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Alzheimer’s disease (AD) is the most common form of dementia diagnosed amongst
the elderly. Mild cognitive impairment (MCI) is a condition often indicative of the earliest
symptomatology of AD with 10%–15% of MCI patients reportedly progressing to a
diagnosis of AD. Individuals with a history of vascular risk factors (VRF’s) are considered
high risk candidates for developing cognitive impairment in later life. Evidence suggests
that vascular injury resulting from untreated VRF’s promotes progression from MCI to AD
and exacerbates the severity of dementia in AD, and neuroimaging studies have found
that the neurodegenerative processes associated with AD are heavily driven by VRF’s
that promote cerebral hypoperfusion. Subsequently, common links between vascular
disorders such as hypertension and neurodegenerative disorders such as AD include
compromised vasculature, cerebral hypoperfusion and chronic low grade inflammation
(a hallmark of both hypertension and AD). Exercise has been demonstrated to be an
effective intervention for blood pressure management, chronic low grade inflammation
and improvements in cognition. Data from recent analyses suggests that isometric
exercise training (IET) may improve vascular integrity and elicit blood pressure reductions
in hypertensives greater than those seen with dynamic aerobic and resistance exercise.
IET may also play an effective role in the management of VRF’s at the MCI stage of
AD and may prove to be a significant strategy in the prevention, attenuation or delay of
progression to AD. A plausible hypothesis is that the reactive hyperemia stimulated by
IET initiates a cascade of vascular, neurotrophic and neuro-endocrine events that lead
to improvements in cognitive function.

Keywords: Alzheimers disease, mild cognitive impairment, vascular risk factors, hypertension, blood pressure,
reactive hyperemia, isometric exercise training

INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative dementing disorder responsible for
severe cortical atrophy in selective regions of the brain such as the temporal, medial-temporal,
limbic, frontal and prefrontal cortices (Braak et al., 2006; Querfurth and LaFerla, 2010; Archer
et al., 2011), see Figure 1. The decay of these neural structures is deleterious to a number of
cognitive and functional domains including learning, memory, attention, motivation, executive
function, motor function and global cognition (Archer, 2011; Archer et al., 2011). Mild cognitive
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FIGURE 1 | Alzheimer’s disease (AD) is responsible for severe cortical atrophy in selective regions of the brain such as the frontal and prefrontal
cortex, and the temporal, medial-temporal and limbic areas. Neural structures associated with these regions include the thalamus, basal ganglia, cingulate
cortex, fornix, hypothalamus, amygdala, hippocampus and entorhinal cortex. One of the earliest indicators of AD, identified by imaging studies, is the presence of
cerebral hypoperfusion in temporoparietal regions such as the entorhinal and hippocampal areas.

impairment (MCI), often considered to be the earliest
symptomatic manifestation of AD (DeCarli, 2003; Etgen
et al., 2011) is also accompanied by significant, non-normative
atrophy of the medial temporal and temporal cortices (Braak
et al., 2006; Archer et al., 2011). Currently, there is no cure or
effective treatment for AD and despite decades of investigation
the pathogenesis of sporadic (late-onset) AD remains both
elusive and controversial. Knowledge of the disease pathogenesis
would likely aid in the development of an effective treatment.
The Amyloid cascade hypothesis initially suggested by Glenner
and Wong (1984) still remains somewhat of an axiom. This
hypothesis purports genetic causation and proposes that the Aβ

peptide initiates a cascade of events that manifest in amyloid
plaque deposition and the hyperphosphorlation of tau protein,
forming neurofibrillary tangles. The end result of these events
is neuronal injury and loss, and ultimately, the development of
AD. This theory has been criticized for its inability to explain the
etiology of these hallmark pathologies and also for its inability

