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Neuronal activity is markedly different across brain states: it varies from desynchronized
activity during wakefulness to the synchronous alternation between active and silent
states characteristic of deep sleep. Surprisingly, limited attention has been paid to
investigating how brain states affect sensory processing. While it was long assumed
that the brain was mostly disconnected from external stimuli during sleep, an increasing
number of studies indicates that sensory stimuli continue to be processed across all
brain states—albeit differently. In this review article, we first discuss what constitutes a
brain state. We argue that—next to global, behavioral states such as wakefulness and
sleep—there is a concomitant need to distinguish bouts of oscillatory dynamics with
specific global/local activity patterns and lasting for a few hundreds of milliseconds, as
these can lead to the same sensory stimulus being either perceived or not. We define
these short-lasting bouts as micro-states. We proceed to characterize how sensory-
evoked neural responses vary between conscious and nonconscious states. We focus
on two complementary aspects: neuronal ensembles and inter-areal communication.
First, we review which features of ensemble activity are conducive to perception, and
how these features vary across brain states. Properties such as heterogeneity, sparsity
and synchronicity in neuronal ensembles will especially be considered as essential
correlates of conscious processing. Second, we discuss how inter-areal communication
varies across brain states and how this may affect brain operations and sensory
processing. Finally, we discuss predictive coding (PC) and the concept of multi-level
representations as a key framework for understanding conscious sensory processing.
In this framework the brain implements conscious representations as inferences about
world states across multiple representational levels. In this representational hierarchy,
low-level inference may be carried out nonconsciously, whereas high levels integrate
across different sensory modalities and larger spatial scales, correlating with conscious
processing. This inferential framework is used to interpret several cellular and population-
level findings in the context of brain states, and we briefly compare its implications to two
other theories of consciousness. In conclusion, this review article, provides foundations
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to guide future studies aiming to uncover the mechanisms of sensory processing and
perception across brain states.

Keywords: brain states, consciousness, neural representations, functional connectivity, ensemble activity,
electrophysiology, perception, inference

INTRODUCTION

Our senses are always active. Even when we are deeply asleep, a
salient stimulus such as an alarm clock is able to elicit a behavioral
response. Weak stimuli, on the other hand, are not noticed,
although they would normally be perceived during wakefulness.
Also during deep surgical anesthesia, stimuli are still processed
by multiple neocortical areas (Alkire et al., 2008; Mohajerani
et al., 2011; Supp et al., 2011; Koch et al., 2016), yet they are not
consciously perceived (Sanders et al., 2012). The awake state is
similarly puzzling. We are able to process even the fine details of
a visual scene easily, but sometimes we surprisingly fail to detect
highly salient objects (Simons and Chabris, 1999).

What are the mechanisms underlying such a high variability
in the way the same sensory stimulus is processed, and how
are they relevant for understanding perception? A key factor
to consider is the interaction between brain state and signals
originating from sensory transducers. While the latter have been
extensively investigated, the nature of brain states and how they
influence sensory processing has received surprisingly limited
attention. Historically, most studies on sensory processing in
human subjects and primates have been performed in the
awake state. Conversely, the majority of studies performed in
other mammals (e.g., cats, rodents, ferrets) were done under
anesthesia. Only in the last decade have researchers started
to perform experiments in head-fixed rodents—a pre-requisite
for the controlled delivery of sensory stimuli—not only during
anesthesia, but also in awake, behaving animals (Carandini and
Churchland, 2013; Guo et al., 2014; Montijn et al., 2015). Recent
studies revealed that sensory-evoked responses are different
between wakefulness and anesthesia (Alkire et al., 2008; Harris
and Thiele, 2011), but also call for an update of the very definition
of brain state. Neither wakefulness nor the various sleep stages
(NREM stages 1, 2, 3 and REM) can be considered homogeneous
brain states, as each of them is characterized by the co-existence
of different neural dynamics both in time and across brain
regions (Vyazovskiy et al., 2009, 2011; Nobili et al., 2012; Hung
et al., 2013; Vyazovskiy and Harris, 2013).

The aim of this review article is threefold. First, we will
develop an updated definition of brain state. We will argue that
the fine-grained structure of brain activity (both in temporal
and spatial terms) as a whole is what determines how a sensory
stimulus is processed. As this activity structure is ever-changing,
a single micro-state may last for only a few hundreds of
milliseconds and should be ultimately functionally defined, based
not only on the specific pattern of spontaneous activity, but also
on how a given signal gets processed. Second, we will review
how sensory processing is shaped by the characteristics of brain
states, in terms of single-neuron and population responses, as
well as communication between areas. Overall, we will present
an overview of how stimuli are processed in single (cortical)

sensory areas, and how sensory information propagates and
reverberates across the cortical hierarchy to be consciously
perceived and/or elicit a behavioral response. Finally, we will
discuss what enables certain brain states to transform sensory
information into conscious experiences, and how this is reflected
in terms of neural representation of sensory stimuli.

With ‘‘consciousness’’ we indicate a state in which we
experience the world—including our body—in a qualitatively
rich manner (Pennartz, 2018). Several forms of experience,
and corresponding states, are distinguished: (i) perception; (ii)
imagery; and (iii) dreaming. Whereas perception is understood
to be driven by external stimuli, imagery and dreaming are
internally driven classes of experience. These manifestations
of consciousness contrast with nonconscious states such as
dreamless sleep, anesthesia or coma. Because the current article
focuses on sensory processing, the ensuing discussion will mainly
revolve around mechanisms of perception. We follow Jackendoff
(1987) in that conscious experience (including dreaming and
imagery) is essentially defined by its sensory nature. However,
sensory processing is not sufficient for consciousness to arise,
because it can also occur non-consciously. An important
distinction is that between the state of consciousness (e.g.,
dreaming, NREM sleep) and its contents (what we are conscious
of). When attempting to define consciousness or experience, one
invariably risks to resort to circularity.

To avoid falling into this trap, we have previously (Pennartz,
2015) characterized experience as having a number of properties,
at least in a state of healthy, full-blown consciousness, which we
may summarize as follows: (i) experience is qualitatively rich in
the sense that contents are set in multiple sensory modalities
(visual, auditory, tactile, olfactory, gustatory, vestibular) and
submodalities (e.g., color and shape within vision); with
this richness come the properties of immersiveness and
situatedness (the experience that the subject is immersed in
a particular spatiotemporal situation—the basic realization of
being somewhere at a particular time); (ii) what we experience
depends on the interpretation of sensory input in terms of
objects and events unequal to the neural substrate itself; this
means that experiences are about something else than the
neurons coding these very experiences (intentionality; Searle,
1983, 2004); and (iii) experience is integrative (Tononi, 2004)
and set in a first-person perspective, i.e., the various elements
consciously experienced are unified within an overall percept that
is experienced from a common subjective sensing position (e.g., a
viewpoint integrated with body position in space; Pennartz, 2015,
2018). There have been many proposals to ground consciousness
not only on brain processes, but also in behavior and the
external environment (e.g., O’Regan andNoë, 2001); because this
review article deals with sensory processing in neural systems,
we focus on theories of consciousness which attempt to explain
which properties of neural systems may give rise to conscious
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processing (Pennartz, 2018). In particular, we will highlight
inferential accounts of consciousness (Hobson and Friston,
2014; Pennartz, 2015) while also referring to Global Neuronal
Workspace (GNW) theory (Dehaene and Changeux, 2011) and
Integrated Information theory (IIT; Tononi et al., 2016).

Experiments in head-fixed rodents have recently enabled
researchers to uncover several microcircuit-level principles
underpinning sensory processing, to a degree of characterization
that is not achievable in other mammals—thanks to techniques
such as ensemble recordings, two-photon imaging and
optogenetics (Denk et al., 1990; Wilson and McNaughton,
1993; Bernstein and Boyden, 2011; Vinck et al., 2015b). For
this reason, we will focus on in vivo studies on rodent cortical
physiology, and extend these results to the human case. Also,
we will primarily focus on studies of sensory processing in
the thalamocortical system, as this is considered to be the key
brain system to generate conscious percepts (Koch et al., 2016).
Previously, we have also argued why rodents offer a suitable
model to study sensory processing in relation to consciousness
(Storm et al., 2017). In brief, the typical electrophysiological and
behavioral markers of the presence/absence of consciousness
are present in both rodents and humans (Seth et al., 2005;
Storm et al., 2017), and there is a strong anatomical homology
between rodent and human brains. All of this suggests that
rodents possess the key requirements to sustain conscious
processing, and thus enable to investigate the underlying
neuronal mechanisms.

WHAT DEFINES A BRAIN STATE?

Traditionally, brain states have either been associated with
behavioral states, or with a predominant form of brain dynamics,
often defined in terms of cortical activity (Pace-Schott and
Hobson, 2002; Sabri and Arabzadeh, 2018). Importantly, these
two characterizations of brain state often correlate. Wakefulness
is classically characterized by the presence of desynchronized
neural activity (McGinley et al., 2015b), see Figure 1A. At the
single-neuron level, this desynchronization is manifested as tonic
spiking and prolonged depolarizations (Steriade et al., 2001).
NREM sleep (as well as forms of non-dissociative anesthesia)
is instead characterized by massive neural synchrony, which
progressively increases from light to deep sleep and becomes
prominent during stage N3 (Berry et al., 2017)—also referred
to as slow wave sleep (SWS). During SWS, cortical activity
is dominated by synchronous oscillations below 4 Hz (delta
and slow wave ranges, Crunelli and Hughes, 2010; Olcese and
Faraguna, 2015) and, at the single-neuron level, by the alternation
of hyperpolarized DOWN states and depolarized UP states
(Steriade et al., 2001), see Figure 1A. In contrast, REM sleep
is characterized—similarly to wakefulness—by desynchronized
activity, and by specific neurophysiological features which
include theta oscillations in the hippocampus, ponto-geniculo-
occipital (PGO) waves, muscle atonia and rapid eye movements
(Pace-Schott and Hobson, 2002). In the last decade, this picture
of brain states has been upended, as an increasing number
of studies has shown that brain states are not monolithic,
homogeneous entities, as was previously thought.

