Published online 3 December 2015

Nucleic Acids Research, 2016, Vol. 44, No. 1 75-94
doi: 10.1093/narlgkvi1332

Systematic identification and annotation of human
methylation marks based on bisulfite sequencing
methylomes reveals distinct roles of cell type-specific
hypomethylation in the regulation of cell identity

genes

Hongbo Liu'-"f, Xiaojuan Liu®>', Shumei Zhang'f, Jie Lv3, Song Li', Shipeng Shang’,
Shanshan Jia', Yanjun Wei', Fang Wang', Jianzhong Su', Qiong Wu? and Yan Zhang'~’

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China, 2Department
of Rehabilitation, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China and 3School of Life
Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of

Technology, Harbin 150001, China

Received May 09, 2015; Revised October 29, 2015; Accepted November 17, 2015

ABSTRACT

DNA methylation is a key epigenetic mark that is
critical for gene regulation in multicellular eukary-
otes. Although various human cell types may have
the same genome, these cells have different methy-
lomes. The systematic identification and character-
ization of methylation marks across cell types are
crucial to understand the complex regulatory net-
work for cell fate determination. In this study, we pro-
posed an entropy-based framework termed SMART
to integrate the whole genome bisulfite sequencing
methylomes across 42 human tissues/cells and iden-
tified 757 887 genome segments. Nearly 75% of the
segments showed uniform methylation across all cell
types. From the remaining 25% of the segments, we
identified cell type-specific hypo/hypermethylation
marks that were specifically hypo/hypermethylated
in a minority of cell types using a statistical ap-
proach and presented an atlas of the human methy-
lation marks. Further analysis revealed that the cell
type-specific hypomethylation marks were enriched
through H3K27ac and transcription factor binding
sites in cell type-specific manner. In particular, we
observed that the cell type-specific hypomethyla-
tion marks are associated with the cell type-specific
super-enhancers that drive the expression of cell
identity genes. This framework provides a comple-

mentary, functional annotation of the human genome
and helps to elucidate the critical features and func-
tions of cell type-specific hypomethylation.

INTRODUCTION

DNA methylation is a key epigenetic marker that is criti-
cal for mammalian development and plays an essential role
in diverse biological processes, such as X chromosome in-
activation, genomic imprinting and cell type-specific gene
regulation (1). The identification of cytosine methylation in
the early 1970s (2) led to decades of research on the de-
tection and characterization of DNA methylation in gene
regulation. DNA methylation/unmethylation mechanisms
are common in all tissues/cells. However, different methy-
lome landscapes have emerged from different cell types,
even though they possess the same genome (3).

Numerous studies have mapped DNA methylomes across
human cell lines and tissues through a variety of tech-
niques (4), and have characterized several classes of DNA
methylation patterns in regulatory regions, including CpG
islands (5), CpG island shores (6), tissue-specific differen-
tially methylated regions (7,8), differentially methylated im-
printed regions (9), partially methylated domains (10) and
large hypomethylated regions (11,12). Previous studies have
demonstrated that the tissue-specific differentially methy-
lated regions are associated with tissue-specific gene expres-
sion (13). However, the results of most studies on methyla-
tion dynamics across human cell types are generated at a
limited resolution and with small sample cohorts. In ad-
dition, the characterization of the roles of DNA methy-
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lation in cell type-specific gene regulation has been lim-
ited by the ability to accurately and comprehensively map
a high resolution atlas of the cell type-specific methyla-
tion marks (MethyMarks) across human cell types (14,15).
Thus, the genomic distribution of cell type-specific Methy-
Marks across human cell types and the regulatory context
of these modifications remain a subject of great interest.
Mining the MethyMarks of stem cells, particularly human
embryonic stem cells (hESCs), is valuable for exploring the
role of DNA methylation in the maintenance of pluripo-
tency.

Cell type-specific phenotypes are defined by complex reg-
ulatory networks that are driven by multiple genetic and epi-
genetic regulators, including DNA methylation and tran-
scription factors; however, these mechanisms remain un-
clear. Thus, the modelling of genetic networks requires the
parsing of the interplay between DNA methylation and
other cell type-specific regulators. DNA methylation might
affect the binding affinity of transcription factors to tran-
scription factor binding sites (TFBSs) in a transcription
factor-specific and cell type-specific manner (16,17). For ex-
ample, the binding variability of a well-known transcrip-
tion factor CTCF across human cell types has been asso-
ciated with differential DNA methylation (18). Moreover,
it has been reported that enhancers harboring specific epi-
genetic marks play important roles in the regulation of cell
type-specific gene expression (19). Most recently, Anders-
son et al. identified and characterized an atlas of cell type-
specific active enhancers across human cell types and tis-
sues (20). Richard A. Young and his colleagues produced
a catalog of super-enhancers, which are large clusters of
transcriptional enhancers that play key roles in human cell
identity (21,22). Interestingly, accumulating evidence has
shown that cell type-specific enhancer activity is dependent
on the DNA methylation status (23,24). However, as a con-
sequence of the currently limited annotation of cell type-
specific methylation marks, the models and biological roles
of DNA methylation in the regulation of enhancer activity
remain underexplored. Together, these studies have under-
scored the roles of DNA methylation as a defining feature of
cellular identity, and the systematic identification and char-
acterization of cell type-specific MethyMarks in different
human tissues and cell types are needed.

Bisulfite treatment coupled with whole-genome sequenc-
ing (variably termed, BS-Seq, WGBS or MethylC-Seq) has
generated the most comprehensive single-nucleotide res-
olution DNA methylome maps (25). The DNA methy-
lomes across multiple human tissues and cell lines that have
been profiled using these bisulfite-based technologies pro-
vide us with an opportunity to completely map and dis-
sect the DNA methylation marks for various human cell
types (3,10,26-28). Some useful tools have been developed
to analyze these large-scale DNA methylomes. For exam-
ple, the CpGMPs described by Su et al. (29) can be used
to identify the hyper/hypomethylation regions in a given
methylome. RnBeads (30) was developed to analyze large-
scale DNA methylation data and identify the differentially
methylated regions between two samples. For the predefined
genome regions, such as CpG islands or gene promoters, the
QDMR technique developed by Zhang et al. (31) can be
used to identify the differentially methylated regions across

multiple cell types. However, there are no tools for the de
novo identification of differentially methylated regions and
cell type-specific MethyMarks in a large number of DNA
methylomes.

Here, we describe a novel entropy-based framework,
termed ‘SMART’ (Specific Methylation Analysis and Re-
port Tool), which is focused on integrating a large num-
ber of DNA methylomes for the de novo identification of
cell type-specific MethyMarks. Using SMART, we propose
a comprehensive atlas of the MethyMarks across human
cell types. The systematic analysis of this atlas revealed dis-
tinct features of the different methylation patterns at regu-
latory elements. We identified the various roles of the uni-
formly hypomethylated and hypermethylated regions across
human cell types. Importantly, we identified a large num-
ber of cell type-specific MethyMarks that were associated
with genes with cell type-specific functions. In particular,
cell type-specific hypomethylation might reflect the assem-
bly of cell type-specific super-enhancers that drive the ex-
pression of the genes that define cell identity.

MATERIALS AND METHODS

Data collection

All DNA methylation data and the other datasets used in
this study are listed in Supplementary Table S1.

Quantification of the methylation specificity for CpG sites
across cell types

For each CpG site i, a one-step Tukey biweight (7'B;)
was calculated based on the raw methylation values
CpGi(rmy,rmy, -, rme,---, rmy) across N cell types as

N N
> [we x rm.]/ > w,., where w, is a weight that is calcu-
c=1 =1

lated by the bisquare function in each cell-type, as de-
scribed in our previous study (31). Using this method, the
one-step Tukey biweight provides a robust weighted mean
that is relatively insensitive to outliers. The raw methyla-
tion values are processed by the one-step Tukey biweight
as CpGi(my, my, - - -, me, - - -, my) where m. = |rm. — T B;|
(Supplementary Figures S1 and S2). Then, the methylation
specificity of a CpG across multiple cell types was calculated
using the normalized Shannon entropy as

[ al max(rm,) — min(rm,)
== pe 1ogN(pc>} X [1 - - ]

MAX — MIN

c=1
N
where p. = m,./ Y m., max(rm,) and min(rm,) were the
c=1
max and min raw methylation level of region r in all sam-
ples, respectively, and the MAX and MIN were defined as
the highest methylation level 1 (or 100%; the methylation
level ranges from 0 to 100%) and the lowest methylation
level 0, respectively. Methylation specificity ranges from 0
for the uniformly methylated regions in all samples to 1
for the specifically hyper/hypomethylated regions in a single
sample with the largest range.
To determine the thresholds for methylation specificity,
we modelled different methylation patterns by random sam-



pling of different normal distributions with different means
and standard deviations and studied the distribution of the
methylation specificity. For a given mean methylation level
(ranging from 0.0 to 1.0) and a given standard deviation
(ranging from 0.0 to 0.5), 50 values were random sampled
as the methylation levels in 50 samples of a CpG site. This
process was repeated 10 000 times to produce 10 000 CpG
sites whose methylation specificity across 50 samples were
quantified by the method described above. As shown in Sup-
plementary Figure S3A and B, the methylation specificity
increases with the standard deviations, suggesting that our
method is accurate for quantifying methylation specificity.
Methylation specificity is less than 0.5 when the standard
deviation is <0.1, which is usually regarded as having little
effect on gene expression. Methylation specificity is more
than 0.75 when the standard deviation is > 0.3, which would
change the methylation status from one to another. Thus,
0.5 was selected as the threshold for the maximum speci-
ficity value for those CpGs with a low methylation speci-
ficity state and 0.75 as the threshold for the minimum speci-
ficity value for those CpGs with a high methylation speci-
ficity state. Meanwhile, the CpGs with methylation speci-
ficity between 0.5 and 0.75 are defined as having an inter-
mediate specificity state.

