy in RCTs. Furthermore, patients with 

Figure 3.   Receiver operating characteristic (ROC) curves and learning curve of the HDF-Net, ResNet50 
and AlexNet for VA outcome prediction. (A) For binary classification tasks of VA improved or unimproved, 
the presented HDF-Net (red line) performs equally or better than the traditional AlexNet (orange line) and 
ResNet50 (purple line). (B) Loss versus iteration graph of HDF-Net showing loss of 0.351 at 16,000 iteration; (C) 
Accuracy versus iteration graph of HDF-Net showing a final validation accuracy of 93.6% at 16,000 iteration.
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older age and poor baseline VA may be particularly prone to undertreatment24. This suggests potential bias in the 
results of studies validating AI algorithms only in trial settings. Although this study was designed as retrospective, 
all included patients were approved for Taiwan National Health Insurance (NHI) reimbursed anti-VEGF injec-
tions after a scrutinized cross-check on clinical diagnosis and OCT images from the Bureau of NHI. This further 
supports the diagnosis accuracy and standardized treatment protocol following the reimbursement scheme.

Another major strength of this study is that it aims far beyond identifying “pre-defined OCT features” but 
generates prediction rules from “raw OCT images”. In a study comparing the performance of retinal specialists 
and an AI algorithm, retinal specialists were found to have imperfect accuracy and low sensitivity in detecting 
retinal fluid whereas AI achieved a higher level of accuracy25. This supports our hypothesis that feeding AI with 
only “pre-defined OCT features” could limit the scope of its application as it became obvious that AI might 
be able to outperform human intelligence. Prior studies have demonstrated favorable accuracy of deep learn-
ing approach to detect “pre-defined OCT features” such as retinal fluid on OCT scans25,26, yet quantifying the 
retinal fluid cannot directly guide clinical practice as controversies remain in SRF tolerance after initiation of 
treatment27–29. Treating nAMD with an ultimate goal of completely drying the retina could also increase the risk 
of macular atrophy, causing deteriorated long-term visual outcomes8,30.

This study has some limitations and there are several factors to be improved to optimize the results. A major 
limitation of most deep-learning models is the issue of “black-box” indicating that their predictions might be 
hard to interpret. In this study, we applied heatmaps to localize image regions influencing the classification. 
Although heatmap is a useful clue to highlight which part of image guided the CNN model to its decision, it does 
not provide information about the reason behind it. By processing both image and non-image data in one single 
CNN architecture, we found that adding numeric clinical data from baseline might enhance the performance of 

Figure 4.   Representative horizontal scans of SD-OCT and corresponding superimposed heatmaps. Presented 
are (A) an example of an OCT image with the HDF-Net correctly predicted as an improved case (85 M; baseline 
VA:0.2; 12th month VA: 0.5); (B) The network located attention on the margin of SRF, and on retinal pigment 
epithelial mottling. Also, some attention corresponded to islands of preserved ellipsoid zone (EZ) reflecting 
preserved visual potential. (C) An example of an OCT image with the HDF-Net correctly predicted as an 
unimproved case (94 M; baseline VA:0.05; 12th month VA: 0.1); (D) The attention is located at the subfoveal 
disciform scar and disruption of the EZ. There is also some attention on the chorioretinal atrophy with adjacent 
loss of outer retinal layers. (E) An example of an OCT image with the HDF-Net predicted to improve but the 
patient failed to achieve VA improvement >  = 2 lines (96 M; baseline VA:0.4; 12th month VA: 0.4); (F) The 
attention is located primarily on the preserved EZ and the subretinal hyperreflective material (SHRM) with 
fibrovascular components. A relatively normal fovea contour was also identified. (G) An example of an OCT 
image with the HDF-Net predicted not to improve but the patient demonstrated VA improvement >  = 2 lines 
(82 M; baseline VA:0.4; 12th month VA: 0.6); (H) The attention is located on the SHRM with fibrovascular/
hemorrhagic components. Also some attention on the disruption of the EZ and the hyperreflective zone of the 
inner retina.
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the model. But, the optimal feature weighting among image and non-image data remains as a question of major 
interest. Another limitation is the relatively small sample size that may have jeopardized our statistical analysis. 
However, each participant was comprehensively assessed with horizontal and vertical OCT scans, providing a 
rich set of reliable data.

The therapeutic response of nAMD varies widely in real-world setting, and was difficult to predict in the 
past. In this study, we presented and validated a novel deep learning-based approach utilizing baseline OCT 
and clinical information including baseline BCVA to predict the 12-month visual outcome after standard anti-
VEGF therapy for active nAMD. The combination of heterogenous clinical and image data in HDF-Net holds 
the potential to serves as a solid decision support tool for clinicians to deliver evidence-based personalized treat-
ment. This breakthrough marks a new era in AI guiding treatment decisions and patient expectations. Future 
studies are warranted to evaluate both economic impact and patient perceptions regarding outcome predictions.

Data availability
The data presented in this study are available on request from the corresponding author. The data are not publicly 
available due to patient privacy IRB requirement.
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