The Ever-Changing Nature of Neuronal
Activity Patterns
Brain states are highly dynamic. While this is obvious for
the waking state—which we will extensively cover in the next
subsection—all brain states show variable forms of neural
dynamics. Here we will focus on SWS, the deepest stage
of NREM sleep, which is largely associated with a loss of
consciousness—although dreaming can also occur during this
state (Hobson et al., 2000; Siclari et al., 2012, 2017). During
slow oscillations, the cortical hallmark of SWS (Steriade et al.,
2001; Compte et al., 2003), neurons synchronously undergo
a periodic shift between a hyperpolarized and a depolarized
state. Sensory stimuli occurring during either an UP or DOWN
state will inevitable face a distinct fate. Therefore, rather than
taking NREM sleep as a unitary brain state, up and down
states should themselves be considered as individual micro-
states, embedded within a behavioral state. Furthermore, UP
and DOWN states have a variable duration, ranging from
tens to hundreds of milliseconds, and show a varying degree
of synchrony (Esser et al., 2007; Vyazovskiy et al., 2009).
These properties are not randomly distributed throughout
SWS, but conform to the time course of sleep homeostasis
(Vyazovskiy et al., 2009)—or ‘‘process S’’ (Borbély, 1982). This
can be unpacked as follows. During sleep early in the night,
when sleep pressure is high, up states are shorter and more
synchronous than during late sleep (Vyazovskiy et al., 2009). A
computational study suggested that this process is indicative of
higher synaptic strength (Olcese et al., 2010), with consequences
on neural computations. Moreover, reactivation of memory
traces during NREM sleep, which has been indicated as a
mechanism underlying sleep-dependent memory consolidation,
primarily occurs in early sleep (Kudrimoti et al., 1999; Ji
and Wilson, 2007; Lansink et al., 2008, 2009). Thus, not
only up and down states can be considered to constitute
different ‘‘micro’’ brain states but a further distinction might
be made based on when these occur along the wake-sleep
cycle.

UP and DOWN states are not the only form of sleep-related
neural oscillation displaying a local nature. Sleep spindles, a
hallmark of NREM stage 2 in humans, have also been shown
to occur locally (Andrillon et al., 2011; Nir et al., 2011). Sleep
spindles play a role in modulating thalamic gating and tolerance
to external stimuli (i.e., the fact that subjects are not awakened by
them; Dang-Vu et al., 2010a). Similar to slow oscillations, sleep
spindles therefore play an essential role in modulating cortical
responsiveness to external stimuli, and may be considered a
separate ‘‘micro’’ state within NREM stage 2.

While UP and DOWN states (and also spindles) are typically
associated with thalamocortical oscillations (Steriade, 2003;
Crunelli and Hughes, 2010; Sanchez-Vives et al., 2017), distinct
forms of neural activity are present in other brain regions. One
prime example are sharp-wave ripples, high-frequency (about
150 Hz) hippocampal oscillations which have been implicated
in memory consolidation (Buzsáki, 2015). While sharp wave
ripples are temporally locked to cortical slow oscillations (Mölle
et al., 2006; Clemens et al., 2007; Mölle and Born, 2011), they
do not co-occur with every UP/DOWN state. Therefore, slow
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FIGURE 1 | An updated definition of brain states. (A) Brain states have traditionally been distinguished based on the characteristic of population-level oscillatory
dynamics present within a behaviorally-defined homogeneous period. Left, top: local field potential (LFP) trace present in mouse visual cortex during isoflurane
anesthesia. LFP activity is characterized by oscillatory dynamics with a strong power in slow frequencies (0.5–4 Hz). Left, bottom: at the neuronal level, isoflurane
anesthesia determines the alternation of periods of spiking and silence which are synchronous throughout cortical areas, and in phase with the co-occurring LFP
oscillations. Right: same as left panel, for activity typical of wakefulness. Note the disappearance of slow frequency oscillations at the LFP level and the overall loss of
synchrony for neuronal activity. (B) Recent studies have shown that, within wakefulness, much more variability is present than previously thought. In periods
characterized by a low arousal level (left) neuronal activity (here shown in terms of intracellular membrane potential traces) displays patterns indistinguishable from
those present during Non-REM sleep or anesthesia. As the arousal level increases, or if a period of activity—locomotion—occurs (center, right) activity becomes
more and more desynchronized. Wakefulness can thus be subdivided in several micro-states, with markedly different properties. Adapted from McGinley et al.
(2015b), permission to reproduce has been obtained from the publisher. (C) During Non-REM sleep and forms of non-dissociative (e.g., isoflurane) anesthesia UP
and DOWN states normally occurs globally, i.e., involving the whole thalamocortical system. However, UP/DOWN states can also be local events, involving one a set

(Continued)
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FIGURE 1 | Continued
of cortical regions. This mostly occurs during wakefulness when homeostatic
sleep pressure is high (left), and during Non-REM sleep when, conversely,
sleep pressure is slow. Each plot shows an example of global or local DOWN
state occurring during wakefulness (left) or sleep (right), and measured in
terms of both LFP recordings or neuronal multi-unit activity (MUA). F: frontal
derivation. P: parietal derivation. Adapted with permission from the authors
from Vyazovskiy et al. (2011). (D) Sensory processing within wakefulness
varies across distinct micro-states. Visual evoked potentials (here shown as
measure by voltage-sensitive fluorescent proteins) are generally weaker when
a mouse is running compared to when it is stationary. The same is observed
for audition and somatosensation. B: Bregma. Adapted under Creative
Commons Attributions CC BY 4.0 license from Shimaoka et al. (2018).
(E) Arousal differentially affects cortical areas in the mouse. Green indicates
cortical areas where the signal measured via voltage-sensitive fluorescent
protein is positively correlated with arousal (locomotion). Red shows areas
where a negative correlation is present. Adapted under Creative Commons
Attributions CC BY 4.0 license from Shimaoka et al. (2018).

oscillations which either co-occur or not with a sharp wave ripple
might be considered distinct micro-states.

Along the same line, transition periods from one behavioral
state to another show intermediate features of both states (Lewis
et al., 2012; Marzano et al., 2013; Bettinardi et al., 2015; Emrick
et al., 2016; Stitt et al., 2017). For example, the cortex can show
NREM-like activity while the hippocampus does not (Emrick
et al., 2016). Strikingly, even within the neocortex, some areas
can display local, wake-like behavior when the rest of the cortex
shows slow-wave activity and subjects are behaviorally asleep
(Nobili et al., 2012), or vice versa (Vyazovskiy et al., 2011),
see Figure 1C. Thus, each unique spatiotemporal pattern of
activity occurring in a brain area may ultimately determine how
information is processed by the rest of the brain and needs to be
taken into account to devise a definition of brain state.

This overview shows that brain activity during NREM sleep is
highly heterogeneous, and that a myriad of distinct micro-states
can be identified, based on their distinct spatiotemporal patterns
of activity. This, however, would lead to an almost endless
parcellation of behavioral, macro-states into these new micro-
states. It is therefore apparent that neural patterns of activity are
not—per se—sufficient to discriminate what constitute a ‘‘micro’’
brain state. A functional definition, based on whether distinct
patterns of activity have consequences for how the brain operates,
and what it computationally achieves, appears more fruitful. To
explore this, we will now discuss whether wakefulness, the state
in which such functions can be more easily probed, also shows a
subdivision into putative micro-states.

The Strange Nature of Wakefulness
An apparently homogeneous behavioral state such as SWS
appears to rather be a collection of several diverse micro-
states. The same observation applies to wakefulness. Indeed,
wakefulness is hardly definable as a single behavioral state. When
we are awake, we can either sit quietly and mind-wander or be
highly involved in a myriad of different activities, from running
to thinking. A key factor which varies during wakefulness
is the arousal level (Reimer et al., 2014; McGinley et al.,
2015a,b), as a function of which different levels of cholinergic
and noradrenergic activity (amongst other neuromodulators)

modulate baseline neuronal activity and consequently the way in
which sensory stimuli are processed.

The arousal level is primarily measured in terms of pupil
diameter, with a larger pupil being associated with higher arousal
(Reimer et al., 2014; McGinley et al., 2015b). High arousal
is accompanied by desynchronized cortical activity, while
during low arousal neural patterns become more synchronized
(McGinley et al., 2015b), to the point that slow oscillations
(the hallmark of NREM sleep) occur during quiet wakefulness
(Petersen et al., 2003; Sachidhanandam et al., 2013; McGinley
et al., 2015a), see Figure 1B. Locomotion usually corresponds
to a state of high arousal (measured in terms of pupil size),
although the two are not unequivocally linked, at least as far
as visual processing is concerned (Vinck et al., 2015a). During
locomotion, visual responses are, similar to periods with large
pupil diameter, enhanced (Niell and Stryker, 2010; Dadarlat
and Stryker, 2017; Kaneko et al., 2017), yet via a distinct
mechanism. While pupil-related arousal suppresses spontaneous
firing activity (thus promoting the emergence of stimulus-
evoked responses), locomotion increases stimulus-evoked
activity (Bennett et al., 2013; Vinck et al., 2015a; Dadarlat and
Stryker, 2017). Although differences exist in the way brain state
modulates sensory processing in each modality across distinct
cortical areas (Shimaoka et al., 2018)—see Figures 1D,E—both
locomotion and arousal cause an overall enhancement of sensory
processing. Moreover, the presence of stimuli (e.g., visual
ones) affects the way in which locomotion modulates neuronal
activity (Pakan et al., 2016), suggesting that sensory context
modulates the effect of brain state, in a recursive, complex
manner.