It is known that spermatozoa exhibit a decreased level
of global methylation, which is very different than other
cell types. Thus, to evaluate the performance of our method
for quantifying methylation specificity across different num-
bers of samples, the methylome in spermatozoa cells was
included in each dataset, and other samples were randomly
selected from the other 49 human methylomes. Using this
strategy, we produced ten datasets with different numbers
of samples, which ranged from 5 to 50, in step 5. In the
methylation specificity distribution shown in Supplemen-
tary Figure S3C, two peaks at approximately 0.25 and 1.0
were found in all datasets, suggesting the coexistence of uni-
formly methylated CpGs and cell type-specific methylated
CpGs. Moreover, the height of the peak at approximately
1.0 increases with the sample number, indicating that the
greater methylation specificity was caused by the methyla-
tion diversity in a larger number of samples. In addition,
we examined the methylation of known regulatory elements,
including CpG islands, Refseq genes, lincRNAs, ubiquitous
enhancers, cell type-specific active enhancers, and super-
enhancers. The CpGs in each segment and the flanking 2
kb regions were searched. A composite plot of the methy-
lation specificity of these CpGs was mapped by R for each
type of regulatory element (Supplementary Figure S4A).

Analysis of the methylation similarity between neighbouring
CpGs across cell types

To measure the methylation similarity between neigh-
bouring CpGs, the Euclidean distance-based methyla-
tion similarity between neighbouring CpGs was calcu-

N
lated as \/ % Zl (me,i —m, j)z. Meanwhile, we calculated

an entropy-based methylation similarity measure between
two neighbouring CpGs using the methylation specificity in
which the raw methylation values are replaced by the abso-
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lute methylation difference
CpGij ([mi=m | fmai=ma |- [mei=me | fmyi—m 1)

between two neighboring CpGs. The lower entropy-based
methylation similarity indicates that the methylation pat-
terns of two neighbouring CpGs are more similar. For a
random case, 1 million CpGs were randomly selected from
all CpGs. For each randomly selected CpG, its methylation
levels across 50 samples were distributed randomly. Thus,
we obtained a random dataset including 1 million CpGs
and their methylation levels across 50 samples. Then, the al-
gorithms were applied to calculate the Euclidean distance-
based methylation similarity and entropy-based methyla-
tion similarity for both the real and random datasets. As
shown in Supplementary Figure S5A and B, the distribu-
tion of the two types of methylation similarity in the real
methylation data and the random methylation data inter-
sectat 0.2 and 0.6, respectively, which are used as the thresh-
olds for judging whether two neighboring CpGs share the
same methylation pattern. In addition, we evaluated the ef-
fect of the distance between two neighbouring CpGs to the
two similarity measures by comparing the features of 250
and 500 bp (Supplementary Figure S5C-J). Compared to
250 bp, the distance threshold of the 500 bp was appropri-
ate for identifying the long-range regions, although a small
percentage (4.2%) of short segments may be ignored.

Genome segmentation algorithm

Continuous scanning was performed on each chromosome
to obtain the segments composed of CpG sites with high
methylation similarity across all cell types. The first CpG
site is assigned as a primary segment that is then continually
extended by merging the next CpG site that shares a similar
methylation pattern across all cell types with the last CpG
site in the current primary segment. The conditions used
to judge whether two CpG sites share similar methylation
patterns include (i) the same specificity state, (ii) entropy-
based methylation similarity <0.6, (iii) Euclidean distance-
based methylation similarity <0.2 and (iv) a distance be-
tween them of <500 bp. If these conditions are not satis-
fied, the extension of current primary segment is completed,
and a new primary segment is continually extended, as de-
scribed above. As the CpG sites in the same primary seg-
ment share an almost identical methylation pattern in the
same cell type, the mean methylation of these CpG sites is
calculated as the methylation level of the primary segment.

It has been reported that incomplete bisulfite conversion
and sequencing errors may result in random errors in the
methylation status (32). These random errors may cause
disconnection of the primary segments that are localized
in close proximity and share similar methylation patterns.
Thus, two primary segments are merged into a segment if
the following conditions are satisfied: (i) the same speci-
ficity state, (ii) entropy-based methylation similarity <0.6,
(ii1) Euclidean distance-based methylation similarity <0.2,
(iv) a distance between them of <500 bp and (v) no more
than five intervening CpGs between them. The evaluation
of the threshold of the intervening CpGs indicated that five
intervening CpGs should be useful for merging the primary
segments into larger segments, without any effect on the seg-
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ment features, including the CpG density (Supplementary
Figure S5K-P). Finally, the segments with a length of <20
bp or <5 CpGs are filtered out. According to the specificity
state, the remaining segments are further classified into dif-
ferent groups, including high specificity segments (High-
Spe), low specificity segments (LowSpe) and intermediate
specificity segments (InterSpe).

Identification of the cell type-specific methylation marks

When calculating the methylation specificity, the one-step
Tukey biweight was calculated as a robust weighted mean
using the methylation levels in the majority of cell types
after discounting the outliers in the minority of cell types
by a weight w, that was calculated by the bisquare func-
tion. Here, we treated the High/InterSpe segment with out-
liers in a minority of cell types as the potential cell type-
specific MethyMark. The MethyMark that is specifically
hypomethylated in a minority of cell types is designated
as a cell type-specific hypomethylation mark (HypoMark),
and the MethyMark that specifically hypermethylated in a
minority of specific cell types is designated as a cell type-
specific hypermethylation mark (HyperMark). To identify
the HypoMarks and HyperMarks for a given cell type, a
statistical method based on a one sample ¢ test was devel-
oped. For each High/InterSpe segment, we obtained the
methylation levels in the majority of cell types with w, >
0.5 and set them as the baseline methylation levels. Then,
we performed the one sample 7 test between the baseline
methylation levels and each methylation level in the minor-
ity of cell types to examine the significance of the potential
cell type-specific MethyMarks. If a High/InterSpe segment
shows significantly lower methylation (P value <1.0x1071°
and absolute difference to mean baseline methylation level
>0.3) in a cell type compared to the baseline methyla-
tion levels, this segment is termed as a HypoMark for this
cell type. Similarly, the High/LowSpe segment with signif-
icantly higher methylation in a cell type compared to the
baseline methylation levels is termed as a HyperMark for
this cell type. Due to the similar methylation patterns in two
replicate samples for the same cell type, the intersection of
HypoMarks/HyperMarks between two replicate samples
were selected as the HypoMarks/HyperMarks for the cell

type.

Specific methylation analysis and report tool SMART

To facilitate the specific methylation analysis, the algo-
rithms described above were written in Python and inte-
grated into a Specific Methylation Analysis and Report Tool
(SMART) that dynamically integrates multiple methylomes
and identifies the cell type-specific methylation marks.

The localization of the methylation segments to different fea-
tures of the genome

To localize the segments to the Refseq genes downloaded
from UCSC (33), each segment was classified into seven
categories, including the 2 kb upstream of the transcrip-
tion start site, 5" UTR, Coding Exon, Intron, 3’ UTR, 2 kb
downstream of the transcription stop site and Intergenic,

as described in our previous study (34). To localize the seg-
ments to the CpG islands, we calculated the overlap ratio
of the segments with the CpG islands using Bedtools (35).
If more than 50% of a segment overlapped with the CpG
islands, this segment is treated as a CpG island segment.
In contrast, if >50% of a segment overlapped with a CpG
island shore, which is a region that is 2 kb upstream or
downstream from the CpG islands, this segment is treated
as a CpG island shore segment. The remaining segments are
treated as CpG island desert segments. To localize the seg-
ments to the repetitive elements downloaded from UCSC,
we calculated the overlap ratio of each segment with the
repetitive elements using Bedtools. The box plot and kernel
density plot of the overlap ratios for the different classes of
methylation segments were mapped by the R package ‘vio-
plot’.

