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Mutations Impairing GSK3-Mediated MAF Phosphorylation
Cause Cataract, Deafness, Intellectual Disability, Seizures,
and a Down Syndrome-like Facies
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Transcription factors operate in developmental processes to mediate inductive events and cell competence, and perturbation of their

function or regulation can dramatically affect morphogenesis, organogenesis, and growth. We report that a narrow spectrum of

amino-acid substitutions within the transactivation domain of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog

(MAF), a leucine zipper-containing transcription factor of the AP1 superfamily, profoundly affect development. Seven different de novo

missense mutations involving conserved residues of the four GSK3 phosphorylation motifs were identified in eight unrelated individ-

uals. The distinctive clinical phenotype, for which we propose the eponym Aymé-Gripp syndrome, is not limited to lens and eye defects

as previously reported for MAF/Maf loss of function but includes sensorineural deafness, intellectual disability, seizures, brachycephaly,

distinctive flat facial appearance, skeletal anomalies, mammary gland hypoplasia, and reduced growth. Disease-causing mutations were

demonstrated to impair proper MAF phosphorylation, ubiquitination and proteasomal degradation, perturbed gene expression in pri-

mary skin fibroblasts, and induced neurodevelopmental defects in an in vivomodel. Our findings nosologically and clinically delineate a

previously poorly understood recognizable multisystem disorder, provide evidence for MAF governing a wider range of developmental

programs than previously appreciated, and describe a novel instance of protein dosage effect severely perturbing development.
Dual sensory impairment due to cataracts and sensori-

neural hearing loss is a well-recognized consequence of in-

fectious teratogenic exposure (i.e., fetal rubella syndrome),

but only rarely observed as a developmental defect in

genetic disease phenotypes. In 1996, Gripp and co-workers

described two unrelated subjects with congenital cataracts

and sensorineural deafness associated with intellectual

disability, short stature, brachycephaly, and a distinctive

flat facial appearance and considered this trait to represent

a previously unrecognized syndrome (MIM 601088).1 In

their clinical report,2 Aymé and Philip discussed on the

similarities between the clinical features exhibited by their

case and others previously reported by other authors4 and
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Pediatrico Bambino Gesù IRCSS, Rome, 00146 Italy; 3Division of Medical G
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those of the patients reported by Gripp and co-authors.1

Aymè and Philip concluded that all these cases were clini-

cally related to the patient originally described by Fine and

Lubinsky.3 For this reason, the authors proposed the term

‘‘Fine-Lubinsky syndrome’’ to define this developmental

disorder. Since then, a few additional cases exhibiting

features fitting or partially overlapping this condition(s)

have been reported,5–9 and whether these phenotypes

represent variable manifestations of a single nosologic en-

tity remained unresolved. Autosomal recessive inheritance

was suggested, based on affected siblings.7 Here, whole-

exome sequencing (WES) on a single affected individual

and Sanger sequencing on a selected cohort of subjects
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with phenotype suggestive of FLS were used to identify a

narrow spectrum of missense mutations in v-maf avian

musculoaponeurotic fibrosarcoma oncogene homolog

(MAF [MIM 177075]) as the molecular cause underlying

this previously poorly understood multisystem disorder,

and delineate its clinical phenotype. The provided

biochemical and functional data demonstrate that the

mutations identified in this study specifically affect

the phosphorylation of MAF promoted by the protein

GSK3, which is a serine/threonine kinase that requires a

specific recognition motif for its action—i.e., the presence

of a proline residue adjacent to the serine/threonine resi-

due that is substrate of its action. The impaired phos-

phorylation at those sites affects MAF ubiquitination,

which, in turn, impairs degradation of the mutated

(unphosphorylated and unubiquitinilated) protein, gener-

ally mediated by the proteasome complex. Finally, these

mutations are able to induce neurodevelopmental defects

in vivo (zebrafish), thus representing dominant-acting

mutations.