Differences between arousal levels are not limited to cortical
activity. Indeed, hippocampal sharp wave ripples are almost
absent during active wakefulness, but strongly present during
quiet awake periods (Buzsáki, 2015; Roumis and Frank,
2015)—although they might play a different role in wakefulness
than in NREM (Roumis and Frank, 2015). Intriguingly, the
transition that neuronal activity patterns undergo between low
and high arousal states is not clearly understood, as several
contrasting models (binary, sigmoid and U-shaped) have been
proposed (McGinley et al., 2015b). An intermediate level of
arousal has been associated with optimal sensory processing
(Yerkes and Dodson, 1908; McGinley et al., 2015a), suggesting
that neither highly synchronous nor fully desynchronized activity
is optimal.

Related to arousal, yet distinct from it, is the level of
attention paid during a sensory processing task (Harris and
Thiele, 2011). The term ‘‘engagement’’ is often used in the rodent
literature when comparing sensory evoked activity between
animals trained to pay attention to sensory stimuli and naïve ones
(Sachidhanandam et al., 2013; Carcea et al., 2017; Kuchibhotla
et al., 2017).

Top-down attention has been extensively investigated
(Buschman and Miller, 2007; Buschman and Kastner, 2015),
and is known to locally modulate brain state by promoting
desynchronized activity (Harris and Thiele, 2011; Ecker et al.,
2016). It has been hypothesized that three attentional states exist:
(1) a state of low attention, during which neural activity is highly
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synchronous and slow oscillatory patterns appears (Harris and
Thiele, 2011); (2) a rhythmic mode of attention (Schroeder
and Lakatos, 2009)—also referred to as transient or scanning
attention (Aston-Jones et al., 1999, 2000)—characterized by
oscillatory patterns entrained to task-relevant sensory stimuli
(usually in the theta-band range, Schroeder and Lakatos, 2009);
(3) a continuous/sustained mode of attention (Aston-Jones
et al., 1999, 2000; Schroeder and Lakatos, 2009; Fries, 2015),
characterized by desynchronized activity. The transitions
between these different attentional states, similarly to transitions
between sleep and wakefulness (Pace-Schott and Hobson, 2002),
are, at least in part, regulated by noradrenergic influences
originating in the locus coeruleus (Aston-Jones et al., 1999, 2000;
Harris and Thiele, 2011), and suggest therefore that all these
states are part of a continuum: from fully synchronized activity
during SWS to fully desynchronized patterns during sustained
attention.

An Updated Definition of Brain States
In the previous sections we showed how neural activity during
both NREM sleep and wakefulness displays a wide variety
of patterns. Here, for the sake of brevity, we focus on the
two most prominent conscious and nonconscious behavioral
states (wakefulness and NREM sleep, respectively), but similar
conclusions (e.g., about the local nature of brain states)
can be drawn for REM sleep (Funk et al., 2016). Thus,
‘‘macroscopic’’ behavioral states (wakefulness, SWS, REM, etc.)
are not homogeneous, unitary phases in brain activity, but can
rather be further subdivided into distinct ‘‘micro’’-states (see
Table 1). But what defines such micro-states?

For example, neural dynamics during NREM UP states are
so similar to those present in the awake desynchronized state
that some authors have proposed that up states might represent
‘‘fragments’’ of wakefulness (Destexhe et al., 2007). During UP
states, according to this view, sensory stimuli would be processed
similarly to what happens during wakefulness, yet without being
able to propagate across cortical areas, as a consequence of the
breakdown in cortical communication that has been suggested to
occur during NREM and nonconscious states (Massimini et al.,
2005; Casarotto et al., 2016). If a brain state were to be defined

only in terms of activity patterns, UP states during NREM sleep
and desynchronized activity in wakefulness could be classified as
the same state.

Nevertheless, this position is debatable, as: (1) the
neuromodulatory milieu is markedly different between
wakefulness, NREM and REM sleep (Pace-Schott and Hobson,
2002); and (2) slow oscillatory dynamics occurring during quiet
wakefulness show properties distinct from those found in NREM
sleep (Vyazovskiy et al., 2011; Sachidhanandam et al., 2013;
McGinley et al., 2015b). As a consequence, a sensory stimulus
occurring during NREM sleep is able to recruit a slow oscillation
(Riedner et al., 2011) and is not generally processed beyond
the sensory cortices (Dang-Vu et al., 2010b), while the same
stimulus during low-arousal (synchronous) wakefulness triggers
a transition to a more desynchronized type of activity (Tan et al.,
2014).

Thus, we favor a definition of micro-state based on how a
given sensory stimulus is processed. Micro-states are embedded
into macro-states. They share with them a general level of
behavioral responsiveness, but further refine them in terms of
brain/sensory function. This corresponds for example to the
presence or absence of dreaming during either NREM or REM,
or, specifically pertaining to sensory processing, to whether
a given stimulus or its constituent features (e.g., the various
details which compose the sensory scene) are perceived. A single
micro-state can then be defined as a period of brain activity
lasting at least a few hundreds of milliseconds—in line with the
presumed duration of a conscious sensory experience (Tononi
and Edelman, 1998)—and characterized by a uniform spatio-
temporal pattern and neuromodulatory milieu, embedded into
a sensory context, within which a given sensory stimulus is
processed uniformly for as long as the state lasts. According
to this definition, a single UP state during SWS (a macro-
state) would qualify as a distinct micro-state, distinct from
both DOWN states and from UP states occurring during quiet
wakefulness. Similarly, different bouts of oscillatory dynamics
critical for sensory processing (e.g., theta oscillations) will be
considered individual brain states only if they markedly alter
the way in which a sensory stimulus is processed, compared to
different types oscillatory dynamics within a macro-state.

TABLE 1 | Macro- and micro-states.

Macro-states Wakefulness REM sleep Non-REM sleep Anesthesia

N1 N2 N3/SWS Non-dissociative
(e.g isoflurane,
urethane)

Dissociative
(e.g., ketamine)

Micro-states Low arousal Local slow
oscillations in
neocortical
circuits

Global UP/DOWN states and spindles Global,
rhythmic
UP/DOWN
states, spindles

Sporadic
UP/DOWN
states, gamma
bouts

Medium arousal
High arousal/locomotion

Local UP/DOWN states and spindles
Theta/alpha bouts

This table presents an overview of the most relevant micro-states, i.e., subdivisions of the generally considered (macro-) brain states, based on the effect they have on
how sensory information is processed. We thus here primarily refer to electrophysiological features of neocortical circuits. N1, N2 and N3 corresponds to the different
stages of Non-REM sleep, based on Berry et al. (2017); N3, the deepest sleep stage, is also referred to as slow wave sleep (SWS); in rodents, Non-REM is usually not
subdivided into stages.
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Importantly, the link between micro-states and sensory
processing is bidirectional, as both can influence each other.
For example, delivering sensory stimuli during quiet wakefulness
triggers the transition to a depolarized, asynchronous state
(Sachidhanandam et al., 2013; Tan et al., 2014), while
K-complexes (Roth et al., 1956) and slow oscillations (Ngo et al.,
2013, 2015) can be elicited by auditory stimuli during NREM
sleep (but see, Goltstein et al., 2015). Thus, micro-states not only
influence sensory processing, but sensory stimuli themselves can
modify the state of brain networks and consequently affect how
they are processed.

In the next sections, we will analyze how sensory stimuli are
processed in different micro-state configurations. This will allow
us to characterize how these subdivisions of behavioral macro-
states affect sensory processing and perception.

SENSORY-EVOKED NEURONAL
RESPONSES ACROSS BRAIN STATES

Sensory processing markedly changes across brain states. Here,
we will focus on those changes that are most relevant with respect
to conscious perception, and will review how they are related to
variations in brain activity at various levels of circuital complexity
(single neurons, ensembles, multi-area). We will first explore
whether the breakdown of perception during nonconscious
states (anesthesia or SWS) is due to the inability of single
neurons to faithfully respond to sensory stimuli, recognizing the
importance of considering variability between micro-states, such
as UP or DOWN states. Although we can conclude that a more
desynchronized state facilitates encoding of sensory features,
also at the single neuron level, neurons still display responses
tuned to specific sensory features throughout sensory cortices
during nonconscious brain states. Thus, whether a single neuron
fires across different states correlates very poorly to whether
stimuli are perceived or not. Therefore, we subsequently consider
what features of ensemble activity are conducive to forming
conscious sensory representations and how activity propagates
and reverberates across areas.

Micro-State Affects Single-Neuron
Dynamics
Ultimately, the brain’s ability to represent information about
the outside world is based on its coding elements: neurons.
We can thus ask the question of whether perception is lost
during anesthesia or NREM states because sensory signaling is
degraded, and therefore the system cannot compose accurate
representations of the external world anymore. A host of
studies has characterized sensory responses across synchronized
and desynchronized states. Consistently, single neurons in
primary sensory areas show remarkably similar tuning to
stimulus features across behavioral states, e.g., neurons in
visual cortex rarely shift their preferred orientation (Goard
and Dan, 2009; Niell and Stryker, 2010; Ecker et al., 2014;
Goltstein et al., 2015; Nir et al., 2015; Durand et al., 2016).
In general, responses seem to have slightly faster dynamics
in desynchronized brain states (i.e., shorter onset latency and
faster transients; Wörgötter et al., 1998; Hasenstaub et al., 2007;

Haider et al., 2013; Wang et al., 2014; Durand et al., 2016), but
see (Pachitariu et al., 2015). Even though this suggests that major
feedforward pathways are to a large extent functioning similarly
throughout states, response dynamics can vary considerably
when considering the immediate cortical micro-state that
sensory inputs face when reaching the cortex.