to deliver an effective treatment (de la Torre, 2002). Current
pharmacotherapy does not act on these indicators and has
minimal effect on the symptomatic presentations of the disease
(de la Torre, 2002, 2004; Birks, 2006; Campbell et al., 2013).
Consequently, investigators continue to examine alternative
hypotheses to explain AD pathogenesis. Over the past two
decades vascular hypotheses of AD have received considerable
attention (de la Torre and Mussivand, 1993; Zlokovic, 2011);
these theories focus on a non-amyloidogenic pathway of AD that
is driven by vascular risk factors (VRF’s) such as hypertension,
atherosclerosis, hyperlipidemia and cerebrovascular disease
which may ultimately lead to cerebral hypoperfusion and as a
consequence result in neuronal dysfunction leading to cognitive
decline and AD. There is convincing research to support a
vascular hypothesis of AD; the severity of dementia in AD
patients has been found to be exacerbated by the presence
of cerebral ischemeic lesions (Iadecola, 2010), neuroimaging
studies have identified that damaged and dysfunctional cerebral
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microcirculation is one of the earliest predictors of AD (Hirao
et al., 2005), hypertension is reported to cause injury to the
vascular system (Brickman et al., 2010) and is associated with
cerebral vascular pathology, hypoperfusion and cognitive decline
(Brown and Thore, 2011). Exercise has long been recommended
and demonstrated as an effective therapeutic intervention for
hypertension (Cardoso et al., 2010; Cornelissen and Smart,
2013), MCI and AD and has been associated with marginal
improvements in cognitive performance outcomes (Colcombe
and Kramer, 2003; Heyn et al., 2004; van Uffelen et al., 2008;
Aarsland et al., 2010; Baker et al., 2010; Smith et al., 2010; Sofi
et al., 2011; Hess et al., 2014). Most studies have focused on
aerobic exercise due to shear wall stress and the subsequent
release of nitric oxide (NO; Keller et al., 2001; Venturelli et al.,
2011), however, an increasing body of evidence supports the
role of isometric exercise training (IET) to affect significant
reductions in resting systolic and diastolic blood pressures
(DBP) in both hypertensive and normotensive men and women
(Devereux et al., 2010; Wiles et al., 2010; Badrov et al., 2013a,b;
Millar et al., 2013). Unlike aerobic exercise, the potential for
IET to assist with improvements in cognitive performance
have not yet been investigated. The physiological mechanisms
elicited by IET are not fully understood and are still under
investigation; however, it may be the case that resulting from
increased blood flow due to small repeated bouts of ischemia,
IET elicits increases in angiogenesis, neuro-endocrine function
and metabolites such as beta endorphins and prostaglandins
(Stiller-Moldovan et al., 2012; Wong and Wright, 2014; Wong
et al., 2015). Subsequently, it may be the case that in conjunction
with its anti-hypertensive effects, isometric exercise may
also offer the potential to elicit improvements in cognitive
performance.

The following article reviews; subsets of cognitive
impairment; the clinical and neuropathological differences
between AD and vascular dementia (VaD); Vascular hypotheses
of AD and the contribution of vascular pathology to cognitive
decline in AD; purported linkages between VRF’s and cognitive
impairment, with a specific focus on hypertension; and the
shared pathological events prevalent in hypertension and
AD. We then discuss exercise as a modifiable risk factor for
hypertension and cognitive decline. We further consider the
potential benefits and efficacy of remote limb ischemia and
IET as non-pharmacological therapies for preventing and/or
attenuating the progression of MCI to incidence of sporadic AD
and as interventions that might assist those already diagnosed
with early stage sporadic AD.

MILD COGNITIVE IMPAIRMENT DUE TO
ALZHEIMERS DISEASE

Cognitive impairment without dementia, such as age-associated
cognitive decline (AACD) and age-associated memory
impairment (AAMI), is considered to fall within the normative
realms of brain aging (Ritchie et al., 2001; Alzheimers
Association, 2012). Whereas MCI is a condition that is
characterized by a deterioration in cognitive abilities and
memory beyond that expected for a person’s age and level

of education, but without notable loss of global cognition
or activities of daily living (Duara et al., 2010; Albert et al.,
2011; Archer et al., 2011; Etgen et al., 2011; Alzheimers
Association, 2012). Depending on the cognitive functions that
are affected, MCI is further classified into either nonamnestic
MCI or amnestic MCI (aMCI; Alzheimers Association, 2012).
Nonamnestic MCI affects cognitive domains other than memory
such as the sequencing of complex tasks, judgment and
decision making skills, and visual perception, whereas aMCI
primarily affects memory and is more likely to progress to AD
(Archer et al., 2011; Etgen et al., 2011; Alzheimers Association,
2012).