Overlaps of the MethyMarks between cell types

The odds ratio Chi-squared test was used to measure the sig-
nificance of MethyMark overlap between two cell types. For
each pair of cell types, we quantified the number of Methy-
Marks that were common to both cell types, the number
of MethyMarks that were only present in the first cell type,
the number of MethyMarks that were only present in the
second cell type, and the number of MethyMarks that were
present in other cell-types, but not in these two cell-types.
These four numbers were used to calculate the odds ratio
whose significance is estimated by the Chi-squared test or
Fisher’s exact test, when the conditions for the Chi-squared
test were not met.

Correlation between DNA methylation and H3K27ac in the
cell type-specific MethyMarks

The H3K27ac chromatin immunoprecipitation sequencing
(ChIP-Seq) datasets from 21 cell types were downloaded
from the NITH Epigenomics Roadmap Consortium (36). For
each MethyMark, the H3K27ac reads whose centres were
localized in the MethyMark were counted for each cell type
using Bedtools. The H3K27ac reads per kilobase per mil-
lion mapped reads was used to represent the density of
H3K27ac in a MethyMark. For each cell type, Pearson’s
correlation coefficient was calculated for the DNA methy-
lation pattern and H3K27ac in the HypoMarks and Hyper-
Marks using R.

The chromatin modifications and gene expression related to
the hESC H1-specific MethyMarks

The ChIP-Seq chromatin modification data (including
H3K4mel/2/3, H3K27ac, H3K27me3 and input) and the
RNA-Seq gene expression data in the hESC H1 cell line
were downloaded from ENCODE project (37). Ngs.plot
(38) was used to visualize the average profiles and heat
maps of the log, enrichment ratios of several histone
marks and transcription factors versus the DNA input
at the HypoMark/HyperMarks based on the ChIP-Seq
data, with a fragment length equal to 300 bp; the de-
faults were used for the other parameters. To examine
whether the histone marks are enriched specifically in



HypoMark/HyperMarks, we obtained 3 kb (98.8% of the
identified segments were shorter than this) of flanking re-
gions of the HypoMark/HyperMarks and visualized the
average profiles and heat maps in these regions. The genes
related to the hESC H1-specific HypoMarks/HyperMarks
were obtained and the read count per million mapped reads
across their bodies and +3 kb flanking regions were visual-
ized using ngs.plot, with the default parameters.

Overlaps of the chromatin states and hESC H1-specific
MethyMarks

The 15 types of chromatin states identified by ENCODE
project were downloaded from the UCSC table browser.
The chromatin states for the same regulatory elements were
merged, and 11 types of chromatin states remained. We ob-
tained the chromatin states whose centres were localized in
the H1 HypoMarks or HyperMarks. Radar plots of the
relative percentage of each chromatin state were mapped
to compare their localization in HypoMarks and Hyper-
Marks.

Enrichment analysis of TFBSs in the cell type-specific
MethyMarks

We obtained a set of TFBSs of 161 transcription factors in
the human genome, which were derived from a large collec-
tion of ChIP-Seq experiments performed by the ENCODE
project. A TFBS and a particular HypoMark were consid-
ered to overlap if the centre of the TFBS was localized in the
HypoMark. The enrichment of the TFBSs for a transcrip-
tion factor over the HypoMarks of a cell type was calculated
using the odds ratio Chi-squared test. Using the NANOG
and H1 HypoMarks as an example, we assumed that the
co-occurrence events (706, 794) between binding sites of
all Transcription factors and HypoMarks in all cell types
were the background. Then, we counted the number of co-
occurrence events (125) between NANOG TFBSs and H1
HypoMarks, with that (55) between the NANOG TFBSs
and HypoMarks of other cell types, that (4201) between
other TFBSs and H1 HypoMarks and that (702, 413) be-
tween other TFBSs and HypoMarks of other cell types. The
Chi-square test was performed on a 4-fold table of these
four numbers to evaluate the odds ratio (380.00) and its
significance (P < 107!9). The enrichment analysis of the
TFBSs in the cell type-specific HyperMarks was performed
in the same way. A heat map of the odds ratio of the uni-
form TFBSs in the cell type-specific HypoMarks and Hy-
perMarks was visualized by GenePattern (39). For each
cell-type, only the top four TFBSs based on the enrichment
odds ratio were selected for the heat map. The order of the
TFBSs in rows of the matrix was determined by hierarchi-
cal clustering, with the distance measured as city-block dis-
tance.

Enrichment of the known transcription factor motifs in the
MethyMarks

For each cell type, the location of the transcription
factor binding sites and motif enrichments in the
HypoMarks/HyperMarks were determined using the
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Homer tool (40) and the default parameters. The known
motifs used in this study were derived from the Homer tool
when the enrichment P value < 0.05.

Construction of the transcription factor and MethyMark col-
laboration network in hESCs

The binding sites of 50 transcription factors in the hESC
H1 cell line were downloaded from UCSC and mapped to
the hESC H1-specific MethyMarks when their centres were
localized in a MethyMark. Based on these binding events, a
transcription factor and MethyMark collaboration network
was constructed and visualized by Cytoscape (41).

Overlaps of the MethyMarks with previously described
super-enhancers

The super-enhancers used in this study were obtained from
a previous study by Hnisz et al., who identified super-
enhancers from 86 human cell and tissue samples based on
the H3K27ac ChIP-Seq data (22). For each of the 21 com-
mon cell types in this study, we identified the MethyMarks,
50% of which were overlapped with a super-enhancer at
least in one cell type. For each cell type, we identified the
HypoMarks that only overlapped with the super-enhancers
from the same cell type as SuperHypoMarks. The genes re-
lated to the hESC H1-specific SuperHypoMarks were also
obtained. For each SuperHypoMark, the nearest Refseq or
GENCODE gene (version 19) or lincRNAs transcript iden-
tified by Cabili et al. (42) with distance <2 kb from the Su-
perHypoMark were identified as SuperHypoMark genes.
Moreover the SuperHypoMark transcription factor genes
were determined based on the list of transcription factor
genes obtained from the study by Vaquerizas et al. (43).

Hierarchical clustering and heat maps

Methylation K-means hierarchical clustering of the High-
Spe segments was performed by Cluster 3.0 (44). K was set
as different values, such as 6, 8 and 10, to avoid the bias
induced by the initial parameter, and the distance measure
was Pearson’s correlation. The clustering result was viewed
in TreeView 1.60 using the default parameters. The heat
map view of the DNA methylation and H3K27ac in the
cell type-specific HypoMarks and SuperHypoMarks were
viewed in TreeView 1.60 using the default parameters. For
each cell type, the order of the cell type-specific HypoMarks
or SuperHypoMarks in the rows was determined by the
methylation level, from low to high. The H3K27ac reads
per kilobase per million mapped reads was used to repre-
sent the density of H3K27ac in a SuperHypoMark. The box
plot and kernel density plot of the DNA methylation and
H3K27ac were mapped by the R package ‘vioplot’.

Function enrichment analysis for gene sets and genomic re-
gions

All function enrichment analysis for the gene sets (High-
Spe segment genes and HypoMark genes) were performed
in DAVID using the default parameters (45). The selected
genes in each cell type were imported into DAVID to
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perform a function enrichment analysis of these genes in
the up-expressed tissues, biological processes and KEGG
pathways. Moreover, GREAT (46) was used to perform
the function enrichment of genome regions, such as the
hESC H1-specific HypoMark and cell-type-specific Super-
HypoMarks in H1, Hippocampus middle, Gastric and Thy-
mus. The genomic regions were assigned to nearby protein-
coding genes based on the basal plus extension rule for regu-
latory regions (proximal: 5 kb upstream, 1 kb downstream,
plus distal up to 500 kb). The annotated terms selected from
the enrichment analysis were significant by both hypergeo-
metric and binomial tests (P < 0.05).

Determination of the sequence conservation levels

The SiPhy (47) algorithm and software package were
used to estimate w, the deviation of the branch length
compared to the neutral tree based on the total num-
ber of substitutions estimated from the alignment of
the region of interest across 29 placental mammals
(build hgl9, http://hgdownload.cse.ucsc.edu/goldenPath/
hg19/multiz46way/maf/). For global conservation, we es-
timated o for each methylation segment produced by
SMART based on the human methylomes. The cumulative
frequency of conservation levels (w metric) were mapped for
all of the different methylation elements identified in this
study.

Data availability

SMART is an open source software. The parameter sets,
instructions, and sample data sets, are available at http:
/[fame.edbc.org/smart/. SMART has been released as a
Python package called ‘SMART-BS-Seq’ and is freely avail-
able from the Python Package Index (https://pypi.python.
org/pypi/SMART-BS-Seq). All resources produced in this
study are publicly available through the Human Methyla-
tion Mark Atlas (http://fame.edbc.org/methymark).