Early work in the anesthetized cat visual cortex showed
that identical stimuli can elicit different neuronal responses
depending on whether they arrive during UP or DOWN states
(Arieli et al., 1996; Azouz and Gray, 1999; Haider et al., 2007), but
see (Haider et al., 2013). Also in the awake rodent somatosensory
cortex responses to single whisker deflections are larger when
occurring during DOWN states of synchronized activity, as
opposed to UP states (Petersen et al., 2003; Sachdev et al.,
2004; Crochet and Petersen, 2006; Hasenstaub et al., 2007;
Sachidhanandam et al., 2013), similar to responses of neurons in
auditory cortex to isolated tones (Deweese and Zador, 2004; Sela
et al., 2016). Across repeated presentations of the same stimulus
this leads to increased trial-to-trial variability, compared to the
desynchronized state, during which fluctuations in population
activity and network excitability are instead smaller (Haider et al.,
2013; Zagha et al., 2013).

Also, within wakefulness the response of a single neuron to a
stimulus dynamically varies between micro-states. As mentioned
earlier, in mouse visual cortex active locomotion increases
responsiveness to drifting gratings (Niell and Stryker, 2010;
Bennett et al., 2013; Polack et al., 2013; Fu et al., 2014). In other
sensory systems such as auditory cortex, locomotion results in
significant suppression of sensory-evoked responses (Schneider
et al., 2014; Zhou et al., 2014) and in somatosensory cortex
active whisker movement reduces sensory responses to touching
objects (Ferezou et al., 2007; Poulet and Petersen, 2008). These
might represent ecologically relevant differences between sensory
systems (see also Figure 1E), since the way cortical processing
needs to accommodate changes in sensory input upon active
behavior such as exploration or whisking may be modality-
dependent.

Irrespective of sensory modality, heightened arousal seems
to enhance the consistency and signal strength in the coding
of stimuli (but see Shimaoka et al., 2018). Across identical
stimulus presentations the variability in response is reduced
when the arousal level is high (Polack et al., 2013; Schneider
et al., 2014; Schölvinck et al., 2015; McGinley et al., 2015a)—see
Figure 1D—with again a key contributor being reduced
pre-stimulus variability (Bennett et al., 2013; Zagha et al.,
2013). This, in combination with higher membrane conductance
in the desynchronized state (Wang et al., 2014) or during
locomotion (Bennett et al., 2013), can lead to an increased
signal-to-noise ratio (response vs. baseline variance; Bennett
et al., 2013; Pachitariu et al., 2015; Vinck et al., 2015a). These
state-dependent alterations in single neuron coding correlate
with increased performance in sensory detection tasks (Bennett
et al., 2013; Pinto et al., 2013; McGinley et al., 2015a, but see
Sachidhanandam et al., 2013).

The resulting view is that the slow rhythmic fluctuations
in network excitability and membrane potential during SWS,
anesthesia or quiet wakefulness introduce large variability
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in sensory processing. Conversely, cortical desynchronization
during active waking and arousal facilitates single neuron
coding by reducing trial-to-trial variability and facilitating
temporally precise and consistent signaling of sensory features.
A recent study nicely illustrates this conclusion even though
the authors compared synchronized and desynchronized epochs
only within the anesthetized state (Pachitariu et al., 2015). In
this study, single auditory cortical neurons carried much more
information regarding which frequency-modulated tone was
presented during desynchronized compared to synchronized
states, as in the former responses were more selective to tone
frequency and were more temporally precise and reliable across
repetitions (Figure 2).

Most of the studies discussed above measured responses to
isolated and salient stimuli. Interesting state-specific differences
are revealed when varying stimulus parameters, such as intensity.
For example, several studies suggest that during UP states
responses to low-intensity sounds are boosted, while responses
to high-intensity stimuli are attenuated (Issa and Wang, 2011;
Reig et al., 2015; Sela et al., 2016; Meijer et al., 2017). This
suggests that responses are normalized across intensity levels
during UP states; during DOWN states, on the other hand,
responses to weak stimuli are suppressed (Issa and Wang, 2011).

Another state-specific difference arises when presenting repeated
stimuli, instead of isolated stimuli. For example, repeated
whisker stimulation at high, but not low, frequencies rapidly
induced adaptation of sensory responses in barrel cortex
of both anesthetized and quiescent rats (Castro-Alamancos,
2004). However, upon active whisking in awake animals or
after stimulation of the brain stem reticular formation to
induce a more desynchronized cortical state during anesthesia,
sensory responses become smaller at low frequencies, but
maintain their response amplitude at higher whisker stimulation
frequencies (Castro-Alamancos, 2004). This means that only in
the desynchronized state single neurons are able to faithfully
signal stimuli that are part of a longer sequence. Preserving large
initial responses to a single isolated stimulus in the synchronized
cortical state (during quiet wakefulness or SWS) is beneficial, as
it might allow the animal to respond while resting. The intricate
details of ongoing sensory input, however, are at that moment of
less relevance and need not be accurately processed (Harris and
Thiele, 2011).

The overall conclusion is that the most marked differences
in sensory processing between states arise when shifting from
isolated stimuli to more naturalistic and complex stimuli.
Stimuli of higher complexity are much more consistently

FIGURE 2 | The desynchronized state facilitates feature coding by single neurons. (A) Example of simultaneous LFP and single neuron activity in anesthetized
auditory cortex of gerbils in the synchronized (top) and desynchronized state (bottom). Note that in the synchronized state most single unit activity tracks the
large-amplitude fluctuations in the LFP. (B) Responses to tones are more selective and reliable over stimulus repetitions in the desynchronized state. Top panel
shows the auditory spectrogram of the frequency modulated tone and the bottom panel shows the responses in rasterplots for two example cells to repetitions of
the same stimulus recorded in the synchronized (top) and desynchronized state (bottom). Note the temporally precise and selective activity of the two example cells
in the desynchronized condition compared to the non-selective responses in the synchronized condition. (C) Three measures of improved feature coding by single
neurons in the desynchronized state. Top responses to tones had higher direction selectivity index, e.g., preference for upward vs. downward frequency modulated
sweeps (computed as: response to preferred direction − opposite)/(preferred + opposite). Middle: responses during the desynchronized state were more temporally
precise in their spiking (computed as the amount of jitter necessary to render the response uninformative, low value is higher precision) and, bottom, had higher
reliability (computed as the signal-to-noise ratio). All figures adapted under Creative Commons Attribution License from Pachitariu et al. (2015).
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encoded by single neurons in the desynchronized state, for
instance randomly ordered whisker deflections in somatosensory
cortex (Zagha et al., 2013), amplitude-modulated noise stimuli
by the auditory system (Marguet and Harris, 2011) and
natural scenes by visual cortex (Goard and Dan, 2009). It is
therefore conceivable that simple stimuli are less instructive
as to why perception is lost during some states as opposed
to other. For example, a selective breakdown of top-down
projections during nonconscious brain states would result in
striking differences only when using temporally and spatially
structured stimuli dependent on modulation by top-down
inputs.

Brain-State Modulation of Ensemble
Activity
As we discussed the information-signaling capacities of single
neurons increases during desynchronized activity. However,
whether a single neuron responds to a stimulus—which still
occurs during deep anesthesia—is not informative in explaining
why some stimuli come to be perceived or not. As stimuli are
likely coded by patterns of ensemble activity (Pouget et al., 2000;
Pennartz, 2015), it is essential to understand at a population
level how the representation of information varies across states.
We will here discuss the impact of correlated variability between
neurons and the precise temporal structure of ensemble activity
for accurate perception.

High Noise Correlations During Synchronized Activity
Upon rhythmic oscillations in population firing, spiking
activity is positively correlated between nearby neuronal pairs,
i.e., neurons increase and decrease their firing together (Lampl
et al., 1999). Oppositely, during a desynchronized state, neurons
do not show this large synchronous modulation of firing rate
and fire more or less independently (Renart et al., 2010). If
these synchronous fluctuations persist in responses to stimuli,
i.e., neurons correlate in how strongly they respond to repeated
presentations of the same stimulus, these pairwise correlations
are called noise correlations (Abbott and Dayan, 1999; Averbeck
et al., 2006; Cohen and Kohn, 2011).

Noise correlations are generally high during anesthesia or
otherwise synchronized states (Renart et al., 2010; Ecker et al.,
2014), due to these common fluctuations in activity and primarily
arise as a result of neurons transiently ceasing firing together
(Mochol et al., 2015). However, noise correlations increase even
under light anesthesia and in the absence of clear UP/DOWN
states (Greenberg et al., 2008; Golshani et al., 2009; Goltstein
et al., 2015), and also when focusing only on UP states (Renart
et al., 2010). Noise correlations can also vary between different
micro-states within wakefulness (Poulet and Petersen, 2008;
Gentet et al., 2010). Specifically, noise correlations decrease
upon locomotion (Erisken et al., 2014; Vinck et al., 2015a)
or arousal induced by an air-puff (Vinck et al., 2015a). We
will specifically focus on these differences, and we will refer
to other studies for more details on how sensory processing is
affected by noise correlations in the context of visual attention
(Cohen and Maunsell, 2011; Harris and Thiele, 2011; Maunsell,
2015).

Desynchronization Improves Population Coding
Traditionally noise correlations have been argued to impair
sensory processing (Zohary et al., 1994; Shadlen and Newsome,
1998), but recent theoretical work has shown that only
certain noise correlations (termed differential correlations) are
information limiting, namely those fluctuations that are identical
to those generated by stimulus variations (Moreno-Bote et al.,
2014; Kohn et al., 2016). Additionally, our work suggests
that pairwise noise correlations are not inherently detrimental
(Montijn et al., 2014), especially when considering them within
the context of larger populations (Montijn et al., 2016a). This
is because multidimensional noise correlations (covariability
between neuronal triplets etc.) are more likely to be orthogonal
to the dimension coding stimulus identity, limiting the effect on
population readout in downstream areas (Montijn et al., 2016a).