Thirteen subjects were included in this study. All indi-

viduals were clinically assessed by experienced clinical

geneticists. Among them, nine subjects had previously

been reported.1,2,5–8 Clinical features are described in detail

in Table S1. Clinical data and biological material collection

and storage were attained from the participating families

after written informed consent was secured, following

procedures in accordance with the ethical standards of

the responsible committees on human experimentation

(institutional and national). Genomic DNA was isolated

from peripheral blood leukocytes, skin fibroblasts, hair

bulb cells, and/or buccal mucosal epithelial cells, using

standard protocols. We performed WES on genomic DNA

extracted from circulating leukocytes of a single affected

subject (case 8) (Figure 1A, CaGi_UCSC). Exome capture

was performed using NimbleGen SeqCap EZ Exome V.

3.0 (Roche) and sequencing by a HiSeq2000 instrument

(Illumina). WES data analysis was performed using

an in-house implemented pipeline.10 For sequencing

statistics, see Table S2. Data annotation predicted 11,168

high-quality variants having functional impact (i.e., non-

synonymous and splice site changes). Among them, 259

private, rare (minor allele frequency < 0.001), or clinically

associated changes were retained for further analyses. After

excluding the presence of variants compatible with auto-

somal recessive transmission (Table S3), we reasoned that

the clinical symptomatology might be caused by a de

novo event. Candidates were stratified through a mixed

filtering/prioritization strategy taking into account the

predicted impact of each variant and the functional rele-

vance of individual genes on the developmental processes

altered in the disorder. Only changes (private, clinically

associated, or having unknown frequency or minor allele

frequency < 0.001) predicted to be deleterious by the

Combined Annotation Dependent Depletion (CADD)11

(score > 15.0) or Database for Nonsynonymous SNPs’

Functional Predictions (dbNSFP) Support Vector Machine
The Am
(SVM)12 (radial score > 0.0) algorithm were retained

and prioritized on the basis of the functional relevance of

genes using GeneDistiller. Genes were ranked based on

combinations of terms from the OMIM clinical synopsis

for MIM 601088 and 601353 (i.e., cataract, deafness,

mental retardation, facial dysmorphism, short stature,

and seizure) as keywords, using similarity of expression

patterns and protein-protein interactions as major

weights. We obtained the highest score for MAF, a gene

whose mutations had previously been reported to cause

autosomal dominant congenital cataracts and lens abnor-

malities (MIM 610202).13,14 Sanger sequencing confirmed

heterozygosity for the c.161C>T (p.Ser54Leu) change in

the proband, and sequencing of parental DNAs revealed

only the reference allele, evidence for its de novo origin

(Figure S1). STR genotyping (AmpFlSTR Identifiler Plus

[Life Technologies]) confirmed paternity. The variant was

documented in the proband’s skin fibroblasts as well as

hair bulb and buccal epithelial cell specimens, strongly

arguing against the possibility of a somatic event

(Figure S1). All the other candidate variants turned out to

be inherited from one of the unaffected parents (Table S4).

To confirm the causal involvement of MAF, we scanned

the entire coding sequence of the gene (NM_005360.4

and NM_001031804.2) for mutations in DNA samples

from 12 additional subjects (Table S1), including a sib

pair, with features overlapping the conditions delineated

by Gripp et al.1 and Aymé and Philip,2 by direct

sequencing. Primer pairs designed to amplify theMAF cod-

ing exons and their intron boundaries (NC_000016.10,

79593848..79600725) are listed in Table S5. We identified

heterozygous missense mutations in seven unrelated

individuals (Table 1 and Figure S1). Two different changes

affected Thr58 and Pro59, while others involved adjacent

residues, including the previously identified c.161C>T

substitution. In all family trios for which parental DNA

samples were available, genotyping documented the de

novo origin of each mutation, and STR analysis confirmed

paternity (Table 1). Sanger sequencing of DNA from avail-

able oral mucosal epithelial cells (case 11-1), or epithelial

cells and fibroblasts (case 4-1) supported the germline

origin of mutations. All changes were predicted to impact

protein function by dbNSFP and/or CADD (Table 1), and

affected residues conserved among orthologs and paralogs

(Figure S2).