RESULTS

Methylation specificity analysis tool based on the distance-
dependent methylation similarity between neighbouring
CpGs

Initially, we integrated 50 existing DNA methylomes in 44
human tissues/cells from the NTH Epigenomics Roadmap
Consortium using WGBS and obtained ~17 million CpGs
that were shared by these methylomes (Supplementary Ta-
ble S2). In each cell type, these CpGs showed bimodal
methylation patterns, most of which were hypermethylated
(Supplementary Figure S1). For each CpG, the normal-
ized Shannon entropy was used to quantify the methy-
lation specificity across multiple methylomes (Supplemen-
tary Figures S2 and S3). The bimodal distribution of the
methylation specificity suggested the coexistence of uni-
formly methylated CpGs and cell type-specific methylated
CpGs (Figure 1A). The methylation specificity of known
regulatory elements confirmed the high accuracy of this
method, such as the low methylation specificity in CpG
islands and high methylation specificity in gene promot-
ers (Supplementary Figure S4). Additional analyses of the

methylation similarity between neighbouring CpGs based
on the Euclidean distance and entropy indicated that the
neighbouring CpGs shared similar methylation patterns in
all cell types (Supplementary Figure SSA and B). How-
ever, this similarity was less obvious when the distance was
longer than 500 bp (Figure 1B and Supplementary Figure
S5C-J). The distance-dependent methylation similarity be-
tween neighbouring CpGs benefits the identification of ge-
nomic regions comprising uniformly or cell-specific methy-
lated CpGs.

Based on this feature, we developed a procedure for iden-
tifying and characterizing sets of genome segments com-
prising continuous CpGs with similar methylation speci-
ficities (Materials and Methods). For a given set of multi-
ple methylomes profiled using BS-Seq, the entropy-based
procedures facilitate the quantification of the methylation
specificity for each CpG and the determination of the Eu-
clidean distance and similar entropy for each pair of neigh-
bouring CpGs. Subsequently, continuous scanning, based
on these quantified parameters, segments the genome into
primary segments comprised of CpG sites with high methy-
lation similarities across all cell types (Figure 1C). Further-
more, the primary segments in close proximity that share
similar methylation patterns are merged into larger seg-
ments of different types, including HighSpe, InterSpe, and
LowSpe segments. Eventually, a statistical method-based
one sample t test is used to identify the cell-type-specific
MethyMarks from High/InterSpe segments. To facilitate
the mining of the MethyMarks across cell types and species,
all of the algorithms used in this procedure were inte-
grated into a Specific Methylation Analysis and Report Tool
(SMART), which is available at http://fame.edbc.org/smart.

Human genome segmentation based on the DNA methylomes
across multiple cell types

The segmentation of the human genome using SMART
based on 50 human DNA methylomes identified 757,887
methylation segments covering ~8.5 million CpGs and
~538 million bp (Table 1, and Supplementary Table S3).
Among these segments, 5406 segments spanned large
(>3.5 kb) chromosomal regions, and 288 segments con-
tained >150 CpGs. As an extreme, the longest segment
(chr10:39103301-39130657) included 27 kb and 449 CpGs
in a partially methylated domain from the IMR90 cell
line and primary spermatozoa from the testis (Supple-
mentary Figure S6). The segments were classified into
three groups (HighSpe, InterSpe and LowSpe) that exhib-
ited different features in terms of their length, CpG num-
ber, mean/median methylation, methylation specificity, and
CpG density (Supplementary Figure S7A-F). In addition,
we found that the segments with a low CpG density dis-
played a high methylation specificity and mean methylation
level (Supplementary Figure S7G-I).

Most (~75%) of the identified methylation segments were
LowSpe segments that were uniformly methylated across
the 50 methylomes, suggesting the relative stability of DNA
methylation in the human genome across multiple cell types
(Figure 1D). The distribution of the methylation levels of
these segments showed five peaks. The two peaks at ~0.75
are close to each other and smaller than other three peaks
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Figure 1. Methylation specificity analysis tool and Human genome segmentation. (A) Distribution of methylation specificity across 50 methylomes of CpGs.
Methylation specificity of a CpG across multiple cell types ranging from 0, which indicated the uniform methylation in all samples, to 1, which indicates
specifical hyper- or hypomethylation in a single sample with the widest range. (B) Composite plot of the Euclidean distance and similarity entropy of the
DNA methylation levels for neighboring CpGs with different distances. The blue and orange lines indicate the median of the methylation specificity of the
Euclidean distance and similarity entropy, respectively. The areas indicate the 25th and 75th percentiles. (C) Overview of the methylation specificity analysis
framework for genome segmentation based on the methylomes in multiple cell types and determination of cell-type specific methylation marks, including
the quantification of the methylation specificity, similarity entropy and Euclidean distance. (D) Pie chart for the number of different types of segments in
human genome. (E) Distribution of mean methylation levels for the LowSpe segments of each cluster across all cell types, as described Supplementary
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Table 1. Abbreviation and number of various methylation segments identified in this study

Abbreviation Description Number
All All human segments identified by SMART 757, 887
HighSpe Segment with high methylation specificity 95, 891
InterSpe Segment with intermediate methylation specificity 99,277
LowSpe Segment with low methylation specificity 562,719
UniHypo Uniformly hypomethylated segment in all examined cell types 29, 379
UnipLow Uniformly partial-low-methylated segment in all examined cell types 154,919
UnipHigh Uniformly partial-high-methylated segment in all examined cell types 103, 880
UniHyper Uniformly hypermethylated segment in all examined cell types 274, 541
MethyMark Cell type-specific methylation mark that is specifically 460, 438
hypo/hypermethylated in a minority of cell types
HypoMark MethyMark specifically hypomethylated in a minority of cell types 403, 385
HyperMark MethyMark specifically hypermethylated in a minority of cell types 57053
Large MethyMark MethyMark spanning large chromosomal regions of longer than 3.5 kb in 444
length
SuperHypoMark HypoMark only overlapped with super-enhancers from the same cell type 4222

(Supplementary Figure S§A). As the methylation difference
between these two peaks is ~0.05, which is usually regarded
as meaningless in methylation analysis, we treated the two
peaks as having the same methylation state, partial-high-
methylation. Although these two peaks for partial-high-
methylation are also close to the peak at ~0.9, the seg-
ments related to these two peaks were not clustered into the
same cluster with those related to the peak at ~0.9 when
we performed k-means (k = 3, 4 and 5) clustering (Supple-
mentary Figure S8B-F). Thus, we used 4-means clustering
and classified the LowSpe segments into four categories, in-
cluding uniformly hypomethylated (UniHypo, 0.00-0.25),
uniformly partial-low-methylated (UnipLow, 0.25-0.60),
uniformly partial-high-methylated (UnipHigh, 0.60-0.80)
and uniformly hypermethylated (UniHyper, 0.80-1.00) seg-
ments (Figure 1E). These results revealed that the UniHy-
per segments accounted for nearly half of the total LowSpe
segments, and these segments were located in repetitive ele-
ments (Figure 1F). In contrast, the UniHypo segments ac-
counted for only 5% of the total LowSpe segments and were
likely localized in CpG islands and gene promoter regions
(Figure 1G and Supplementary Figure S9A-D). In addi-
tion, these UniHypo segments showed higher levels of the
active chromatin marker H3K4me3 than the other types of
LowSpe segments (Supplementary Figure S9E). Additional
analyses revealed that the ubiquitous enhancers showed low
methylation specificity and overlapped with the UniHypo
segments (Supplementary Figure SI0A and B). Moreover,
312 genes associated with 223 UniHypo segments over-
lapped with the ubiquitous enhancers, including 66 well-
known housekeeping genes (such as CTCF) that were en-
riched in fundamental biological processes and metabolic
pathways (Supplementary Figures SIOC-E and S11).

Approximately 13% (95, 891) of segments were identi-
fied as HighSpe segments, which showed higher specificity
than their flanking sequences (Figure 1D and Supplemen-
tary Figure S12A). The tissue-specific differentially methy-
lated regions across human tissues/cells that were identified
by previous studies showed the same results, thus confirm-
ing the reliability of the methylation segments identified in
this study (Supplementary Figure S12A). To investigate the
effect of DNA methylation on cell identity, we mapped the
samples by principal component 1 and principal compo-
nent 2 obtained from the principal component analysis of
the HighSpe segments in the 50 methylomes, and found a
distinct methylation pattern in spermatozoa and the cluster-
ing of pluripotent cell lines (Supplementary Figure S12B).
In further support of these findings, the k-means (k = 6, 8
and 10) clustering based on the HighSpe segments in the
50 methylomes also revealed that the cell types from sim-
ilar developmental stages or organ sources shared similar
methylation patterns (Figure 1H and Supplementary Fig-
ure S13). For example, most of the HighSpe segments were
hypermethylated in the pluripotent cell lines, including mul-
tiple hESCs, hESC-derived cells and induced pluripotent
stem cells (iPSCs), which was distinct from those in other
cell types. Using the result of 8-means clustering for exam-
ple, the HighSpe segments in each cluster showed distinct
hypomethylation patterns in specific groups, such as Clus-
ter2 for neuronal cells, Cluster4 for epithelial cells, Cluster5
for pluripotent cells, Cluster6 and Cluster7 for spermato-
zoa cells, and Cluster8 for thymocytes. Additional analy-
ses on the genomic location and function enrichment re-
vealed that the segments in each cluster were prone to be
localized to nearby genes with functions associated with
the specific cell types (Supplementary Table S4 and Sup-
plementary Figures S14 and S15). For example, the High-

Figure S8. (F) The box plot and kernel density plot of the overlap ratio of segments by Repetitive elements. The fraction of the LowSpe segments that
overlap with the repetitive elements increases with the DNA methylation level, and the UniHyper segments showed the most overlap with the repetitive
elements. (G) Genomic localization of the different types of segments relative to the CpG islands (CGI), CpG island shores (CGIshore) and seven refseq
gene-related categories, including the 2 kb upstream of the transcription start site (Up2kb), 5 UTR, Coding Exon (CodingExon), Intron, 3" UTR, 2 kb
downstream of the transcription stop site (Down2kb). (H) K-means clustering for the DNA methylation patterns of the HighSpe segments in 50 cell types.
The samples in six main groups, including Pluripotent cells, Epithelial cells, Sperm cells, Neuronal cells, Thymocytes and Others, were differentially colored.
Two examples of the genes associated with each cluster are listed. The methylation level was represented by a gradient from green (unmethylation) to red
(full methylation). A larger version of this figure is available in Supplementary Figure S13.