Nonetheless, the high noise correlations during synchronized
activity do impair population coding. In macaque visual
cortex a locally synchronized state just before stimulus onset
impairs population readout of stimulus identity from a
recorded ensemble as well as impairing behavioral performance
(Beaman et al., 2017), and the amount of decorrelation upon
visual input is correlated with detection of figure-ground
stimuli (van der Togt et al., 2006). Experimentally promoting
cortical desynchronization by nucleus basalis stimulation in rats
improves population decoding of natural scenes (Goard andDan,
2009), and performance in a visual discrimination task (Pinto
et al., 2013). This suggests that any micro-state that facilitates
independent coding of stimulus features and heterogeneous
neuronal responses contributes to accurate perception. Indeed,
the amount of relative contrast in activity between neurons,
indexed as population response heterogeneity, correlates with
hits vs. misses in a visual detection task (Montijn et al., 2015;
Figure 3). This study showed that a highly heterogeneous activity
pattern even preceded detected stimuli, whereas heterogeneity
was lower during the pre-stimulus baseline of miss trials. This
suggests that task epochs are characterized by different levels
of heterogeneity in neural activity—they form different micro-
states—and that these fluctuations might impact how incoming
stimuli are subsequently processed.

While the improved population coding during
desynchronized activity might contribute to accurate perception
in sensory detection tasks, it is still present within non-conscious
animals, such as when comparing desynchronized with
synchronized epochs during urethane anesthesia (Goard
and Dan, 2009; Pachitariu et al., 2015). Therefore, whether
desynchronization per se contributes to perception remains to
be addressed. Cortical state impacts the ability of a population
of cells to extract sensory information, but whether this
information is read out by downstream areas or generates a
conscious representation probably depends on additional factors
besides the overall synchronization level (for example, proper
communication between brain areas), as we will discuss in ‘‘The
Neuronal Basis of Conscious Sensory Processing’’ section.

Temporal Structure in Ensemble Activity
Neurons not only convey information by modulating their
firing rate, but also via a precise timing of spiking activity
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FIGURE 3 | Ensemble activity correlates of stimulus detection. (A) Schematic
depicting two trial outcomes in a visual detection task performed by
head-fixed mice. In the left scenario a threshold stimulus is not detected (miss
trial), whereas in the right the same stimulus is correctly detected (a rewarded
hit trial). (B) Simultaneous 2-photon imaging of V1 neuronal populations in
these mice revealed that hit trials were associated with higher response
heterogeneity. Adapted under Creative Commons Attribution License from

(Continued)

FIGURE 3 | Continued
Montijn et al. (2015). (C) Structured ensemble activity was correlated with
detection. Top center panel depicts a schematic of a neuronal ensemble
showing a recurring stereotypical sequence of activity. Hit trials were
associated with higher consistency and temporal precision of these recurring
sequential events, compared to miss trials. Adapted with permission from the
authors from Montijn et al. (2016b).

(Hopfield, 1995; Montemurro et al., 2008; Kayser et al., 2009).
Spike timing might be related to sensory stimuli, to mass neural
dynamics (e.g., to the phase of the local field potential—LFP),
or to the activity of other nearby neurons such that ensembles
display stereotypical sequences of activation (first neuron A,
then B, then C. . .). It has been argued that these ‘‘packets’’ of
sequential neuronal activity lasting a few hundred milliseconds
are actually the basis for information representation and
communication in cortex (Luczak et al., 2015). Briefly, it can
be noted that these activity packets are a local, spike-level
manifestation of large-scale activity waves that travel across the
cortex (Mohajerani et al., 2013). Packet-based communication
has been proposed to be a more effective way of driving
downstream target neurons (Luczak et al., 2015).

Interestingly, this highly structured sequential activity is
found during both spontaneous and evoked activity, but also
across brain states (Luczak et al., 2009). Likewise, we know from
the phenomenon of memory replay that the same structured
spiking sequences during a specific behavior can be replayed
during subsequent resting and sleep periods (Skaggs and
McNaughton, 1996; Pennartz et al., 2002; Ji and Wilson, 2007;
Lansink et al., 2009). Neuronal populations thus maintain the
capability of coordinated firing in highly structured temporal
sequences during unconscious states.

The fact that stereotypical events re-occur in both conscious
and unconscious states is partly explained by the fact that
the realm of possible activity patterns is constrained by
the anatomical connectivity of the microcircuit—which is
arguably similar across states. But are these temporally-specific
activity patterns also relevant to perception and do they
correlate for example with behavior? In mice performing
a visual detection task, we found that neuronal assemblies
repeat specific sequential activity patterns (Montijn et al.,
2016b). Rather than the recurrence of specific assemblies,
the consistency of the temporal order in which they fired
was associated with the animal perceiving a near-threshold
stimulus or not (Montijn et al., 2016b; Figure 3). This suggests
an important role for structured ensemble activity, but it is
still relatively unexplored both: (1) what type of temporal
structuring mechanisms are preserved and lost across behavioral
states; and (2) how specific temporal ordering is ultimately
associated with perception, for example by affecting downstream
readout.

Before we explore how brain state affects communication
between brain areas, we conclude that the desynchronizedmicro-
state is marked by improved neural coding through both an
increase in the trial-by-trial reliability of single neuron responses,
and a decorrelation at the population level. Furthermore, within
wakefulness decorrelated and heterogeneous neuronal activity
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patterns as well as consistent temporal sequences are associated
with stimulus detection. The relevance of these phenomena
for conscious sensory processing will be discussed in more
detail in ‘‘The Neuronal Basis of Conscious Sensory Processing’’
section.

How Communication Between Brain Areas
Varies Across Brain States and How This
Affects Sensory Processing
Although most research on sensory processing has been
performed at the level of primary sensory cortices (as discussed
above), these areas represent only a first step in the pathways
for sensory cortical processing (Felleman and Van Essen, 1991;
Markov et al., 2014; Oh et al., 2014; Glasser et al., 2016).
After this stage, sensory information progresses to other areas,
which also send back top-down information, and is ultimately
transformed into a motor response. In this section we will review
how communication between brain areas is affected by brain
states. This will enable a better understanding of how sensory
information is processed in conscious and nonconscious states.

Studies performed in human subjects have long shown
that brain regions engage in specific forms of correlated
(EEG, fMRI) activity upon the (non-)performance of distinct
tasks (Cole et al., 2014; Park and Friston, 2013). This is
often investigated in terms of functional connectivity, i.e., the
correlation between the activity of different neurons or brain
regions. One of the most widely investigated functional networks
is the default mode network (DMN). The DMN state arises
during quiet wakefulness (a potential micro-state according
to our definition) when no task is being performed (Greicius
et al., 2003; Lu et al., 2012; Raichle, 2015). Intriguingly,
functional coupling between areas which form the DMN
drops in the transition from wakefulness to NREM sleep or
anesthesia, in both animals and humans (Horovitz et al., 2009;
Larson-Prior et al., 2011; Bettinardi et al., 2015). The DMN is
usually investigated via fMRI measurements (Daselaar et al.,
2010; Larson-Prior et al., 2011; Raichle, 2015) which fail to
capture the temporal resolution typical of neural dynamics.
Nonetheless, studies performed using electrophysiological
approaches have generally confirmed the view that neural
networks—especially within the neocortex—become more
fragmented when consciousness is lost. Of particular relevance
are the studies performed by Massimini and colleagues using a
combination of transcranial magnetic stimulation (TMS) and
EEG (Massimini et al., 2005; Ferrarelli et al., 2010; Casali et al.,
2013; Casarotto et al., 2016). In a series of studies, these authors
showed that the spatiotemporal complexity of the TMS-evoked
cortical response decreased—with respect to wakefulness in
healthy subjects—during NREM sleep (Massimini et al., 2005),
non-dissociative anesthesia (Ferrarelli et al., 2010) and disorders
of consciousness (Casarotto et al., 2016). This was interpreted
as a sign of a decrease in the ability of the cortex to integrate
information in nonconscious states (see ‘‘The Neuronal Basis
of Conscious Sensory Processing’’ section). Importantly, this
functional disconnection is not an all-or-non mechanism, but
is rather a graded phenomenon which correlates with the level

of residual consciousness (Casarotto et al., 2016). Along the
same line, studies performed with techniques enabling higher
spatial resolution, such as LFP—recordings (Lewis et al., 2012;
Ishizawa et al., 2016) and voltage sensitive dye imaging (Scott
et al., 2014), showed a drop in inter-areal communication when
consciousness fades.

In spite of this concordance between multiple studies,
several key findings stand out. A first incongruence has to
do with the capability of cortical areas to integrate multiple
sensory modalities during nonconscious states. While this
capability is altered during disorders of consciousness in
humans (Bonhomme et al., 2012) and in primates (Ishizawa
et al., 2016), rodent and ferret studies have consistently
shown that cross-modal interactions persist in the neocortex
during deep anesthesia (Wallace et al., 2004; Olcese et al.,
2013; Foxworthy et al., 2013a,b). Second, studies quantifying
state-dependent functional changes in anatomically identified
inter-areal connections have shown contrasting results. While
connections from the anterior cingulate cortex to the primary
visual cortex (V1) in mice are preserved during anesthesia
(Zhang et al., 2014), communication from the retrosplenial
cortex to V1 loses its functionality (Makino and Komiyama,
2015). These results were obtained by either optogenetically
activating feedback-projecting neurons in different brain states
and verifying their effect on target regions (Zhang et al.,
2014), or by imaging synaptic boutons impinging onto V1
(Makino and Komiyama, 2015). Both types of apparent
contradiction could be attributed to the fact that distinct areas
as well as pathways are differently modulated by brain state.
More recent studies showed that another factor to be taken
into account when investigating how brain state modulates
neuronal communication is cell-type specificity (Peyrache et al.,
2012; Olcese et al., 2016). Indeed, while intra-areal coupling
is preserved during NREM sleep, functional connectivity
between excitatory but not inhibitory neurons (identified by
discriminating action potential waveforms typical of either
pyramidal neurons or fast-spiking interneurons) generally drops
in NREM sleep compared to wakefulness (Olcese et al., 2016;
Storm et al., 2017).