MAF is a basic leucine zipper (bZIP)-containing tran-

scription factor of the AP1 superfamily.15,16 It is important

for lens and eye development17,18 and controls multiple

physiological processes, including mechanosensory func-

tion, and chondrocyte and T cell differentiation.19–21

Immunohistochemical analyses in mouse embryos docu-

mented wide Maf expression (Figure S3). Consistent with

previous reports, we observedMaf staining in the lens, dor-

sal spinal cord, dorsal root ganglia, skin, kidney, hypertro-

phic chondrocytes of vertebrae, rib and limb cartilage, and

the cartilage primordium of the basioccipital bone.22,23

In line with the sensorineural hearing loss occurring in
erican Journal of Human Genetics 96, 816–825, May 7, 2015 817



Figure 1. De Novo Heterozygous Missense Mutations Affecting Residues of the GSK3 Phosphorylation Motifs within the Transacti-
vation Domain of MAF Cause Aymé-Gripp Syndrome
(A) Clinical features of affected subjects. Note the distinctive flat face, brachycephaly, ptosis, short nasal tip, long philtrum, small mouth,
low-set and posteriorly angulated ears, and nail dystrophy. Permission to publish photographs was provided for all subjects shown.
(B) Schemeof theMAFdomain structure, and locationofMAFmutations causinghumandisease.MAFcontains anN-terminal transactivation
domain (yellow) with regulatory function, and a C-terminal DNA binding domain, the latter containing an ‘‘extended homology’’ (green),
‘‘basicmotif’’ (light blue), and leucine-zipper (pink) regions. The region containing the four in tandemarranged phosphorylation sites recog-
nizedbyGSK3 (orange) is locatedwithin the transactivationdomain. Residuesmutated in subjectswithAymé-Gripp syndrome (red) andpre-
viously reported isolated cataracts/eye defects (black) are shown.
(C) Cartoon illustrating the GSK3 recognition motifs and location of residues affected in Aymé-Gripp syndrome. The GSK3 catalytic
domain is depicted with its active site (red) and the site binding to the priming phosphorylated residue (green). To phosphorylate its
substrates, GSK3 requires a priming phosphorylation on the substrate four amino acids downstream the residue to be phosphorylated.
The serine/threonine residues sequentially targeted by GSK3 are shown (red). Upon phosphorylation, they act as priming residues
(green) to allow the subsequent phosphorylation of the upstream Ser/Thr. The kinase phosphorylating Ser70 has not been characterized
yet. The residues affected by Aymé-Gripp syndrome-causing mutations (Ser54, Thr58, Pro59, Ser62, and Pro69) are indicated in bold.
all mutation-positive subjects, we detected a specific and

strong signal in cochlear cells of E14.5 embryos.

Similar to other ‘‘large’’ MAF subfamily members (i.e.,

MAFA, MAFB, and NRL), MAF’s structure is characterized

by a C-terminal extended homology region and bZIP

domainmediatingDNA binding, and a N-terminal transac-

tivation domain required for transcriptional activity and

regulatory function (Figure 1B). The latter contains four

GSK3 phosphorylation motifs, highly conserved among

large MAF proteins (Figure 1C). In MAFA, the sequential

phosphorylation of these serine/threonine residues pro-

motes ubiquitination and rapid degradation, but also in-
818 The American Journal of Human Genetics 96, 816–825, May 7, 2
creases transactivation potential.24,25 Remarkably, all iden-

tified MAF mutations clustered within these motifs. Three

affected residues, Ser54, Thr58, and Ser62, are known

GSK3 phosphorylation target sites.26 The remainder did

not involve phosphorylatable residues, but were predicted

to affect GSK3-mediated phosphorylation by altering

proline residues adjacent to either a phosphorylation site

(Thr58) or the C-terminal priming site (Ser70), whose phos-

phorylation is absolutely required for GSK3 function. To

explore the impact of the p.Pro59His, p.Pro59Leu, and

p.Pro69Arg changes, we performed molecular dynamics

(MD) simulations on complexes formed by full-length
015



Table 1. MAF Mutations Identified in Individuals with Aymé-Gripp Syndrome

Subject Reference
Nucleotide
Changea

Amino Acid
Changea

Protein
Domain Inheritance

Functional Impact
(Radial SVM Score/
CADD Score)