While not all cases of MCI will progress to a clinical
diagnosis of AD or dementia (DeCarli, 2003; Panza et al.,
2005) within the space of 12 months, 10%–15% of MCI cases
reportedly will convert to AD (DeCarli, 2003; Petersen et al.,
2009; Etgen et al., 2011). However, these conversion rates have
been shown to vary significantly among studies and clinical
populations based on differences in diagnostic criteria, sampling
populations and assessment protocols (Panza et al., 2005).
Despite these variances, MCI is considered to represent the
earliest symptomatic indications of AD (DeCarli, 2003; Helzner
et al., 2009; Etgen et al., 2011; Li et al., 2011) and is viewed as a
prodromal, pathological condition rather than as a consequence
of the normative aging process (Petersen, 2004; Albert et al.,
2011).

ALZHEIMERS DISEASE AND VASCULAR
DEMENTIA

AD and VaD are the two most common forms of dementia
diagnosed amongst older adults with AD being most common
(Qiu et al., 2005). The severity and extent of AD-related
neurodegenerative atrophy grows as a function of time
selectively and predictably destroying memory functions,
cognitive performance and functional abilities at each stage.
Whereas, in VaD the presentation of dementia is attributed to
dysfunctional vascular mechanisms (Graham et al., 2004) and is
not accompanied by the hallmark neurodegenerative processes
prevalent in AD. Pathological lesions associated with VaD
include, ischemic or hemeorrhagic infarct(s); atherosclerosis
(basal, peripheral or meningeal); microvascular changes;
parenchymal changes in cortex, white matter, basal ganglia,
brain stem and cerebellum; hippocampal sclerosis; perivascular
and parenchymal gliosis (Kalaria, 2016). Throughout the
progression of VaD memory remains intact with attentional
and executive functioning disproportionately impaired (Graham
et al., 2004; Agüero-Torres et al., 2006).

Traditionally these two diseases have been studied
separately, however, increasingly, over the past two decades
investigators have been able to link the contribution of VRF’s
such as hypertension, atherosclerosis, hyperlipidemia and
cerebrovascular disease to cognitive disorders such as MCI
and sporadic AD (Viswanathan et al., 2009; de la Torre, 2010;
Laukka et al., 2010; Choi, 2012). Vascular damage associated
with aging, hypertension and other VRF’s is thought to inhibit
both the delivery of nutrients to the brain and the clearance of
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FIGURE 2 | Vascular risk factors (VRF’s) such as hypertension,
atherosclerosis, hyperlipidemia and cerebrovascular disease are
linked to cognitive disorders such as vascular dementia (VaD) and
sporadic AD. Vascular damage associated with aging, hypertension and
other VRF’s is thought to; inhibit both the delivery of nutrients to the brain and
the clearance of toxic metabolites, compromise the integrity of the blood brain
barrier (BBB) promoting the accumulation and propagation of the hallmark
proteogenic pathologies associated with AD. VaD is not accompanied by
these same hallmark neurodegenerative processes. In both VaD and AD, the
homeostatic disruption of altered cerebral vasculature is believed to promote
cellular disruption, cell death and cognitive impairment ultimately resulting in
dementia.

toxic metabolites. The ensuing homeostatic disruption of altered
cerebral vasculature is purported to promote cellular disruption,
cell death and cognitive impairment (Iadecola et al., 2009), see
Figure 2.

THE VASCULAR HYPOTHESIS OF
ALZHEIMERS DISEASE

The vascular hypothesis of AD proposes that cerebral
hypoperfusion is the causal factor in disease development

(de la Torre and Mussivand, 1993). The hypothesis
recognizes an intimate link between vascular dysfunction
and neuronal dysfunction and highlights the importance of
the circulatory system to brain functions. The hypothesis
proposes that sporadic AD is a multifactorial disease fueled
by VRF’s such as hypertension, atherosclerosis, cardiac
disease, stroke and diabetes, that contribute to chronic
brain hypoperfusion/oligemia (reduced cerebral blood flow).
Obstructed cerebral blood flow prevents the efficient delivery
of nutrients such as oxygen, glucose and micronutrients to the
brain and compromises energy metabolism and neural activity.
Similar to the vascular hypothesis, the two-hit hypothesis also
proposes that a non-amyloidogenic pathway driven by VRF’s
and reduced cerebral perfusion might be contributing to the
development of late onset AD (Zlokovic, 2011).