To refine this picture somewhat further, distinct patterns
of effective (i.e., directional) connectivity exist at different
temporal scales based not only on brain areas, but also on
the functional specialization of individual neurons in the
context of task performance (Olcese et al., 2018). Specifically,
we showed that inter-areal information flow (quantified by
Transfer Entropy, Schreiber, 2000) is higher during NREM
sleep than during wakefulness at short time scales (i.e., at
time scales between 2 ms and 10 ms), between cortical and
hippocampal neurons whose activity was modulated during a
task rats performed in the active awake micro-state. In this
task (during which the activity of about 50% of the recorded
neurons was modulated), animals had to choose on which
side of a figure-8 maze a reward was to be found, based
on visual cue discrimination. Such enhanced information flow
was co-occurring with hippocampal sharp-wave ripples, and is
consistent with a coordinated reactivation of memory traces that
has been shown to occur across hippocampus, neocortex and
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subcortical structures (Hoffman and McNaughton, 2002; Euston
et al., 2007; Ji andWilson, 2007; Lansink et al., 2009). Conversely,
at long time scales (i.e., at time scales between 600 ms and
900 ms), inter-areal information flow was enhanced between
neocortical areas and only between neurons whose activity was
not modulated by the aforementioned task, without relationship
with hippocampal ripples.

Overall, these studies show a complex picture of how brain
states modulate communication between brain areas. A net drop
in both functional connectivity and information flow between
cortical areas is consistently observed when consciousness fades,
yet neuronal subpopulations may deviate from this pattern
as a consequence of the interplay between multiple factors:
anatomical location, cell type, temporal scale and functional
specialization. As an example, the reduced functional coupling
between cortical areas that we reported to occur in NREM
sleep in (Olcese et al., 2016) is mirrored by a specific increase
in information flow between functionally-defined neuronal
populations (Olcese et al., 2018). These forms of residual
communication possibly serve diverse functions such as sleep-
dependent memory consolidation. Nevertheless, they are unable
to sustain conscious sensory processing, and are therefore highly
informative about which forms of communication are instead
necessary. Specifically, inter-areal communication (in terms of
both correlations and information flow) must be preserved not
only for specific neuronal subpopulations or temporal scales
(which during sleep may play a role in functions including
information reprocessing andmemory consolidation), but rather
across all circuital elements, in order to allow conscious
processing.

All studies we mentioned so far focus on comparing neural
connectivity across behavioral macro-states, but how do micro-
states affect inter-areal communication? Within wakefulness,
task-engagement, attentional mechanisms and stimulus
awareness have all been shown to modulate sensory-evoked
responses via a strengthening of top down projections from
higher order areas to sensory cortices (Lamme and Roelfsema,
2000). The functional circuitry underlying this phenomenon
has been especially investigated in the context of whisker-
mediated tactile perception in mice. Specifically, it was shown
that projections from secondary onto primary somatosensory
cortex induce a delayed bout of depolarizations which follows
direct sensory-evoked responses (Sachidhanandam et al.,
2013; Kwon et al., 2016) and correlates with perception (see
also ‘‘The Neuronal Basis of Conscious Sensory Processing’’
section). Similarly, a top-down projection from the secondary
motor cortex onto layer 5 pyramidal neurons of the primary
somatosensory cortex enhances perceptual accuracy for whisker-
related stimuli (Manita et al., 2015), a mechanism which seems
to be mediated by dendritic computations (Takahashi et al.,
2016). This small selection of studies indicates that, while
inter-areal communication is generally necessary for conscious
processing—as we discussed in the previous paragraphs—some
pathways (and specifically feedback projections) are especially
relevant to this mechanism.

What can be concluded from this overview of how brain
state influences communication between neurons? The view

that a drop in cortical inter-areal communication is a hallmark
of nonconscious states can be considered a bit simplistic,
as key forms for inter-areal communication persist and can
even be enhanced during SWS (Olcese et al., 2016, 2018).
First, slow oscillatory patterns are strongly correlated between
areas (Volgushev et al., 2011) and have been shown to be
traveling waves (Massimini et al., 2004). Strikingly, these waves
predominantly move from frontal to posterior regions, i.e., along
the frontoparietal, top-down pathway that has been proposed
to be essential for conscious processing (Sergent and Dehaene,
2004)—but see (Pennartz, 2015, 2018; Boly et al., 2017). Second,
even precise patterns of spiking activity are maintained and
transferred between areas during SWS sleep, as shown by many
studies on the reactivation of neuronal traces during sleep
(Hoffman and McNaughton, 2002; Euston et al., 2007; Ji and
Wilson, 2007; Lansink et al., 2008, 2009; Bermudez Contreras
et al., 2013; Pennartz, 2015). In addition to the mere involvement
of specific anatomical pathways in inter-areal communication,
what seems to be essential for discriminating conscious and
nonconscious brain states is a particular type of neuronal
dynamics that can be instated across the thalamocortical system.
In a fully synchronized state such as SWS, mainly one simple type
of neuronal dynamics (i.e., alternations between UP and DOWN
micro-states) is at play across areas (Massimini et al., 2004).
Conversely, a generalized, broad-band desynchronization during
the awake state (especially prominent during active wakefulness)
does not allow to reliably transfer sensory information, and
attentionalmechanisms are required to enhance synchrony—and
thus signal transmission—between subsets of brain regions and
at specific (gamma, beta) frequency bands (Bosman et al., 2012;
van Kerkoerle et al., 2014; Bastos et al., 2015; Fries, 2015).
An intermediate degree of synchrony in which some specific
inter-areal connections—such as feedback projections impinging
onto sensory cortices (Manita et al., 2015)—are enhanced, will
allow specific cell ensembles to communicate, but prevents an
overly massive, nonspecific synchrony from arising (‘‘sparse
synchrony;’’ Pennartz, 2015). The question remains, however, of
whether such forms of communications are only a correlate of
conscious brain states, or rather constitute the neuronal substrate
of perception.

In the next section we will discuss how differences between
neuronal activity (in terms of single neurons, ensembles
and inter-areal communication) between conscious and
nonconscious brain states can provide key elements to better
understand conscious sensory processing, in the context of
neurally grounded theories of consciousness.

THE NEURONAL BASIS OF CONSCIOUS
SENSORY PROCESSING

As already noted, sensory neural systems continue to respond
to stimuli in the absence of consciousness, for instance during
anesthesia or deep (NREM) sleep, but also in low-arousal micro-
states during wakefulness. How can this be? Apparently, simply
generating a sensory response is not sufficient to result in a
conscious experience, not even at the level of the neocortex or
thalamus, which are the two structures most heavily implicated
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in conscious sensing (Koch, 2004). The disconnection between
sensory responses and conscious experience can be grasped from
a theoretical viewpoint: if all that a sensory input gives rise to
is activation of a single type of feature detector (e.g., neurons
responding to one orientation of a visual grating), then the neural
system has no way to deduce, or represent, all visual or other
modal properties of the scene or situation. Indeed, a single type
of feature detector can only report on orientation, but not on
color, spatial frequency, spatial position in the visual field, etc.
Furthermore, a single-detector system is incapable of identifying
the signal as pertaining to—for instance—orientation, because
the system lacks information as to what a transmitted numerical
value is about. It only represents or ‘‘knows’’ that a certain level
of spiking activity is present. This argument can be extended
to a situation where a variety of feature detectors is activated:
if their activity is not integrated or combined (i.e., if they are
disconnected), the neural system cannot construct an experience
with modally distinct properties (Pennartz, 2009).

Various neuroscience-related theories have dealt with the
relationship between neural activity and consciousness in
different ways. Here we will briefly discuss only two of
these theories and compare them with inferential accounts
of consciousness. First, the GNW theory mainly focusses on
how sensory stimuli gain access to neural systems broadcasting
the information across a wide range of brain structures,
so that this information quickly reaches systems for motor
responding, storage in working memory, or other cognitive
functions such as attention (Dehaene and Changeux, 2011).
This theory is therefore mainly concerned with information-
distributing aspects of conscious processing and postulates
that its neural substrates are located primarily in fronto-
parietal systems. It is less concerned with phenomenology,
i.e., the properties characteristic of subjective experience (see
‘‘Introduction’’ section). However, GNW theory does postulate
that conscious processing of a sensory stimulus depends on the
stimulus information passing a threshold for ‘‘ignition,’’ i.e., the
signal must be strong enough to unleash an explosive activity
resulting in the broadcasting of information throughout the
neuronal workspace. Ignition may result either as a consequence
of feedforward mechanisms (i.e., bottom-up transfer of high
stimulus salience), or as a consequence of top-down, attentional
resources being directed towards a given stimulus—see e.g.,
(Buschman andMiller, 2007; Gaillard et al., 2009; van Vugt et al.,
2018). This ignited activity would be particularly manifested
in frontoparietal systems. Much discussion revolves around the
question of whether frontal activity correlates more strongly
with generating motor responses to sensory stimuli than with
conscious sensing per se, which (in the visual domain) has been
correlated to neural activity in posterior, higher visual areas
(Pennartz, 2015; Koch et al., 2016).

The IIT (Tononi et al., 2016) postulates that sensory systems
in the brain are required to engage in causally effective
interactions with each other and with other areas in order to give
rise to conscious experience. Such causal interactions between
neurons are characterized by differentiation as well as integration
within the system: the pattern of neural connections must be
sufficiently varied or differentiated to guarantee specific content,

and must be simultaneously integrated to account for the subject
having only one single, unified experience. IIT has a particular
focus on explaining differences between conscious/nonconscious
brain states in terms of high vs. low levels of integration, while
leaving the question of when a sensory stimulus gives rise
to perception (both in terms of whether it is perceived and
what is perceived) more open. The concept of integration is a
general one in neuroscientific terms, as it does not specify the
underlying circuit-level mechanisms. Integration of information
is considered here in juxtaposition to the view that conscious
experience is particularly manifest by subjects sustaining lively,
rich experiences and exhibiting complex, planned behaviors
typically associated with conscious representations—and which
necessarily require the dynamic interaction between neuronal
circuits across the whole brain hierarchy.