Spe segments of Cluster5 were specifically hypomethylated
in pluripotent cell lines, and the associated genes, including
the well-known pluripotency factor genes POUSFI (also
known as OCT4) and KLF4, were associated with func-
tions for embryonic development and transcriptional reg-
ulation. Moreover, those genes related to the HighSpe seg-
ments in Cluster2 were specifically hypomethylated in neu-
ronal cells (including NRCAM and SOX5) and involved in
neuron differentiation and neuron development. In agree-
ment with previous findings, the terms for the immune sys-
tem, including leukocyte/leukocyte activation and immune
response were specific for the genes related to the HighSpe
segments in Cluster8, which were specifically hypomethy-
lated in immune cell types, including the thymocytes, pri-
mary CD34 cells and splenocytes. The k-means (k = 6, 8
and 10) clustering for the 99 277 InterSpe segments were
similar to those of the HighSpe segments (Supplementary
Figure S16). These results strongly support the idea that cell
type-specific methylation distinguishes human cell types ac-
cording to their cell type-specific functions, suggesting that
the High/InterSpe segments might be potential methylation
markers for human cell types.

An atlas of the cell type-specific methylation marks across
human cell types

Using SMART, we further identified the HypoMarks and
HyperMarks for each of the 42 human cell types and pre-
sented a human methylation mark atlas, which is available at
http://fame.edbc.org/methymark. This atlas represents the
combination of 460, 438 MethyMarks across all cell types
and constitutes ~92% (179, 911) of the total High/InterSpe
segments (Figure 2A). Most of the MethyMarks are specifi-
cally hypo/hypermethylated in a minority of cell types, and
nearly half (83, 683) of these MethyMarks were hypomethy-
lated in a specific cell type. The number of MethyMarks
varies considerably across cell types, ranging from 1,000
MethyMarks in sigmoid colon to 68, 381 MethyMarks in
the spermatozoa in the testis (Figure 2B and Supplementary
Table S5). Although the total number of HypoMarks was
ten times higher than the total number of HyperMarks, the
percentage of HypoMarks among the MethyMarks in spe-
cific cell types ranged from 12.7% in hESC-derived CD184-
positive endoderm to 99.2% in the right atrium. Consistent
with k-means clustering shown in Supplementary Figure
S17, the cell types from the similar developmental stages or
tissue sources share a greater number of common Methy-
Marks (Figure 2B). Additional genomic localization anal-
yses revealed that the cell type-specific HyperMarks are
more likely to be located in CpG island-related regions, in-
cluding CpG islands, CpG island shores and gene promot-
ers (P < 1.0 x 10719 Chi-squared test) (Supplementary
Figure S18A and B). In addition, the MethyMarks signifi-
cantly overlapped with cell type-specific enhancers (P < 10
x 107190 Chi-squared test) (Supplementary Figure S18C).
Additional enrichment analyses revealed that the genes with
promoter HypoMarks in specific cell types are highly ex-
pressed in the corresponding cell type and significantly en-
riched in the corresponding biological functions (Supple-
mentary Figure S18D). These results suggested the exis-
tence of cell type-specific MethyMarks and revealed roles
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for these markers in regulating cell type-specific gene expres-
sion and biological functions.

The cell type-specific MethyMarks span large chromosomal
regions

Some of the identified cell type-specific MethyMarks
spanned large chromosomal regions of longer than 3.5
kb in length (Supplementary Figure S19A). The longest
MethyMark spanned 18.5 kb and showed a sperm-specific
hypomethylation pattern (Supplementary Figure S19B).
These large cell type-specific MethyMarks included 220
HypoMarks (123 unique related segments with 68 Refseq
genes) and 224 HyperMarks (65 unique related segments
with 42 Refseq genes). As shown in Figure 2C, each of
39 cell types possessed at least one gene associated with
large MethyMarks. For example, one MethyMark span-
ning 3.6 kb was specifically hypermethylated in pluripotent
cells and localized to the PCDHBI1 gene, which showed
reduced expression in hESC H1 cells compared to brain
tissue (Supplementary Figure S20A). In contrast, another
MethyMark spanning 4.6 kb was specifically hypomethy-
lated in all pluripotent cells and localized to 4C005062.2
(also known as LOCI01927668), which is a highly ex-
pressed hESC H1-specific long noncoding RNA (Supple-
mentary Figure S20B). Moreover, we also identified several
iPSC-specific MethyMarks associated with several genes,
including IRX2, C50rf38, IRX1 and SHOX. For example,
the large MethyMarks associated with two Iroquois home-
obox genes, IRX2 and IRX1, showed iD19.11-specific hy-
permethylation, likely reflecting the low expression of these
two genes in the iPSC (Figure 2D, Supplementary Figures
S20C and S21). Notably, ~10% of these large MethyMark
genes are imprinted genes, such as MEG3, GNAS, MEST,
RBI, ZFAT, HOXB3, VAX2, MEIS1, HOXCY9, OTXI and
EGFL7, compared to only ~1% (317) of human imprinted
genes (48). For example, a MethyMark in the promoter of
the well-known maternally expressed imprinted gene MEG3
is specifically hypermethylated (>0.9) in pluripotent cells,
hypomethylated (close to 0) in primary spermatozoa and
intermediately methylated (~0.5) in other cells and tissues,
including the brain, likely reflecting an allele-specific methy-
lation pattern (Supplementary Figure S20D).

The cell type-specific HypoMarks are enriched through
H3K27ac

To further characterize the features of the cell type-specific
MethyMarks, we explored the states of the well-known his-
tone modification H3K27ac on the cell type-specific Hypo-
Marks and HyperMarks across 21 cell types using the avail-
able methylation and H3K27ac data. Nearly half (46%) of
the 75, 651 cell type-specific HypoMarks identified in these
cell types displayed specific hypomethylation in only a single
cell type (Figure 3A). Interestingly, these cell type-specific
HypoMarks showed high levels of H3K27ac in the corre-
sponding cell type, while the HyperMarks showed low levels
of H3K27ac (Supplementary Figure S22). The correlation
analysis revealed that the DNA methylation of both Hy-
poMarks and HyperMarks is significantly negatively corre-
lated with H3K27ac in all cell types (Supplementary Fig-
ure S23). Moreover, we found that DNA methylation and
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Figure 2. An atlas of the cell type-specific methylation marks across human cell types. (A) The cell type specificity of the HypoMarks and HyperMarks.
Each cell represents the number of MethyMarks identified as HypoMarks (Column) or HyperMarks (Row) in the corresponding number of cell types. (B)
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and the HypoMark/HyperMark fraction in each cell type. (C) Genes related to the large MethyMarks in 39 cell types. The colored grids represent the
large HyperMarks (red) or HypoMarks (green) in each cell type. The gene names are listed on the top. (D) An example of the iPSC-specific HyperMarks

that were associated with the JRX2 gene.

H3K27ac showed a stronger correlation with the hESC
MethyMarks than other genomic segments (Figure 3B and
Supplementary Figure S24A). Regarding other chromatin
modifications, we observed the enrichment of H3K4mel (a
well-known enhancer marker), H3K4me2 and H3K4me3
(well-known promoter markers) in both HypoMarks and
HyperMarks (Figure 3C and Supplementary Figure S25A
and B). In addition, we did not find a strong correlation
between DNA methylation and H3K27me3 in the hESC
MethyMarks (Supplementary Figure S24B). The specific
enrichment of H3K27ac in the HypoMarks suggested a
reciprocal interaction between DNA hypomethylation and
H3K27 acetylation, which may be essential to separate the
active enhancers from the poised enhancers marked with
H3K4mel (49). To confirm this hypothesis, we calculated
the preferred localization of the hESC H1-specific Hypo-
Marks and HyperMarks in the different chromatin states
learned based on a multivariate Hidden Markov Model in
hESCs (50). We observed that both the HypoMarks and
HyperMarks showed an increased overlap with weak en-

hancer states, but only HypoMarks overlapped with strong
enhancer states, which activate the transcription of nearby
genes (Figure 3D). Correspondingly, the genes with pro-
moter HypoMarks showed higher transcript abundance
than those with promoter HyperMarks (Figure 3E). These
results indicated the distinct roles of the cross-talk between
hypomethylation and H3K27ac in the cell type-specific Hy-
poMarks to recruit and form active enhancers that mediate
both the spatial and temporal control of development by
activating and/or repressing transcription in specific cells.