1 (19474) 2 c.161C>T p.Ser54Leu TD De novo 1.10/16.27

2 (11-1) 1 c.172A>G p.Thr58Ala TD De novo, germline 0.83/16.07

3 (4-1) 1 c.206C>G p.Pro69Arg TD De novo, germline 0.98/15.49

4 (ICN_ICW) 5 c.173C>T p.Thr58Ile TD Not availableb 0.93/15.38

5 (14-1) 4 c.176C>A p.Pro59His TD De novo 1.10/17.69

5 (10-1) p.s. c.176C>T p.Pro59Leu TD De novo 0.98/9.08

7 (962112) p.s. c.185C>G p.Thr62Arg TD De novo 1.10/17.88

8 (CaGi_UCSC) p.s. c.161C>T p.Ser54Leu TD De novo, germline 1.10/16.27

p.s., present study; TD, transactivation domain.
aNucleotide and amino acid positions refer to transcript variant 1 and protein isoform a (longer isoform) (NM_005360.4, NP_005351.2).
bParental DNAs were not available for molecular analyses.
GSK3 and ten residue-long peptides of MAF corresponding

to the segment that interacts directly with the GSK3 bind-

ing cleft, encompassing both the GSK3 target and pSer/

pThr primed residues (Table S6). The starting coordinates

for the ATP-bound GSK3 were taken from the crystallo-

graphic structure of GSK3B complexed with AMP-PNP

(PDB entry 1pyx).27 Each decapeptide was set in an

extended conformation along the catalytic cleft of GSK3

as specified in Table S6. The MD simulations were carried

out according to the protocol previously described.10 The

Gromos 53a6 force field was used, with the exception of

the partial charges of pSer/pThr,28,29 and the parameters

for ATP, obtained from quantum mechanical calculation

of the molecular system reported in Figure S4. For p.Pro59-

His and p.Pro59Leu decamers, the conformation of the

trimer comprised between the substrate and primed resi-

dues was rearranged considerably during the simulations

(Figure 2A and Figure S5), with the correct orientation of

the substrate residue in the GSK3 active site being destabi-

lized (Figure 2A). p.Pro69Arg, introducing a cationic residue

in the proximity of the positively charged GSK3 priming

pocket formed by residues Arg96, Arg180, and Lys205,

causedageneral rearrangementof the adjacentpSer70,pull-

ing it away from thebindingpocket (Figure 2B).Overall, our

simulations indicated consistently that all disease-causing

MAF mutations inhibit GSK3-mediated phosphorylation

through impaired association and/or catalysis, by perturb-

ing the interaction with the priming site (p.Pro69Arg) or

the active site (substitutions affecting Pro59).

To explore the mutations’ functional impact directly,

we evaluated MAF phosphorylation status. The disease-

causing p.Ser54Leu, p.Thr58Ala, p.Thr58Ile, p.Pro59Leu,

p.Pro59His, and p.Pro69Arg (FLS-like disorder), and

p.Arg288Pro (c.863G>C) changes, the latter considered

as representative of lesions associated with isolated cata-

ract,13 were introduced into the MAF cDNA cloned

in pCS2þ vector using the QuikChange Site-Directed

Mutagenesis Kit (Agilent Technologies). Consistent with
The Am
previous reports,26 Western blot analysis of transiently

transfected COS1 cell lysates documented two MAF states:

a slower-migrating, fully phosphorylated form, and a

faster-migrating, unphosphorylated form. In cells express-

ing wild-type MAF, the phosphorylated protein (upper

band) predominated, while unphosphorylatedMAF (lower

band) was barely detectable (Figure 3A, upper panel). Simi-

larly, the mutant carrying the p.Arg288Pro substitution

in the DNA binding domain, previously associated with

isolated lens and eye defects, was efficiently phosphory-

lated. This was in sharp contrast to all MAF mutants iden-

tified in the present study, which accumulated in cells as

unphosphorylated proteins. GSK3-mediated phosphory-

lation represents a regulatory mechanism promoting

MAFA ubiquitination and degradation.24,25 Based on the

high conservation of the GSK3 recognition motif and

MAF being a GSK3 substrate, we hypothesized that the

amino acid changes in our affected subjects might mediate

inefficient protein clearance. On Western blot analyses,

we noted increased protein levels (Figure 3A, upper panel)

and decreased ubiquitination (Figure 3A, middle panel)

for the disease-causing MAF mutants when compared to

the wild-type protein (Figures 3A and 3B). Treatment

with cycloheximide (CHX), a protein synthesis inhibitor,

showed that the half-life of wild-type MAF was much

shorter than that of the mutants (Figure 3B). Indeed, a

complete disappearance of the protein was observed

upon 4 hr CHX treatment, while the steady-state level of

the mutants was largely unchanged. Consistently, treat-

ment with MG132, which specifically inhibit proteasomal

function, stabilized the protein level of wild-type MAF,

while it did not have any significant effects on mutants

(Figure 3B). Taken together, these results showed that

mutations preventedMAF degradation and enhanced their

stability. Of note, a partial phosphorylation was apparent

for the p.Pro69Arg MAF mutant, which was associated

with increased degradation via proteasome, even though

less efficiently compared to wild-type MAF. This finding
erican Journal of Human Genetics 96, 816–825, May 7, 2015 819