Therefore, we feel it is timely to also pay attention to a
third, neurally grounded theory of consciousness—the inferential
or predictive coding (PC) account (Hobson and Friston, 2014;
Pennartz, 2015), which has a particular relevance for sensory
processing and attempts to characterize the circuit-level neural
substrate of perception.

The Predictive Coding Account of
Conscious Sensory Processing
PC has been developed into a growing computational framework,
and pays tribute to the Kantian and Helmholtzian notion that
what we perceive is not the constellation of exact physical
features of our environment, but rather the inferred causes of
the sensory inputs our brain receives (Gregory, 1980; Lee and
Mumford, 2003; see Wolpert et al., 1995). This is in line with
the well-known fact that our brains are fed with sensory input
exclusively via the cranial nerves and spinal cord ascending
pathways, which all use the same type of signal (action potential)
to convey information to the brain. Locally, e.g., within the
visual cortex, no intrinsic knowledge is available to deduce
that sensory inputs are of a visual nature (Boring, 1950; Block,
2005; Pennartz, 2009). In other words—nothing differentiates
individual action potentials generated as a consequence of,
for instance, an auditory or a visual stimulus. Amongst
other theories of consciousness, such as GNW and IIT, the
PC framework stands out for its aim to account for this
interpretational (or inferential) aspect of conscious experience.
Because of this focus, it is in a relatively favorable position
to address perceptual phenomena such as illusions, positing
that our brain generates a ‘‘best guess’’ representation of what
is going on in the world around us, which leaves open the
possibility of false or inaccurate inferences. Here, we will
first provide a short overview of the PC framework, and will
then discuss its relevance for the study of conscious sensory
processing.

Neural network versions of PC and related accounts were
developed by e.g., Dayan et al. (1995), Rao and Ballard (1999)
and Spratling (2011). For instance, Rao and Ballard (1999)
designed a two-layer neural network in which sensory inputs
were relayed by an input layer to a higher layer that generated
a predictive representation of the actual sensory input. This
predictive representation offers an inference as to what causes
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the sensory input. Importantly, ‘‘predictive’’ does not necessarily
mean predictive-in-time; the prediction can be as much about
inferring the causes of current sensory input as it may pertain to
future inputs or states. The predictive representation is fed back
to the input layer via recurrent projections. Next, local circuits
in or near the input layer compute the discrepancy between the
input and the prediction, and this error (or mismatch) signal
is then used to train the network to generate more accurate
predictions about the input in the future. This unsupervised
updating of the internal model continues until the error signal is
minimized. Rao and Ballard (1999) showed that even a two-layer
PC network can explain extra-classical, receptive field properties
of visual cortical neurons.

Friston (2010) incorporated PC in his formulation of a
Free-Energy principle for optimization of action, perception
and learning. He also studied the role of motor actions in
generating predictions and acquiring sensory feedback to guide
predictive learning (‘‘active inference’’). Seth (2013) applied the
PC framework to study the genesis of models of internal body
states in relation to emotions and subjective feelings. Bastos
et al. (2012) proposed a theoretical scheme of how errors and
predictive representations may be transmitted via feedforward
and recurrent pathways in the visual cortical system, linking this
transmission to gamma and beta activity in LFPs of superficial
vs. deep cortical layers, respectively. Recently, Dora et al. (2018)
presented a model for PC in deep, multi-layer networks, showing
that the model—trained by unsupervised learning—can generate
effective inferred representations of sensory inputs (images),
even when the network had not been exposed to these inputs
before. When the network was put to operate in the generative
mode—meaning that sensory inputs were absent and inferred
representations were triggered by activation of higher layers,
thus crudely simulating imagery—it was shown to reproduce the
original inputs that gave rise to these inferred representations
after training. Thus, this model illustrates aspects of perceptual
inference as well as imagery, understood as an internally driven
mode of active neural representation.

How exactly may the PC framework contribute to the
development of theories of consciousness? Above we already
hinted at its basic capabilities in explaining inference and
imagery, but it should be noted that certain kinds of inference
may occur non-consciously. For instance, we perform many
actions in an automated, nonconscious fashion while using
inferred information (e.g., automatically grabbing a coin from a
collection with various sizes). A foremost question to ask when
comparing PC to properties of conscious experience is: which
component—if anything—of a PC model would correspond
to an experienced representation? The actual sensory input
cannot correspond to this, because this is not what is being
perceived, but rather what the brain makes inferences about. The
feedforward, ascending signals present the discrepancies between
actual inputs and inferred causes. However, it is not an error that
we perceive, but rather the inferred representation generated by
one or more higher layers of the system. It is this joint (multi-
layer) predictive representation that holds several properties
that we can roughly associate with conscious experience:
(i) interpretation or inference, and thus the property of being

prone to illusions; and (ii) a capacity to switch or alternate
between perception (externally driven) and imagery (internally
driven). How other attributes of conscious experience (see
‘‘Introduction’’ section) may be explained by PC remains largely
to be explored, but it is of note that the concept of ‘‘integration’’
is inherent to the construction of predictive representations,
dependent as this process is on layer-to-layer interactions (for a
discussion of multimodal richness, immersiveness, situatedness
and first-person perspective, see Pennartz, 2015).

Despite the increasing prominence PC theory has gained in
relation to consciousness and its neural substrates, the question
of whether inference can be accomplished nonconsciously (and
how this relates to macro- and micro-states) deserves further
scrutiny. First, we argue that inference plays a central role in
many processes contributing to perception. For instance, gauging
the color constancy of an object seen under different spectral
conditions (such as bright daylight vs. sunset) is, in a broad sense,
a process of inference. Likewise, distinguishing objects against
their background (figure-ground segregation) and the grouping
of features into a single object are functions implying inference
(various neural systems with a different history of learning may
group features or segment objects differently). Thus, inference is
not limited to illusions, and is involved inmany of the bread-and-
butter operations underlying perception.

Second, the evidence for selectively coupling different forms
of inference to consciousness varies per study and form being
studied. The Kanizsa triangle illusion, for instance, depends on
the presence of inducers—the three aligned Pacman figures and
the three pairs of lines that seem to underlie the illusory white
triangle we perceive as being superimposed upon these inducer
stimuli. Harris et al. (2011) used continuous flash suppression
to render inducers of this illusion invisible. Subjects responded
randomly when asked to report whether the triangle was pointing
to the left or right, suggesting that the underlying inferential
process is associated with consciousness. Similarly, inference on
color constancy appears to be linked to consciousness, because it
is absent in the lesioned hemi-field of blindsight patients (Barbur
and Spang, 2008). Figure-ground segregation and grouping based
on low-level Gestalt features are also thought to depend on
consciousness, as they are largely absent under anesthetized
conditions or during perceptual masking. However, overall the
results depend on the precise task conditions and perceptual
abilities of subjects (Marcel, 1998), making it difficult to assess
which types of inference are firmly connected to consciousness
and which are not.

Thus, a central problem to study is how the various
types of inference—whether made consciously or not—are
integrated into an overall experience, and where and how this is
accomplished in the brain. As argued more extensively elsewhere
(Pennartz, 2015), it would be erroneous to seek the overall
‘‘interpretation’’ of all current sensory inputs in a higher brain
area (e.g., prefrontal cortex) that receives convergent inputs from
lower-level (sensory) cortical areas. All that higher-area neurons
receive from lower areas are synaptic inputs, arising from
trains of action potentials, which hold no explanatory power
for phenomenology when considered by themselves. Instead,
we argue that an overall perceptual interpretation arises at a
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higher representational level of the system, where ‘‘level’’ means
a conceptual level of organization and representation, analogous
to Marr’s distinction between implementational, algorithmic
and computational levels (Marr, 1982). Translated to the PC
framework, this means it is productive to make a distinction
between low-level predictive systems (such as the two-layer or
multi-layer architectures noted above; Rao and Ballard, 1999;
Dora et al., 2018) that are only concerned with e.g., color
or motion vision, vs. high-level, integrated predictive systems.
Many low-level predictions can then be subsumed under a
high-level predictive system, which serves to integrate the
low-level representations and unify them into a perspectival,
multimodal experience (Figure 4).

Considering the anatomical correlates of low vs. high-level
predictions, low-level predictions in the visual modality concern
individual submodalities such as color, motion, texture, shape
and size, and of these, for instance, motion can be associated
with area V5/MT (Zihl et al., 1983; Zeki, 2001). High-level
predictions pertain to the level of single modalities (e.g., vision,
including all of its submodalities) or, ultimately, to the highest
level of multimodal representations that we can associate with
phenomenology. Such high-level predictions play out at the
level of large, integrated anatomical aggregates comprising
both sensory cortices and higher, associational areas such as
the parietal cortex (Pennartz, 2018). Hence, the experimental
evidence underscoring the importance of long-range cortical
communication for consciousness is just as compatible with the
PC account as it is with IIT or GNW.

In conclusion, what distinguishes conscious and
nonconscious sensory processing in this proposal is not
that inference is an exclusive privilege of conscious systems,
but that all inferential processes together give rise to a higher

representational level of ‘‘super-inference’’ in which they are
integrated and unified. Note that the aspects of integration and
multimodal richness are taken on board in this account, and that
especially the multi-level aspect of this representational theory
needs further elaboration through computational modeling and
experiment.