The two-hit theory proposes that cerebral hypoperfusion
and an over accumulation of the Aβ peptide triggers
the hyperphosphorylation of p-tau which manifests in
neurofibrillary tangles, neuronal degeneration and eventually
AD (Zlokovic, 2011). This theory suggests that VRF’s play a
pivotal role in the pathogenesis of the disease. Hit one proposes
that vascular damage compromises the integrity of the blood
brain barrier (BBB) and facilitates a reduction in cerebral blood
flow. Vascular injury inhibits the clearance of Aβ at the BBB;
this in turn mediates increased production of Aβ and results in
the over accumulation of neurotoxic levels of this peptide. Both
the aggregation of toxic levels of Aβ, and cerebral hypoperfusion
promote early neuronal dysfunction. Hit two proposes that
continuing increases in Aβ accumulation exacerbates neuronal
dysfunction, is a catalyst for neurodegeneration and AD, and
promotes self-propagation of the disease.

VASCULAR PATHOLOGY AND COGNITIVE
DECLINE IN AD

Pathological changes to the cerebral microvasculature precede
and/or accompany vascular disorders such as hypertension,
neurovascular disorders such as AD and cognitive decline
(Brown and Thore, 2011). Individuals with a history of VRF’s
and vascular disease are considered high risk candidates for
developing cognitive impairment in later life (Korf et al., 2004;
Solfrizzi et al., 2004; Laukka et al., 2010). Evidence suggests that
vascular injury exacerbates the severity of dementia in AD and
that the neurodegenerative process is heavily driven by vascular
factors (Heyman et al., 1998; Vermeer et al., 2003; Song et al.,
2007; Schneider et al., 2009; White, 2009). Additionally, vascular
lesions and VRF’s have been reported to increase the rate of
cognitive decline and accelerate the disease progression (Helzner
et al., 2009).

Imaging studies have identified cerebral hypoperfusion in
selective neural regions as one of the earliest indicators
of AD, specifically in the temporoparietal regions such as
the entorhinal, transentorhinal and hippocampal areas (areas
linked to memory function, and the first regions to be
afflicted with AD neuropathology), see Figure 1 (de la Torre,
2004; Hirao et al., 2005; Ruitenberg et al., 2005). In these
studies, individuals displaying hypoperfusion and complaining
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of memory problems or diagnosed with MCI went on to
develop AD (de la Torre, 2004; Hirao et al., 2005), whereas,
those individuals who showed normal cerebral blood flow
did not convert to AD during the observation period. Other
studies have identified that cerebral hypoperfusion accompanies
hippocampal atrophy (Jack et al., 1999; Ruitenberg et al.,
2005).

Neuroimaging research suggests that the clinical symptoms
associated with sporadic AD result from neurodegeneration not
amyloid deposition and that cognitive decline is directly related
to the neurodegenerative process of the disease pathology and
not amyloidosis (Pedersen et al., 2003; Hiscock et al., 2004;
Jack et al., 2009). These studies also suggest that there is no
association between the rate of neurodegeneration and the rate
of amyloid deposition. Consequently, if the neurodegenerative
processes of AD are intensified by vascular factors then timely
interventions that address these risk factors and reinstate the
delivery of a nutrient rich oxygenated blood supply to the brain
may ameliorate or attenuate the neurodegenerative process and
disease trajectory.

HYPERTENSION

Hypertension is associated with cerebrovascular pathology,
hypoperfusion (Brown and Thore, 2011) and cognitive decline
(Reitz et al., 2007). MRI studies have demonstrated a link
between brain atrophy and untreated hypertension (Launer
et al., 1995) and results from the ‘‘The Honolulu Asia Aging
Study’’ (HAAS; Korf et al., 2004) show that hippocampal
atrophy can be linked to untreated hypertension in midlife,
and that a positive correlation exists among systolic blood
pressure (SBP), DBP and burden of neural AD pathology.
Hypertension causes injury to the vascular system and is
associated with an elevated burden of neural white matter
lesions (Brickman et al., 2010). Hypertension promotes vascular
inflammation, vascular damage, and activated astrocytes and
microglia; these events stimulate dysfunctional arterial dilation,
the generation of pro-inflammatory stimuli and enhanced levels
of reactive oxygen species (ROS) and reactive nitrogen species
(RNS; Iadecola et al., 2009). Consequently, cerebral blood flow
is significantly reduced and mitochondrial damage becomes
pervasive. Ultimately, these physiological cascades manifest in
a neuronal energy crisis, neuronal damage, apoptosis, neuro-
degeneration, inflammation and finally, AD (Iadecola et al.,
2009).