Figure 2. Molecular Dynamics Simula-
tions of the GSK3/MAF Decapeptide
Complexes
(A) Structural effects of the p.Pro59Leu
and p.Pro59His changes. In both mutants,
the conformation of the trimer comprised
between the target and primed residues
is considerably rearranged. Representative
conformations are reported for wild-type
MAF (left) and the p.Pro59Leu mutant
(middle). In both mutants, larger and more
variable distances are observed between
the hydroxyl of Thr58, which is a GSK3
target residue, and the g-phosphate of ATP
(right, top plot) or the carboxyl group of
the catalytic residue Asp181 (right, bottom
plot). The distribution obtained in the
simulations of the wild-type MAF sequence
(black) and those referred to the peptides
containing the p.Pro59His (red) and
p.Pro59Leu (blue) substitutions are shown.

(B) Effect of the p.Pro69Arg change. In the simulations, a stable interaction between pSer70 of the wild-type peptide and the priming site
was observed (left), while a displacement of that residue from the site was documented for the peptide carrying the p.Pro69Arg change
(middle). Such structural rearrangements are quantified by the distance occurring between the P atom of pSer70 and the u-carbon atom
in the side chain of the GSK3 priming site residue, Arg180 (wild-type peptide, black; p.Pro69Arg peptide, green) (right). In the left and
middle panels, the surface of GSK is colored in brown, except for the catalytic residue Asp181 (red), and the priming site residues, Arg96,
Arg180, and Lys205 (blue). ATP is shown in pink and the MAF backbone in yellow. The side chains of priming, target, and mutatedMAF
residues are shown in sticks representation.
suggests a milder perturbing role of the proline-to-arginine

substitution on GSK3-mediated phosphorylation at Ser66

compared to the other disease-causing amino acid

changes, possibly due to the peculiar effect of the intro-

duced arginine residue, which was documented to primar-

ily affect MAF interaction with the GSK priming site.

Confocal microscopy of transfected COS1 cells confirmed

the nuclear localization of all tested mutants and their

higher abundance within cells (Figure 3C). Moreover,

treatment with CSK buffer prior fixation indicated

that the syndrome-causing mutants retained efficient

interaction with chromatin suggesting that they bind to

DNA, in contrast to the DNA binding-impaired cataract-

associated p.Arg288Pro mutant (Figure 3C and Table S7).

Transactivation assays using luciferase as reporter under

control of the IL4 promoter documented that COS1 cells

transiently expressing the cataract-causing mutant allele

had barely detectable reporter induction (Figure 3D). In

contrast, cells expressing the p.Ser54Leu, p.Thr58Ala,

p.Thr58Ile, p.Pro59Leu, p.Pro59His, or p.Pro69Arg MAF

coding alleles showed efficient induction of luciferase

levels, though not reaching the levels of the wild-type pro-

tein, suggesting that, despite their stabilization and much

higher levels, these mutants are less active, at least under

these specific conditions.

Next, we conducted gene-expression profiling analyses

on primary skin fibroblasts from two unrelated subjects

(4-1 and CaGi_UCSC) to explore more globally the impact

of dysregulatedMAF function on gene expression (Table S8

for details). Approximately 6% of genes in mutation-posi-

tive subject-derived cells were expressed differentially

compared to control fibroblasts (ATCC code PCS-201-

012). Gene ontology enrichment analysis of these differen-
820 The American Journal of Human Genetics 96, 816–825, May 7, 2
tially expressed genes revealed an overrepresentation of

genes coding for proteins associated with developmental

programs (tissue morphogenesis, branching morpho-

genesis, urogenital system, and bone development) and

cellular processes (cytoskeletal rearrangement, cell migra-

tion and adhesion, and response to extracellular stimuli)

(Table S8). Publicly available microarray data (ArrayExpress

accession code E-GEOD-51231) allowed selection of genes

whose expression is positively controlled by MAF. Remark-

ably, these putative targets were observed to be enriched

significantly in up- or downregulated transcripts in MAF

mutation-positive fibroblasts (Figure S6), suggesting a com-

plex, promoter-specific dominant dysregulatory function

of these mutations.