The cell type-specific HypoMarks frequently co-localize with
cell type-specific TFBSs

To determine whether the HypoMarks and HyperMarks fa-
cilitate transcription factor binding to DNA sequences in a
cell type-specific manner, we obtained the TFBSs (n = 4,
380, 444) of 161 transcription factors from a large collec-
tion of ChIP-Seq experiments performed by the ENCODE
project. The enrichment odds ratio of each transcription



A 3 .
3 o 3
= g [ c o o g
2 2 0B g @0 SE @ £ 9
28 g 5 6 EoE o B k] & £
— E O 2 o ® 3 25 ¢ O Qe Lon 3 >
IS8 832252 oTE 8.9 gf
08 CE 258> 0s2=5998¢E =
U)&Eoﬂ!cSo-g,q—_--g,t'mE‘“c.9-25>,E
weggo=>c0 0 2920 08 2P2E 5T a8 0
cI<WOouworxx IO nndId0=F 1L
[1]2]3]4]5]6]7]8]9]10[11]12][13]14]15]16]17]18]19]20]21]
DNA methylation H3K27ac
[1T2]3T4 s e[ 7 e e tof11[12[ta]r4]ts[16[17[18]19]20]21] [1 2] 3] 4] 5 67 8] e 1o]t1[12[13[14]15]16[17[18]10[2021]
!
: =
X
—
© T
§ =
o
o = - —
> = ’
T
o =
= =
8 — = |
Q' - —
w - -
o e
> 5 — —_——
3 - - ==
é — —
3 —
e
= —_——— =
= E |
(B - —
- ————
== = = -
(== s -
——— =
— ——
== = e
= = an
= ———— = =
—— = e
= = T z i =
0 0.5 1 0 4 8+
L ree— o —
DNA methylation H3K27ac (RPKM)

1 cell types
(46%)

3 cell types 2 cell types
(12%) (22%)

4+ cell types
(20%)

Nucleic Acids Research, 2016, Vol. 44, No. 1 85

oy,

H1 MethyMarks
SCC=-0.46, p<10"®

All segments

— SCC=-0.28, p<10®
= o~
I~ e
& _ Ralle,, .'.".'..‘..._,\-.
=3
E) N l "
[¢]
O
R
X e ol
00 02 04 06 08 1.000 02 04 06 08 10
DNA methylation DNA methylation
C [H3K4me1 H3K4me2 H3K4me3 H3K27ac H3K27me3 Input |
= 0 | PN
2 -
= _y
4 < | [N i~
b A ™
j=2]
58 — o
z =4 N2
% m,_w’ N~ _/w""‘/-_—Q
S ol ! AL | .
"3 L R 33k L R 3k
HypoMark of H1 HyperMark of H1
D  [—HypoMark of H1 —HyperMark of H1]
Strong
Enhancer
Repetitive/CNV_30° Active Promoter
Hete;ﬁ)%wrsoignaatin e Weak Promoter
Weak transcribed Poised Promoter

Transcriptional

elongation
Transcriptional epressed
transition  \Weak
Enhancer

m

—HypoMark gene —HyperMark gene

Rion FRapped reads

TSS GeneBody TES 3K

MethyMark Gene in H1

Figure 3. The chromatin modifications and gene expression associated with the cell type-specific HypoMarks. (A) Heatmap of DNA methylation and
H3K27ac in the cell type-specific HypoMarks. Each row denotes a HypoMark and each column indicates a cell type. The DNA methylation level is
represented by a gradient from green (ummethylation) to red (full methylation), and H3K27ac from white (lowest) to red (highest). RPKM represents
the H3K27ac reads per kilobase per million mapped reads in a given segment. (B) Density scatterplot of DNA methylation and H3K27ac in all segments
and H1 MethyMarks. SCC represents the Spearman’s rank correlation coefficient calculated by the R function ‘cor.test” between DNA methylation and
H3K27ac, and p represents the significance of the coefficient. (C) Average enrichment profiles of the log, ratios of several histone marks and transcription
factors versus the DNA input at the HypoMark/HyperMark +3 kb regions. The lower coordinates ‘L’-genomic left and ‘R’-genomic right are indicated
to the left of higher coordinates. (D) Radar plots showing the percentage of the 11 types of chromatin states that overlapped with the HypoMarks (green)
and HyperMarks (red). (E) The expression levels of the genes with promoter HypoMarks/HyperMarks and £3 kb flanking regions are illustrated as RNA
read count per million mapped reads based on RNA-Seq data.



86 Nucleic Acids Research, 2016, Vol. 44, No. 1

factor in the HypoMarks and HyperMarks of each cell type
revealed that the cell type-specific HypoMarks are enriched
in the binding sites for transcription factors involved in the
regulation of the respective cell phenotype (Figure 4A). For
example, the top two transcription factors in the hESC H1-
specific HypoMarks were the well-known stem cell pluripo-
tency factors POUSF1 and NANOG. In further support of
this, the motif enrichment analysis based on the sequence
of the cell type-specific HypoMarks/HyperMarks revealed
many more interesting cell type-specific transcription fac-
tor associations, such as the enrichment of distinct FOXA2
in the pancreas HypoMarks, STAT3 in the esophagus Hy-
poMarks, and CTCF in the HI HyperMarks (Figure 4B,
and Supplementary Table S6). The overlap of the enriched
motifs between the HypoMarks and HyperMarks in the
hESC HI1 cells indicated the selective binding and regula-
tion of transcription factors (Figure 4C). To verify this, we
assessed the actual binding events of 50 transcription fac-
tors in the hESC HI1 cells and constructed a transcription
factor and MethyMark collaboration network for the hESC
H1 cells (Figure 4D and Supplementary Figure S26A and
B). We observed that the HypoMarks were bounded by the
components of the transcription initiation complexes (for
example, POLR2A), active transcription factors (for exam-
ple, EP300, which might further induce the acetylation of
H3K27) and hESC H1-specific active transcription factors
(POUSFI1 and NANOG) (Figure 4E). For example, the sub
network constructed using the first neighbours of the tran-
scription factors NANOG and POUSF1 revealed that the
MethyMarks bounded by these two transcription factors
are nearly all HypoMarks (Supplementary Figure S26C).
The functional enrichment analysis confirmed four features
of the genes associated with these HypoMarks, including
targets of the transcription factors NANOG, POUSF1 and
SOX2, overexpression in hESCs, functions associated with
embryonic development and a relationship with abnormal
developmental phenotypes (Supplementary Figure S26D).
These findings suggested that the cell type-specific Hypo-
Marks frequently co-localize with TFBSs and might facili-
tate the binding of transcription factors on DNA sequences
in a cell type-specific manner.

The cell type-specific HypoMarks are associated with cell
type-specific super-enhancers

Two features of the cell type-specific HypoMarks, H3K27ac
and TFBSs, are also indicators of super-enhancers, which
were recently identified as large clusters of transcriptional
enhancers that drive the expression of the genes that de-
fine cell identity (21,22). Here, we identified the Methy-
Marks that overlapped with super-enhancers in the 21 cell
types and observed a significant enrichment of the cell type-
specific HypoMarks in super-enhancers of the same cell
type (Figure SA and Supplementary Table S7). Additional
cell type-specific HypoMarks that only overlapped with
super-enhancers from the same cell type were identified and
treated as SuperHypoMarks (Table 2 and Supplementary
Table S8). The cell type-specific SuperHypoMarks showed
lower methylation and higher H3K27ac levels in specific cell
types compared to other cell types (Supplementary Figure
S27). In the same hESC cell type, H3K27ac was significantly

Table 2. The number of cell type-specific SuperHypoMarks and related
genes

Number of Su- Number of
Cell-type perHypoMarks Related genes
hESC H1 175 71
Hippocampus middle 830 296
Adrenal gland 137 67
Esophagus 372 129
Ovary 225 57
Pancreas 188 67
Fetal muscle leg 365 110
Psoas muscle 268 90
Right atrium 36 19
Left ventricle 82 46
Right ventricle 4 3
Aorta 637 123
Gastric 364 128
Sigmoid colon 14 9
Small intestine 17 11
Lung 31 23
Adipose tissue 0 0
Spleen 174 86
Mobilized CD34 primary 104 51
cells
Thymus 73 28
Fetal thymus 126 51

Note: The detailed information for the SuperHypoMarks in each cell type
is listed in Supplementary Table S6.

negatively correlated with DNA methylation, and the Su-
perHypoMarks showed significantly higher H3K27ac lev-
els and lower methylation than the other HypoMarks and
HyperMarks (Figure SB-D).