The deleterious structural and functional alterations in
cerebral circulation that are associated with hypertension
are potentially reversible (Lipsitz et al., 2005), presumably,
improving the cerebral blood flow may also lead to
improvements in cognitive performance. Li et al. (2011)
observed that the treatment of VRF’s such as hypertension
reduced the risk of late-onset AD and the progression from
MCI to AD; Deschaintre et al. (2009) also reported that the
treatment of VRF’s resulted in slower cognitive decline in
individuals with AD. Similarly, antihypertensive treatment
utilizing pharmacotherapy has been shown to offer protection
against dementia in elderly individuals with hypertension

(Forette et al., 2002) and to increase the velocity of cerebral
blood flow and improve the distensibility of the carotid
artery, supporting a correlation between blood pressure
reduction and increased cerebral blood flow (Lipsitz et al.,
2005).

PRO-INFLAMMATORY MARKERS,
SYSTEMIC INFLAMMATION AND
CYTOKINE RESPONSES TO AD AND
HYPERTENSION

Chronic low grade systemic inflammation is a condition
characterized by the persistent activation of the bodies
intrinsic immune system and is perpetuated by the release
of pro-inflammatory cytokines from immune-related cells
(Swardfager et al., 2010). Chronic low grade systemic
inflammation is believed to contribute to the development
and clinical trajectory of conditions such as hypertension
and AD (Swardfager et al., 2010). Subsequently, besides
the hallmark neuropathology associated with AD chronic
low-grade inflammation is also considered a hallmark of AD
that may be influencing the neurodegenerative progression
of the disease (Wyss-Coray, 2006; Swardfager et al., 2010).
Similarly, chronic low-grade inflammation is recognized as
a hallmark of hypertension and is attributed, in part, to the
etiology of vascular disease (Boos and Lip, 2006; Edwards et al.,
2007).

Elevated inflammatory biomarkers that share a clinical
association with AD and hypertension include; interleukin (IL)
-1β and -6, acute phase C reactant protein (CRP) and tumor
necrosis factor (TNF-α; Boos and Lip, 2006; Edwards et al.,
2007; Swardfager et al., 2010). Specifically, TNF-α can induce
apoptic cell death and inflammation (Swardfager et al., 2010),
and is positively correlated with blood pressure levels (Edwards
et al., 2007). Dysregulated TNF-α production is implicated in
a variety of human diseases including AD (Swardfager et al.,
2010) with high levels of this cytokine associated with dementia
(Bruunsgaard et al., 1999). IL-6 has been characterized as both
a pro- and anti-inflammatory cytokine (Tilg et al., 1997), on
one hand IL-6 expression is stimulated by the production of
TNF-α and IL-1 (both pro-inflammatory cytokines), on the other
hand it is also responsible for suppressing the production of
these two inflammatory markers (Petersen and Pedersen, 2005).
Furthermore IL-6 is involved in upregulating the expression of
anti-inflammatory cytokines IL-10 and IL-1ra (Steensberg et al.,
2003).

EXERCISE AS A MODIFIABLE RISK
FACTOR

Exercise is recommended as a therapeutic intervention for
hypertension, atherosclerosis (Cardoso et al., 2010; Cornelissen
and Smart, 2013), MCI and AD (Colcombe and Kramer, 2003;
Heyn et al., 2004; van Uffelen et al., 2008; Aarsland et al., 2010;
Baker et al., 2010; Smith et al., 2010; Sofi et al., 2011; Hess
et al., 2014; Groot et al., 2016) and an inverse relationship exists
between levels of physical activity and levels of chronic low grade
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inflammation (Edwards et al., 2007). Specifically, aerobic exercise
incites endothelium-dependent vasodilation via the upregulation
of NO production, and with regular adherence, inhibits age
associated loss in endothelium-dependent vasodilation and
restores levels in previously sedentary individuals (DeSouza
et al., 2000). Thus, most studies have focused on aerobic
exercise due to shear wall stress and the subsequent release of
NO. Moreover, prevalent in the broader literature is evidence
suggesting that exercise training targeting cardiovascular fitness
(VO2