Because cognitive deficits, with or without brain de-

fects, are invariably present among subjects with MAFmu-

tations affecting the GSK3 recognition motif, but absent

in individuals with congenital cataracts caused by MAF

mutations involving the DNA binding domain,13,30–33

we posited that expression of the mutant alleles

here identified should induce defects in neurogenesis,

whereas alleles driving dominant cataracts through a

haploinsufficiency model should not. To test this hypoth-

esis in vivo, we analyzed the impact of these mutation

classes on the integrity of the central nervous system

(CNS) using a zebrafish model. The optic tectum is a ma-

jor component of the vertebrate midbrain, comprising a

structure equivalent to the mammalian superior collicu-

lus, with external layers collecting sensory information

and internal layers having a motor-function. We previ-

ously showed that measurement of the area of this struc-

ture represents a robust surrogate for brain volume and

that reduction of the absolute area of the tectum
015



Figure 3. Impact of Disease-Causing Mutations on MAF Function
(A) Protein and phosphorylation levels of wild-type and disease-causing mutant MAF proteins in transiently transfected COS1 cells
(upper panel). COS1 cells were maintained in high glucose DMEM, plus 10% FBS and supplements, and were transiently transfected
to express wild-typeMAF or each of the disease-causing alleles (FuGENE 6 [Promega]). To assess ubiquitination, we probed immunopre-
cipitatedMAF with an anti-ubiquitin antibody (#8017, Santa Cruz Biotechnology) (middle panel). Whole-cell extracts were blotted with
anti-MAF polyclonal (#7866, Santa Cruz Biotechnology), and anti-b-actin monoclonal (#A5441, Sigma-Aldrich) antibodies. Western
blots are from a representative experiment of three performed.
(B) Protein stability and proteasome-dependent degradation were assessed in COS1 cells transfected with the indicated constructs.
Twenty-four hours after transfection, cells were treated with 20 mg/ml cycloheximide (CHX) or 20 mM MG132 for the indicated times.
MAF protein levels were detected by immunoblotting with anti-MAF antibody. Western blots of a representative experiment of three
performed are shown.
(C) Confocal laser scanning microscopy analysis performed in COS1 cells transiently expressing wild-type MAF or one of three disease-
causing alleles, without (upper panels) or with (lower panels) treatment with CSK buffer prior fixation. Cells were stained with anti-MAF
polyclonal antibody and Alexa Fluor 488 goat anti-rabbit secondary antibody (green). Nuclei are DAPI stained (blue). Images are repre-
sentative of 450 analyzed cells (Table S7). Experiments were performed as previously reported.10

(D) Transactivation assays were performed in COS1 cells transiently cotransfected with the IL4 promoter cloned into pGL3 vector
reporter construct (kindly provided by Michael Lohoff, University of Marburg, Marburg, Germany) alone (black bar) or together with
wild-type MAF (white bar) or each of the disease-causing MAF mutants (blue and red bars) (1:1 ratio), and 1:10 of Renilla luciferase con-
trol vector DNA (pRL-Act Renilla). After transfection (24 hr), firefly and Renilla luciferase activities were measured by the Dual Luciferase
Reporter Assay System (Promega). Normalized luciferase activity (mean 5 SD) of six experiments performed is reported as fold increase
relative to cells not expressing exogenousMAF. p values were calculated using two-tailed Student’s t test. *, **, and *** indicate p < 0.05,
p < 0.01, and p < 0.001, respectively. Protein levels of wild-type and disease-causing mutant MAF proteins were evaluated by immuno-
blotting with anti-MAF and anti-actin antibodies (lower panels).
correlates with neurodevelopmental defects in hu-