An additional analysis revealed that the cell type-specific
SuperHypoMarks were prone to be localized in close prox-
imity to the genes involved in the regulation of the respec-
tive cellular states (Supplementary Table S8). For exam-
ple, 58% (101/175) of the hESC H1-specific SuperHypo-
Marks were located in or nearby (with distance less than 2
kb) a unique set of 71 genes, including the two well-known
hESC markers POUSFI and NANOG (Figure 5E). Intrigu-
ingly, the promoter region of the POUSFI gene showed
distinct features, such as hESC H1-specific hypomethyla-
tion, super-enhancers, high H3K27ac and H3K4me3 levels,
chromatin promoter/enhancer states and coactivator bind-
ing (Figure 5F and Supplementary Figure S28). The ex-
istence of hESC H1-specific SuperHypoMarks associated
with transcription factor genes, the DNA methyltransferase
DNMT3B and the histone methyltransferase NSDI (also
known as KM T3 B), and microRNAs suggest extensive reg-
ulation by the SuperHypoMarks (Supplementary Figure
S28). In addition, the long noncoding RNAs, including
LINC00678, associated with hESC H1-specific SuperHy-
poMarks might be potential novel markers for stem cells
(Supplementary Figure S28).

Finally, we asked whether the cell type-specific SuperHy-
poMarks were associated with lineage-specific mammalian
pathways and phenotypes. To this end, we examined the
mouse phenotypes that result from knockdowns of the
mouse orthologues of the protein-coding genes associated
with the cell type-specific SuperHypoMarks. The GREAT
tool was used to determine the mouse phenotype term en-
richment for the SuperHypoMarks from each of the rep-
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resentative cell types, including stem cells (hESC H1), and
all three germ layers, including the mesoderm (thymus),
ectoderm (hippocampus middle) and endoderm (gastric)
(Supplementary Table S9). As illustrated in Figure 5G, the
top ten mouse phenotype categories were highly cell type-
specific for all four representative cell types. For example,
the knockdowns of the mouse orthologues of the protein-
coding genes associated with the SuperHypoMarks in the
hESC HI cells may lead to abnormal development of mul-
tiple organs, such as the eye and cardiovascular, and ner-
vous systems, while those in the hippocampus middle tis-
sue may be related to abnormal oligodendrocyte morphol-
ogy, myelination, synaptic transmission, etc. Meanwhile,
the knockdowns of the mouse orthologues of the protein-
coding genes associated with SuperHypoMarks in gastric
tissue may cause abnormal gastric parietal cell morphology,
and those in the Thymus may decrease the immunoglobulin
levels. Taken together, these data have revealed that DNA
methylation might play a key role in the control of the cell
type specificity of the super-enhancers, which further regu-
late key identity genes in a cell type-specific manner.

DISCUSSION

DNA methylation plays important roles in gene regula-
tion during cell development and differentiation, and aber-
rant methylation can cause multiple diseases, including can-
cer (10,51). The cell type-specific gene activity induced
through cell type-specific methylation has been widely re-
ported (13,31,34). A comprehensive map of the cell type-
specific methylation marks is indispensable for the in-depth
study of DNA methylation dynamics and regulatory mech-
anisms. The combination of bisulfite conversion and high-
throughput sequencing offers the best quantitative method
for studying DNA methylation at high resolution (4,10).
The decreasing cost of sequencing promotes the profiling
of DNA methylomes in various human cell lines and tissues,
representing an unprecedented opportunity to identify the
cell type-specific methylation marks and examine the fea-
tures of the aberrations at the macro scale (3,11,28).

Here, we introduced a novel entropy-based framework
to detect the cell type-specific methylation marks by inte-
grating multiple methylomes from human cell lines and tis-
sues. In this framework, Shannon entropy was optimized
to quantify the methylation specificity across cell types for
each CpG, and the distance-dependent methylation similar-
ities between neighbouring CpGs was considered as the bi-
ological basis to merge CpGs into segments. Previous stud-
ies have shown the quantification of the differences in the
methylation patterns in specific genome regions across mul-
tiple human samples and the identification of the differen-
tially methylated regions using Shannon entropy to calcu-

late the mean methylation of given regions (31). By opti-
mizing the Shannon entropy, we showed that we can not
only quantify the methylation specificity at single base pre-
cision, but we can also perform high-resolution genome seg-
mentation through the integration of the BS-Seq methy-
lomes from various cell types. The analysis of the methyla-
tion specificity across cell types revealed that several well-
known cell type-specific regulatory elements exhibit high
methylation specificity across human cell types, and addi-
tional analyses on the cell type specificity, genomic location
and chromatin state of these segments classified the markers
into different types, including HighSpe, InterSpe, LowSpe
(UniHypo, UnipLow, UnipHigh and UniHyper), cell type-
specific MethyMarks, Large MethyMarks and SuperHypo-
Marks (Figure 6A). The genome segmentation and func-
tional regulatory element annotation based on the cell type-
specificity of the DNA methylation patterns in the present
study are important for the expansion of and contribution
to the current knowledge of the functional DNA eclements
in the human genome.

These analyses revealed that the UniHyper segments
comprise nearly half of the LowSpe segments, and most of
these segments overlapped with repetitive elements, which
accumulate throughout evolution and are usually silenced
in the human genome (Figure 6A). Repetitive elements ac-
count for only 1.5% of the typical bacterial genomes and ap-
proximately 3% of the fly genome. In contrast, >50% of the
human genome contains repeated sequences (52). The si-
lencing of the repetitive elements in the human genome is es-
sential for maintaining genomic stability. DNA methylation
has been investigated for its roles in the control of genomic
activity in most eukaryotic organisms, including plants, an-
imals and fungi (53). In the present study, the conserved hy-
permethylation of repetitive elements across all studied hu-
man cell types, including pluripotent cells and adult tissues,
also confirmed the critical role of DNA methylation in si-
lencing repetitive elements. The aberrant hypomethylation
of repetitive elements has been investigated in a variety of
human diseases (54). For example, the global hypomethy-
lation in tumors, which is a ubiquitous feature of carcino-
genesis, primarily affects the hypomethylation of repetitive
DNA sequences (51,55). In-depth studies on DNA methy-
lation abnormalities in repetitive elements associated with
human cancer will be helpful for understanding the mech-
anisms of carcinogenesis and proposing new treatments for
cancer and other diseases.

In the ‘desert’” UniHyper segments, we also observed
some ‘oases’, such as UniHypo segments (Figure 6A).
These UniHypo segments were more similar to the CpG-
dense regions localized in the promoter regions of known
housekeeping genes, which are typically constitutive genes

color from white (low) to red (high). (B) Examples of known transcription factor motifs that are significantly enriched in the HypoMarks and HyperMarks.
The P-value represents the significance of the enrichment of a motif in the HypoMarks/HyperMarks. (C) Overlap of the transcription factor motifs that
were significantly enriched in the HypoMarks and HyperMarks in the hESC H1 cells. Three specifically enriched motifs in HypoMarks and HyperMarks
are shown. (D) Transcription factor (TF) and MethyMark collaboration network in the hESC H1 cell line. The nodes and lines are indicated on the bottom
left. The size of the transcription factor node represents the number of bound MethyMarks and the size of the MethyMark node represents the number
of bound transcription factors. The width of the TF-TF line represents the number of MethyMarks that are targeted by two Transcription factors, while
the MethyMark-MethyMark line represents the number of transcription factors binding to both MethyMarks. (E) The relative binding preference of 50

transcription factors to the hESC H1-specific HypoMarks and HyperMarks.
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Figure 5. Cell type-specific SuperHypoMarks across 21 cell types. (A) Enrichment of the cell type-specific HypoMarks in the cell type-specific super-
enhancers. For the super-enhancers in a specific cell type, the odds ratios of the HypoMarks of the same cell type compared to the HypoMarks of other
cell types and the odds ratio of the HyperMarks of the same cell types are shown in the left and right panels, respectively. Detailed information is listed
in Supplementary Table S7. (B) Scatter plot of the DNA methylation patterns and H3K27ac state of the Hl SuperHypoMarks, other HypoMarks and
HyperMarks. SCC represents the Spearman’s rank correlation coefficient between DNA methylation and H3K27ac, and p is the significance of the coeffi-
cient. (C) The box plot and kernel density plot of H3K27ac in the H1 SuperHypoMarks, other HypoMarks and HyperMarks. P shows the significance of
the Wilcoxon rank sum test for the differences in the H3K27ac levels between the two groups. (D) The box plot and kernel density plot of DNA methyla-
tions in the H1 SuperHypoMarks, other HypoMarks and HyperMarks. (E) The genes associated with the hESC H1-specific SuperHypoMarks are shown.
The detailed information about the epigenetic and wild-type expression of the genes in bold are given in Supplementary Figure S28. (F) An example of
the hESC H1-specific SuperHypoMarks at the POUSFI locus. (G) The enrichment of the mouse phenotype terms associated with the cell type-specific
SuperHypoMarks was calculated using the GREAT tool binomial approach. Detailed information is listed in Supplementary Table S9.
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mammalian species.