peak) may provide neuroprotective benefits and moderate
the structural and functional neuronal changes associated
with conditions such as MCI and dementia (Burns et al.,
2008; Honea et al., 2009; Bugg and Head, 2011). Evidence
derived from animal models indicates that aerobic exercise
has the ability to facilitate improvements in angiogenesis,
neurogenesis, and learning and memory in rats (Cotman and
Berchtold, 2002; Mattson et al., 2002), and in the mouse model,
aerobic exercise has been shown to inhibit the evolution of
Alzheimer’s-associated neuropathology (Adlard et al., 2005).
Current literature suggests that exercise taken up in midlife by
healthy adults facilitates improvements in various domains of
cognitive functioning and decreases the chances of developing
dementia in later life (Laurin et al., 2001; Ahlskog et al.,
2011; DeFina et al., 2013). Recent MRI studies have reported
a link between brain atrophy and cardiovascular fitness in AD
(Burns et al., 2008; Honea et al., 2009), and Erickson et al.
(2011) reported increased hippocampal volumes in the brains
of healthy individuals who participated in exercise training
compared to sedentary controls. A growing number of training
studies have investigated the effect of physical activity on the
neurocognitive performance outcomes of people at risk of, and
living with dementia (Lautenschlager et al., 2008; Brown et al.,
2009; Kemoun et al., 2010; Lam et al., 2011; Cheng et al., 2014),
subsequently, this literature does offer some support for exercise
as a mitigating or stabilizing intervention in relation to some
cognitive domains.

Exercise provides an anti-inflammatory environment within
the body, post exercise circulating cytokines remaining in the
plasma are IL-6, IL-10 and IL-1ra (Petersen and Pedersen, 2005).
Exercise increases IL-6 transcription rates (Keller et al., 2001)
and during exercise the IL-6 protein is expressed in contracting
muscle fibers (Penkowa et al., 2003; Hiscock et al., 2004),
markedly increasing circulating levels (Pedersen and Hoffman-
Goetz, 2000; Pedersen et al., 2003). Even moderate exercise has
been demonstrated to induce marked increases in IL-6 in both
the young and elderly. These increases in IL-6 plasma levels are
exponential relative to exercise intensity, duration, endurance
and recruited muscle mass (Bruunsgaard et al., 1999; Petersen
and Pedersen, 2005).

REMOTE LIMB ISCHEMIA TO AFFECT
DISTANT ORGANS

The concept that remote ischemic conditioning (RIC) of a
limb can support and improve the healthy functioning of
distant organs such as the kidneys, heart and the brain has
been successfully demonstrated through techniques such as RIC

(Hess et al., 2015) and physiological ischemic training (PIT; Ni
et al., 2015).

Remote Ischemic Conditioning
Originally ischemic conditioning (IC) was developed as a cardio
protective application (Murry et al., 1986) for patients with
cardiovascular arterial disease (CAD) and myocardial ischemia.
By stimulating ischemic and hypoxic events via the direct
occlusion of a coronary artery, the impact and size of future
myocardial infarction was reduced significantly (Przyklenk et al.,
1993). Initially IC was an invasive procedure administered
by directly occluding coronary arteries for short periods of
time, enough to induce small doses of the injurious agents
ischemia and hypoxia (Murry et al., 1986). Subsequently,
non-invasive applications of IC have been investigated and
the benefits of RIC have been illuminated; that is, inducing
ischemia in a healthy limb stimulates endogenous protective
pathways (Iadecola and Anrather, 2011) that are transferable
from one organ to another distant organ (Bøtker et al.,
2010; Davies et al., 2013; Sloth et al., 2014). RIC involves
the repetitive inflation and deflation of a BP cuff placed
around a limb at pressures above SBP (Hess D. C. et al.,
2016).

Similar to the heart, the brain can also be conditioned
with ischemia and hypoxia (Kitagawa et al., 1990). Recently,
RIC has also been demonstrated to stimulate endogenous
neuroprotective pathways (Hougaard et al., 2014) and increase
cerebral blood flow (Hess D. C. et al., 2016). Mouse models
of vascular cognitive impairment (VCI; Bink et al., 2013) have
demonstrated that when compared to the control cohort, RIC
administered daily for 2 weeks resulted in less inflammation,
less β-amyloid deposition, reduced white and gray matter
damage, increased cerebral blood flow and improved cognition.
Furthermore, RIC has also been implicated in enhancing
neuroplasticity, Cherry-Allen et al. (2015) reported significant
improvements in motor learning that were not associated
with the ischemic trained limb. Although the hypothesized
improvements in cognitive learning were not forthcoming
in this study, the researchers postulated that this was most
likely due to the difficult nature and the narrow assessment
framework of the cognitive assessment task that was utilized
and not necessarily indicative that cognitive improvements
did not occur. Consequently, to elucidate the cognitive
benefits of remotely induced ischemia and hypoxia the authors
recommended that future research in this domain utilize
cognitive assessment tasks that assess broad ranges of neural
regions and networks.