Inferential Accounts: Comparison
to Experimental Data
Originally, we asked how it is that sensory systems in the cortex
continue to respond to stimuli in the absence of consciousness,
for instance during anesthesia or NREM sleep, but also during
wakefulness when a stimulus is not perceived. Based on the brief
exposé that we gave on PC, it can now be hypothesized that
responses to stimuli, at least in the primary sensory cortices,
may reflect either a bottom-up sensory input or a low-level
inference which fails to become integrated into a high-level
predictive representation. At the level of the primary visual
cortex V1, for instance, responses to visual stimuli reflect
inputs from the retina-LGN (lateral geniculate nucleus of the
thalamus) subsystem, which continue to be transmitted under
anesthesia or NREM conditions. It has also been noted that
top-down (or recurrent) processing is lacking or diminished
under anesthesia (Lamme et al., 1998), which fits in this account
because it may indicate that either predictive representations
in higher visual areas are not properly formed, or are formed
but fail to integrate with those in lower areas such as V1.
It should be noted that the relative intactness of primary
sensory responses under nonconscious conditions is also broadly
compatible with GNW and IIT. For GNW, this holds because
the ‘‘ignition threshold’’ may be set at higher anatomical stages
of cortical processing than the primary sensory cortices. For

FIGURE 4 | The inferential account of conscious sensory processing. Illustration of the hypothesis that conscious sensory processing is organized according to low,
intermediate and high representational levels (see Pennartz, 2015). In this scheme, representations correspond to predictions or hypotheses (rendered here as
H(. . .)). A low-level prediction or hypothesis (green) pertains to a singular feature within a sensory modality, pertaining to an object or location in the environment (e.g.,
H(color) is the hypothesis that a visual object is of a certain color). The intermediate level (blue) is exemplified by H(visual object), the hypothesis that a visual object
has several properties integrated across the low-level predictions. The highest level of representation (red) integrates across several sensory modalities (vision,
audition, somatosensory and (not shown) olfaction, taste, sense of balance) and is rendered here as the hypothesis on a multimodal object. For instance, a grabbing
of a piece of paper in one’s hand generates a joint inference on its visual, tactile and auditory properties. Already at the lowest level, predictions are learned and
generated within a feedforward and recurrent multi-layer architecture which may well stretch across several connected cortical areas (e.g., V1, V2, V3 and V5 for
visual motion). Note that motor or situational aspects, including the object’s position in space, are not taken into account in this scheme. In addition, a prediction on
one particular feature × may well depend on predictions on other features y and z (etc.), for instance when assessing object shape from colored patches, texture and
disparity cues. Thus, hypotheses are can be conditional on each other, which may be implemented by interactions between sub-networks. Horizontal dotted lines
denote that the potential list of relevant features or sensory modalities can be extended. Curved arrows indicate the various types of interaction between
sub-networks (recurrent, feedforward and lateral).
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IIT, it is not the presence of a sensory response as such
that determines whether the subject becomes conscious of it,
but rather whether it is processed in a sufficiently integrated
manner, yielding sufficient causally effective communication and
differentiation.

Another line of testing inferential accounts is to study how
sensory prediction error signals may be generated in the brain,
and whether they persist under nonconscious conditions. In a
behavioral paradigm where a virtual reality setup was used to
dissociate locomotor movement of mice from optic flow (which
would normally be predictable from locomotion), Keller et al.
(2012) found indications for sensorimotor mismatch coding in
superficial layers of mouse visual cortex. In a recent follow-up
study, Leinweber et al. (2017) studied the projection from frontal
cortical areas A24b and M2 (secondary motor cortex) to visual
cortex as an anatomical substrate that may potentially convey
predictive motor information to the visual system. In a task
variant where the optic flow resulting from turning movements
was left-right inverted, they found that correlations between
neural activity and behavioral responses adapted to diminish
mismatches to visual flow, in line with a PC account. Note how
this relevance of feedback connections is in line with the role that
we described for connections between motor and tactile areas
in the context of whisker perception (‘‘How Communication
Between Brain Areas Varies Across Brain States, and How This
Affects Sensory Processing’’ section).

Mismatch signals have also been investigated in human
EEG/MEG responses, where the mismatch negativity (MMN)
signal arises from detecting deviations from a regular, temporally
repetitive series of stimuli. A recent study (Strauss et al.,
2015) used an auditory paradigm that included both short-term
(local) and long-term (global) regularities, according to a
hierarchical order. They found that, while the local (low-
level) mismatch response remained present during all sleep
stages, sleep abolished the global mismatch response (reflected
in the P300 component). This would align well with the
current hypothesis that inferences can be generated at multiple
representational levels, and that particularly low-level inferences
can be produced nonconsciously, whereas high-level inferences
correspond to conscious experience. It must be noted though
that the notion of ‘‘level’’ used here may be different from that
implied by the paradigm used in Strauss et al. (2015), and that
time series predictions constitute a special case in the family of
PC paradigms.

The experimental findings reviewed in section ‘‘Sensory-
Evoked Neuronal Responses Across Brain States’’ emphasize
a prominent role in conscious representations for sparsity of
neuronal activity. This means that having a sufficient population
sparsity in the coding of sensory stimuli—which is promoted in
a desynchronized network micro-state—is instrumental in the
generation of conscious inferences. This role can be interpreted
in the context of representational or inferential accounts, because
a population state of high sparsity corresponds best with
the coding of specific features pertaining to the presented
stimulus, whereas neural coding of other (non-actual) features
should be preferably absent. The ensuing micro-state of ‘‘sparse
synchrony’’ is deemed suitable to convey such highly specific

sensory information to neural ensembles in other cortical areas
(Pennartz, 2015). Although the notion of sparse synchrony seems
to be compatible with IIT in the sense that it corresponds
to having differentiation in the neural population, IIT is less
outspoken about how much sparsity would be preferred, as it
more strongly emphasizes the importance of causally effective
transfer of information throughout a network. On the other
hand, GNW gives more emphasis to the magnitude of the
neural activity induced by sensory signals (as a consequence of
stimulus intensity and/or focused attentional resources) relative
to the hypothesized ‘‘ignition threshold’’ and it remains to be
investigated how ‘‘magnitude’’ should be defined here relative
to sparse population coding. Rather than massive sensory
activation, surpassing a perceptual threshold, the data appear to
be more compatible with a ‘‘sparse synchrony’’ threshold that has
to be met in several connected sensory cortical areas to give rise
to conscious sensing.

Returning to a set of findings on communication between
cortical brain areas (‘‘How Communication Between Brain Areas
Varies Across Brain States, and How This Affects Sensory
Processing’’ section), we would argue that the global decrease
in long-range communication, found for instance during NREM
sleep and anesthesia, is compatible with inferential accounts of
consciousness as well as with GNW and IIT. The spatiotemporal
complexity of TMS-evoked cortical responses decreases—with
respect to wakefulness in healthy subjects—during NREM sleep
(Massimini et al., 2005), anesthesia (Ferrarelli et al., 2010) and
disorders of consciousness (Casarotto et al., 2016) has been
interpreted as a decrease in the ability of the cortex to integrate
information in nonconscious states. IIT appears therefore to be
in line with these experimental findings (Tononi et al., 2016).
These results on complexity can be partially explained by the
observation that propagation and reverberation of TMS evoked
cortical activity is prevented by DOWN states arising during
SWS or other nonconscious conditions (e.g., coma). While
this explanation may seem simple vis a vis the complexity of
conscious processing, it is plausible and effective at amechanistic,
electrophysiological level.

As regards the inferential accounts, it is noted that high-level
predictive representations (under which many ‘‘simpler’’
low-level representations are subsumed) can only be formed
given sufficient communication between brain areas, which
are anatomically located in lower and higher parts of a sensory
(and multisensory) hierarchy. This renders the account well
compatible with the findings on long-range communication. The
importance of long-range communication has also been stressed
by GNW theory, because it is this type of information that is
deemed important here for globally broadcasting information
we are conscious of. Thus, correlations between changes in
conscious (micro-)state and in long-range communication are
considered highly relevant yet do not strongly discriminate
between the three theories under consideration here. An
exception may be the finding that, during NREM sleep, some
pairs of brain areas show enhanced rather than diminished
directed interactions (e.g., between specific subpopulations
of neurons located in different cortical areas, Olcese et al.,
2018). Such enhancements in specific cortical circuits normally
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considered essential in conscious processing may be difficult to
explain within the IIT framework. The inferential account places
emphasis on constructing representations in sensory cortical
systems. Therefore, enhanced interactions between cortical areas
not leading to conscious representations (for instance involved
in distinct functions associated with sleep, such as memory
processing, Qin et al., 1997; Pennartz et al., 2002; Sirota et al.,
2003) may well be present during nonconscious states and do
not present a challenge for the inferential account.

DISCUSSION AND CONCLUSION

Here, we have presented a review of the different ways in which
sensory stimuli are processed by cortical areas across conscious
and nonconscious brain states. First, we have argued that the
classical definition of brain states (e.g., wakefulness and the
various sleep stages) needs to be updated to take into account
that such macroscopic states are highly heterogeneous, and that
they can be subdivided in distinct micro-states. Suchmicro-states
can be distinguished based on their different patterns of neural
activity, but more importantly, based on how sensory stimuli
are processed. Next, we have examined how sensory processing
varies across macro- and micro-brain states, at the level of
single neurons, ensembles, and inter-areal communication.
While sensory-evoked responses are largely preserved across
conscious and nonconscious brain states, differences emerge
when focusing on natural (e.g., complex multisensory scenes)
rather than simple sensory stimuli, and when considering the
fine structure of spiking and inter-areal communication patterns.
In particular, we can conclude that what characterizes brain
states capable of sustaining conscious sensory processing is the
presence of an intermediate level of desynchronization. We refer

to this condition as ‘‘sparse synchrony.’’ This corresponds to a
micro-state in which the strong level of synchrony present in
nonconscious states such as NREM sleep and anesthesia (e.g.,
cortical slow wave activity) is lost, but specific forms of integrated
activity (e.g., feedback projections from higher order to primary
cortices) remain possible. How is it that this sparse synchrony
enables perception? That an intermediate level of integration is
key to enable consciousness has been highlighted by different
neural-based theories of consciousness such as IIT and GNW.
Here we focus on the PC framework, which is uniquely focused
on sensory processing. As we showed, the PC (inferential)
framework provides a valid platform to explain how different
forms of neural dynamics that characterize the distinct brain
states affect sensory processing, how percepts may be explained
as ‘‘best guess’’ representations and should be considered as
a powerful theoretical framework alongside other theories of
consciousness.
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