mans.34,35 We injected clutches of 50–100 embryos with

human mRNA encoding wild-type MAF, each of four al-

leles carrying mutations discovered in the present study,

or the cataract-associated allele. Experimental work was

carried out under protocols approved by the Institutional

Animal Care and Use Committee of the Duke University,

as previously described.34–36 Following quantitative mea-

surement of the surface area of the tecta (blind to injec-
The Am
tion cocktail; replicated), we observed that expression

of either wild-type and cataract-associated (c.863G>C;

p.Arg288Pro) MAF mRNAs did not induce appreciable

brain volume differences. In contrast, injection of human

MAF mRNA encoding each of the p.Ser54Leu, p.Thr58Ala,

p.Pro59Leu, or p.Pro69Arg changes caused a statistically

significant reduction of the size of the optic tecta (p <

0.0001; Figure 4). These data were concordant with our

in vitro model and provided further evidence for the
erican Journal of Human Genetics 96, 816–825, May 7, 2015 821



Figure 4. In Vivo Impact of Aymé-Gripp Syndrome- and Isolated
Cataract-Causing MAF Mutations on the Integrity of the Central
Nervous System Using a Zebrafish Model
(A) Dorsal views of uninjected zebrafish embryos (left), and em-
bryos injected with the Aymé-Gripp syndrome-causing mutant
(c.161C>T; p.Ser54Leu) (middle) and wild-type (right) MAF cap-
ped mRNA (100 pg) at 3 days after fertilization (dpf). Embryos
were whole-mount stained using a primary antibody against
acetylated tubulin (1:1000, T7451 [Sigma-Aldrich]) that marks
neuronal axons, and an Alexa Fluor goat anti-mouse IgG second-
ary antibody (1:1000, A21207, Invitrogen). The circle highlights
the area of the optic tectum that was measured.
(B) Overexpression of wild-type MAF or the congenital cataracts-
causing (c.863G>C; p.Arg288Pro) allele do not induce a significant
reduction in the size of the optic tectum. By contrast, overexpres-
sion of each of the Aymé-Gripp syndrome-causing alleles results
in a statistically significantly reduction of the size of the optic
tectum (p < 0.0001). Bars indicate SE, and AU denotes arbitrary
units. Statistical analysis was performed using two-tailed Student’s
t test. For the measurements performed, we scored 86 control
embryos, 61 embryos injected with wild-type MAF mRNA, and
58–70 embryos with each of the Aymé-Gripp syndrome-causing al-
leles’ mRNA. All experiments were performed blind to injection
cocktail in duplicate.
differential impact of these two mutation classes on CNS

development.

Individuals with MAF mutations shared congenital

or early onset cataracts, sensorineural hearing loss,

developmental delay/intellectual disability, seizures,

brachycephaly, midfacial hypoplasia, and reduced growth

(final height �2.25 to �4 SD) as major characteristics

(Figure 1A and Table S1). Bilateral hearing loss was diag-

nosed in early childhood and had at least a moderate to

severe sensorineural component in all, in some cases

requiring hearing aids. Limited information on inner ear

imaging is available. Facial features were distinctive and

recognizable, and included a short nasal tip and long

philtrum, a small mouth, and small/low-set posteriorly
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angulated ears. Late closing anterior fontanel, radio-ulnar

synostosis or limited elbow movement occurred in several

subjects, as did pericardial effusion and idiopathic chon-

drolysis of the hip. The three adult females had mammary

gland hypoplasia, and two lacked axillary hair. Two

individuals showed hypopigmented retinal lesions.

Mesangiocapillary glomerulopathy occurred in the oldest

affected individual. While intellectual function was not

assessed systematically, impairment was universally pre-

sent. Adaptive function in adult individuals ranged from

severely autistic, nonverbal and requiring medication for

behavior problems to working in a supervised community

environment and living with guardians. Seizures and

abnormal EEG findings consistent with focal and diffuse

abnormal activity were present in all individuals, most

often diagnosed in early childhood. Brain imaging studies

commonly showed prominence of the axial and extra-axial

fluid spaces; other anomalies like a Chiari 1 malformation

or J-shaped sella occurred in single cases. The absence of

mutations among subjects with only partly overlapping

features (e.g., absence of brachycephaly and cataracts

in sibs 10 and 11, and facies not suggestive in case 13) im-

plies that mutations affecting residues within the GSK3

recognition motif of MAF cause a clinically homogeneous

phenotype, and that cataracts, sensorineural hearing loss,

intellectual disability, seizures, brachycephaly, Down syn-

drome-like facial appearance, and reduced growth are likely

to represent cardinal features of the disorder.