Whilst the mechanisms involved in the remote signaling and
in the stimulation of endogenous pathways to facilitate protective
responses and structural changes in distant organs are not
fully understood, evidence obtained through animal models and
clinical trials supports a number of mechanisms involving; blood
borne factors (Shimizu et al., 2009; Koch, 2010; Koch et al., 2014;
Hess D. C. et al., 2016) induced by peripheral nerves (Jensen
et al., 2012; Redington et al., 2012), epigenetic modulations of the
genome (Stowell et al., 2010; Brand and Ratan, 2013; Thompson
et al., 2015), and immune and anti-inflammatory responses
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(Konstantinov et al., 2004). Consequently, it is the interaction
of blood borne and neuronal factors that are postulated to both
initiate and transmit these signals to the brain.

Physiological Ischemic Training
Inspired by RIC, recently the feasibility of PIT to stimulate
remote ischemia has also been investigated. PIT is a technique
whereby skeletal muscle is subjected to intense contraction
via isometric contraction or tourniquet in order to stimulate
physiological ischemia (Ni et al., 2015). In animal models,
PIT applied eight times daily for 4 weeks to a normal
healthy limb has been shown to upregulate vascular endothelial
growth factor (VEGF) and facilitate angiogenesis improving
blood flow and capillary supply in a remote pathological
ischemeic limb (Shen et al., 2009; Zhao et al., 2011). In
clinical trials, PIT using isometric handgrip exercise performed
at 50% maximal voluntary contraction (MVC) by patients
with coronary artery disease and a coronary artery occlusion
significantly increased collateral blood flow in the myocardium
(Lin et al., 2012). The proposed mechanisms responsible for the
effects of PIT include; upregulation in circulating VEGF and
VEGF mRNA, angiogenesis (Liu et al., 2004), the differential
expression of proteins involved in cell migration and energy
metabolism (Gao et al., 2011) and increased systemic endothelial
progenitor cells (EPCs; Wan et al., 2011). Unlike RIC, the
efficacy of PIT to neural applications has not yet been
investigated.

Most encouraging is the potential neuroprotective
implications that ischemic training may offer those with
MCI, AD and VaD. Whilst the protocols between these two
techniques differ from each other and the extent of commonality
of the signaling and protective mechanisms involved is still the
subject of investigation, both of these techniques involve the
activation of endogenous signaling and protective pathways and,
according to recent literature, also appear to engage some shared
mechanisms. Encouragingly RIC administered to patients aged
80–95 years old with intracranial atherosclerosis stenosis was
found to be both safe and effective in stroke prevention and
treatment (Meng et al., 2015). Moreover, the principles that
support the efficacy of RIC and PIT also support the feasibility
of a hypothesis that IET performed by elderly individuals
might promote healthy neural functioning and boost cognitive
performance.

ISOMETRIC EXERCISE TRAINING

Traditionally, aerobic endurance training has been the preferred
type of physical activity recommended for blood pressure
management, however, current thinking does vary with respect
to this. IET involves a single sustainedmuscle contraction against
an immovable load or resistance with no, or minimal, change
in length of the involved muscle group. An increasing body
of evidence suggests that IET promotes significant reductions
in resting systolic and DBPs in hypertensive and normotensive
men and women (Devereux et al., 2010; Wiles et al., 2010;
Badrov et al., 2013a,b; Millar et al., 2013). Previously, isometric
exercise has been associated with exaggerated hypertensive

responses, however, data from recent analyses suggests that
isometric resistance exercise may elicit blood pressure reductions
greater than those seen with dynamic aerobic and resistance
exercise (Cornelissen and Smart, 2013) and has been safely
implemented among a cohort of hypertensive elderly women,
70–82 years old (Olher Rdos et al., 2013). Specifically, acute
isometric hand grip training (IHG) has been shown to improve
resting endothelium-dependant vasodilation (McGowan et al.,
2006). Recent meta-analyses have reported IET to elicit greater
reductions in resting SBP than those observed in dynamic
resistance training, dynamic aerobic exercise training, and
training consisting of both dynamic resistance and aerobic
activity (Cornelissen and Smart, 2013; Carlson et al., 2014). The
magnitude of effect is comparable to that of monotherapy with
beta-blockade (Wong and Wright, 2014).