required for the maintenance of basic cellular functions
(56). Studies have shown that most housekeeping genes have
promoter CpG islands, which are typically Hypomethylated
(57), and CpG islands are vertebrate genomic landmarks
that often encompass the promoters of most housekeep-
ing genes and are void of DNA methylation (58). We con-
firmed the stable hypomethylation of CpG islands across

all of the studied human cell types, particularly those in
housekeeping gene promoters. Additional analyses revealed
a significant enrichment of the active chromatin modifica-
tion H3K4me3 in the UniHypo segments, consistent with
a previous finding that the non-methylated CpG-dense se-
quences recruit Cfpl and establish H3K4me3 domains (59).
In addition, these uniformly hypomethylated segments are



also enriched through H3K27ac and EP300, which are both
markers of active enhancers, and these regions are typically
identified as ubiquitous enhancers that overlap with CpG
islands and are expressed in the majority of primary cells or
tissues (20). In addition, a significant proportion of ubiq-
uitous enhancers in the High/InterSpe segments indicated
that the ubiquitous enhancers in a small number of tissues
may undergo frequent DNA methylation changes in other
tissues (Supplementary Figure S10A). It has been suggested
that hypomethylation in the CpG islands of the promoters
of housekeeping genes might be necessary for assembling
active chromatin and ubiquitous enhancers, which are both
required for ensuring the widespread expression of house-
keeping genes in all cell types. These results indicate that the
UniHypo segments comprise a small but distinct subset of
methylation segments, which likely have specific regulatory
functions in most human cell types. The high sequence con-
servation of the UniHypo segments across 29 mammalian
species also demonstrates the importance of regulation by
CpG island hypomethylation throughout the long history
of evolution (Figure 6B).

The analysis of the MethyMark atlas revealed that the
cell type-specific HypoMarks and HyperMarks exhibit dis-
tinct chromatin modifications and gene regulatory signa-
tures (Figure 6A). As expected, the cell type specificity
of DNA methylation has been strongly associated with
well-known cell type-specific regulatory elements, includ-
ing enhancers and super-enhancers. Both HypoMarks and
HyperMarks are significantly enriched with the enhancer
mark H3K4mel and chromatin states corresponding to
weak enhancers. These findings indicate that the cell type-
specific MethyMarks might be indicators of enhancers. Un-
like the enhancers with well-known chromatin marks, such
as H3K4mel and H3K27ac, cell type-specific suppressors
are more difficult to identify on a large scale. Thus, the re-
lationships between the DNA methylation marks and cell
type-specific suppressors were not analyzed in this study.
However, we found that some CpG island might play a regu-
latory role, similar to cell type-specific suppressors (Figure
6A). The enrichment of HyperMarks in CpG islands and
gene promoter regions (Supplementary Figure S18A and B)
and the low expression of the corresponding genes suggest
that the cell type-specific hypermethylation of CpG islands
might reflect the loss of enhancer activity, resulting in the
selective inhibition of specific genes, which are not required
in the specific cell types. In contrast, the cell type-specific
HypoMarks showed a distinct enrichment of H3K27ac, an
important indicator of active enhancers (49). This observa-
tion is consistent with previous studies showing hypomethy-
lation in H3K27ac peaks and active enhancers (28,60). Re-
cent studies have demonstrated that H3K27ac is a superior
indicator for super-enhancer which represent a large cluster
of transcriptional enhancers that drive the expression of the
genes that define cell identity (21,22). In the present study,
additional analyses revealed cell type-specific hypomethyla-
tion in cell type-specific super-enhancers. These results sug-
gest that the cell type-specific HypoMarks and H3K27ac
are important indicators of active enhancers, particularly
cell type-specific super-enhancers.

The role of DNA hypomethylation in gene activation is
currently unclear. Using the hormone-inducible glucocorti-
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coid receptor as a model system (61), Wiench et al. observed
that hypermethylation directly destabilizes interactions be-
tween the glucocorticoid receptor and DNA in vitro, and
hormone-dependent demethylation at glucocorticoid recep-
tor binding sites is associated with increased chromatin ac-
cessibility (23). In the present study, we observed the bind-
ing preference of components of the transcription initiation
complex to HypoMarks. In addition, cell type-specific Hy-
poMarks recruit transcription factors that are required in
the corresponding cell type, which is consistent with a re-
cent finding based on the DNA methylation data of 54 nor-
mal cell lines that were profiled using reduced representa-
tion bisulfite sequencing (62). For example, the hESC H1-
specific HypoMarks are uniquely bound by the pluripo-
tency transcription factors NANOG and POUSF1, con-
sistent with a previous finding that the ESC master tran-
scription factors Pou5fl, Sox2, and Nanog form super-
enhancers at most genes to control the pluripotent state
(21). Thus, we propose that cell type-specific hypomethy-
lation might play a role in recruiting cell type-specific tran-
scription factors and assembling the transcription machin-
ery at super-enhancers, which further promote distinct gene
expression profiles for the characterization of cellular phe-
notypes (Figure 6A). This hypothesis has been confirmed
by recent studies of the transcription factor binding dynam-
ics during human ES cell differentiation (30), and the cell
line-specific epigenetic modification models for transcrip-
tion factor binding predictions (63). More direct evidence
is obtained from a recently published study, which revealed
the DNA hypomethylation-mediated regulation of the cell
identity Myf5 super-enhancer in the establishment of the
skeletal muscle lineage (64). These results indicated that
DNA methylation might play a key role in the control of
the cell type specificity of the super-enhancers, although this
may need to be confirmed by experiments in additional cell
types. Further research is required to determine the mech-
anism, which may generate important knowledge on new
ways to manipulate the cell fate potential of stem cells and
mature adult cells. The high conversion level of the Super-
HypoMarks suggested that regulation through cell type-
specific hypomethylation might be widespread in mam-
mals (Figure 6B). Notably, regulation through hypomethy-
lation might represent a double-edged sword. Aberrant hy-
pomethylation might assemble super-enhancers that are not
normally programmed in a specific cell type, resulting in dis-
ease phenotypes, such as cancers (65,66). This idea suggests
that the hypotheses regarding the role of DNA methylation
and genes in many diseases might be based on the knowl-
edge of HypoMarks, particularly SuperHypoMarks. Fur-
ther mining of disease-specific SuperHypoMarks and ex-
aminations of the underlying mechanisms should be useful
for the diagnosis, prognosis and treatment of complex dis-
eases.

We also identified 5 406 large methylation segments with
length of at least 3.5 kb, which were used to identify long
hypomethylated genomic regions (12). Among these large
segments, 169 segments were uniformly hypomethylated in
all of the studied cell types, providing additional support for
the conservation of long hypomethylated regions, such as
DNA methylation valleys and canyons, across normal cell
types (11,12). Interestingly, 65 large methylation segments
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were identified as cell type-specific HyperMarks, which are
hypermethylated in a minority of cell types and hypomethy-
lated in the majority of cell types. This finding suggests that
large uniformly hypomethylated regions might not be con-
served when more diverse cell types are considered. Impor-
tantly, we observed that large cell type-specific MethyMarks
are associated with cell type-specific identity genes and im-
printed genes, which are highly conversed across mammals
(Figure 6B). Thus, we concluded that the large cell type-
specific MethyMarks are key elements of gene regulatory
domains that are associated with cell type-specific pheno-
types.

Sequencing-based DNA methylomes and a novel inte-
grative entropy-based tool SMART were used to map a
comprehensive atlas of the cell type-specific methylation
marks across multiple human cell lines and tissues. The
findings underscore the importance of DNA methylation
as a stable marker of regulatory elements for cell identity.
SMART, combined other BS-Seq data analysis tools, such
as CpGMPs (29), RnBeads (30), QDMR (31) and DSS-
single (67), should be used to fine map the methylation
marks in more specific subpopulations, including different
subtypes of cells with normal or disease phenotypes. An ad-
ditional integrative analysis of the methylation marks in the
reference human epigenomes (36,68) should considerably
advance our understanding of the cell type-specific methy-
lation machinery in the regulation of transcriptional ac-
tivity and modulation of the cellular phenotypes. Partic-
ularly, the mining of pluripotency-associated methylation
marks would enhance the applicability of DNA methylation
as a marker for embryonic stem cells or induced pluripo-
tent stem cells (69,70). The in-depth study of more disease-
specific methylation marks should be sufficient to diagnose
disease by profiling only a representative subset of CpG sites
in the well-defined marks via gel-based or array-based tech-
nologies (71). Overall, we hope that the framework and atlas
proposed in the present study are valuable for exploring the
association of DNA methylation with regulatory dynam-
ics and cell identity elements in additional phenotypes and
species.
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