Transcription factors operate in developmental pro-

cesses to mediate inductive events and cell competence,

and perturbation of their function or regulation can

dramatically affect morphogenesis, organogenesis, and

growth.37 Here we establish that missense mutations

impairing GSK3-mediated MAF phosphorylation severely

perturb multiple developmental processes. Inactivating

missense mutations affecting the MAF DNA binding

domain had been reported to cause congenital cataracts,

microcornea and iris coloboma.13,30–33 Contrasting those

mutations, we describe a class of missense changes not

impairing DNA binding, but instead precluding post-

translational modifications required for proteasomal

degradation, resulting in mutants being more stable than

wild-type MAF. In addition to defective degradation,

thisMAFmutation class showed perturbed in vitro transac-

tivation activity, and endogenous expression in primary

fibroblasts was associated with both up- and downregu-

lation of genes identified as positively controlled MAF

targets. These findings support the idea that, besides pro-

moting degradation, GSK3-mediated MAF phosphoryla-

tion impacts protein activity through other mechanisms,

as previously demonstrated for MAFA,24 and suggest a

complex pathogenetic mechanism involving protein sta-

bility and functional dysregulation. Of note, dominant

missense mutations affecting residues in the same regula-

tory motif of MAFB and NRL, including those homologous

to Ser54, Pro59, Thr62, and Pro69, have been reported

to cause multicentric carpotarsal osteolysis (MCTO [MIM
015



166300]) and autosomal dominant retinitis pigmentosa

(RP27 [MIM 613750]) (Figure S2), respectively,38,39 further

highlighting the critical role of this domain.

Early onset cataracts and hearing loss have rarely been

reported in genetic conditions, with the collagenopathies,

Alport (MIM 104200), Stickler (MIM 108300) andMarshall

(MIM 154780) syndromes being the most common. This

work identified MAF mutations as principal cause for a

disorder combining cataracts and hearing loss in a multi-

system developmental syndrome independently recog-

nized by Gripp et al.1 and Aymé and Philip.2 Though the

clinical presentation of subjects within this study resem-

bles that described in the context of FLS, we note that

this overlap is only partial. Moreover, FLS has been applied

to clinically variable phenotypes of likely heterogeneous

etiology (here exemplified by cases 10, 11, and 12). We

therefore propose the eponym Aymé-Gripp syndrome for

the disorder caused by mutations affecting residues of the

GSK3 phosphorylation motifs in order to distinguish the

phenotype described here from that reported by Fine and

Lubinsky.3

By regulating the spatio-temporal expression of tissue-

specific genes, MAF proteins act as key regulators of termi-

nal differentiation in many tissues and organs, including

bone, brain, kidney, lens, pancreas, and retina.40,41 While

apparently no gross anomalies are associated with Maf

haploinsufficiency in mice, Maf�/� pups die soon after

birth and exhibit defective lens formation and eye

development,17,18 chondrocyte terminal differentiation,21

aswell as differentiation and functionofmechanoreceptors

and neurons with mechanosensory function.20,42 In con-

trast, a semi-dominant, missense mutation (c.881G>A,

p.Arg291Gln) affecting the DNA-binding domain of

Maf and causing a reduced transactivation activity of

the transcription factor has been associated with congen-

ital cataract in heterozygote mice,14 recapitulating the

hypomorphic cataracts-associated MAF mutations in

humans.13,30–33 Finally, a functionally distinct missense

change (c.269A>T, p.Asp90Val) affecting the N-terminal

transactivation domain and promoting enhanced transac-

tivation function in Maf has been shown to cause a domi-

nant isolated cataract phenotype.43 Contrary to these

loss-of-function, gain-of-function, and haploinsufficiency

models,wehere showedadistinct, dominantly acting effect

of MAF mutations underlying a complex developmental

disorder affecting multiple organs and tissues. As such,

the pleiotropic effect of impaired MAF phosphorylation in

Aymé-Gripp syndrome expands the perturbing conse-

quences of dysregulated MAF function for multiple devel-

opmental programs, establishing its role inmorphogenesis,

CNS development, hearing and growth, and delineates a

novel instance of protein dosage effect in human disease.
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