The precise mechanism(s) of the anti-hypertensive effect(s)
of isometric exercise remain unclear, however, with blood borne
factors postulated as one of the mechanism involved in the
remote signaling and stimulation of endogenous protective
pathways in RIC techniques (Shimizu et al., 2009; Koch, 2010;
Koch et al., 2014; Hess D. C. et al., 2016), it could be the
case that for IET the initial stimulus is repeated exposure
to transient increases in blood flow (reactive hyperemia) that
result after short periods of ischemia. Edwards et al. (2007)
suggest that reduced peripheral vascular resistance facilitated via
neurohormonal and structural adaptations might also explain
the antihypertensive effects of exercise. The reactive hyperemia
elicited during a 2 min IHG training may occur due to either
partial or full occlusion of the brachial artery. Previous research
suggests that full occlusion of blood flow occurs at approximately
55%–75% of MVC with higher occlusion thresholds evident in
individuals who were able to exert a greater handgrip force
(Barnes, 1980). The production of a number of metabolites
such as beta endorphins, prostaglandins and hypoxia-inducible
factor-1 α (HIF 1 α) are postulated to result from ischemia
induced by full or partial restriction of the brachial artery during
IHG exercises (Stiller-Moldovan et al., 2012; Wong and Wright,
2014; Wong et al., 2015). These metabolites play a number
of roles including, supporting the immune system, managing
inflammation (Cabot et al., 1997; Pedersen and Hoffman-
Goetz, 2000), vasodilation and vasoconstriction (Davidge, 2001),
stimulating angiogenesis, and tissue repair and regeneration
(Wang et al., 2014). It may be that the intensity of the hand
grip contraction employed during IHG exercise determines the
existence or absence of reactive hyperemia; intuitively, even at
intensities less than 55% of MVC partial occlusion of blood flow
is likely. Indeed, previous work with isometric exercise suggests
that intensities as little as 10%–14% of MVC may be sufficient
to elicit partial occlusion to blood flow, inducing ischemia and
the resulting metabolic production that might be contributing
to BP reductions (Wiles et al., 2010; Baross et al., 2012; Hess
N. C. et al., 2016). Utilizing lower intensity IHG exercise for
BP reduction may prove beneficial in the design of exercise
programs for the frail and elderly, elderly people may struggle to
complete IHG exercise at 30% MVC yet may still benefit from
an isometric exercise program at 10% MVC. Considering the
anti-hypertensive effects elicited by isomeric exercise and the
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purported mechanisms responsible for this, it is also plausible
that IET may play an effective role in the management of
hypertension at the MCI stage of AD and in conjunction prove
to be a significant strategy in the prevention, attenuation or delay
of progression to AD. Further research is probably warranted in
this area.

CONCLUSION

The contribution of cerebral hypoperfusion to the development
of MCI and AD is receiving increasing attention. A review of the
current literature supports both a strong relationship between
the contribution of cerebral hypoperfusion to the development
of MCI and sporadic AD and a strong link between untreated
hypertension and neurodegenerative processes. In conjunction
with the therapeutic benefits elicited via the application of RIC
and PIT, evidence suggesting that IETmay be more efficacious at
inducing anti-hypertensive responses than aerobic exercise and
resistance training provokes questions relating to the possible
role that IET might play in facilitating reparations to the
vasculature, increasing cerebral blood flow, reducing chronic
low grade inflammation and possibly improving cognitive
performance.

Future IET research protocols should seek to extend
investigations beyond their traditional hypertensive enquiry to
explore the effects of isometric exercise on cognitive performance
outcomes. These studies should seek to incorporate diverse

arrays of subgroups; possible subgroups might include groups
that are gender specific; groups that constrain age ranges to
within ±5 years as this may help to elucidate the effects of
age on IET protocols, and groups where the characterization of
pre-dementia syndromes such as MCI and dementia are uniform
across the population sample as different dementias are likely
to respond differently to the same treatment. Incorporating
techniques such as magnetic resonance imaging, blood analysis
and genotype profiling would further assist in our understanding
of the mechanisms of ischemic training on the brain, BP and
cognition.
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