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The use of mRNA and ribonucleoproteins (RNPs) as therapeu-
tic agents is a promising strategy for treating diseases such as
cancer and infectious diseases. This review provides recent ad-
vancements and challenges in mRNA- and RNP-based thera-
pies, focusing on delivery systems such as lipid nanoparticles
(LNPs), which ensure efficient delivery to target cells. Strategies
such as microfluidic devices are employed to prepare LNPs
loaded with mRNA and RNPs, demonstrating effective genome
editing and protein expression in vitro and in vivo. These appli-
cations extend to cancer treatment and infectious disease man-
agement, with promising results in genome editing for cancer
therapy using LNPs encapsulating Cas9 mRNA and single-
guide RNA. In addition, tissue-specific targeting strategies
offer potential for improved therapeutic outcomes and reduced
off-target effects. Despite progress, challenges such as optimi-
zing delivery efficiency and targeting remain. Future research
should enhance delivery efficiency, explore tissue-specific tar-
geting, investigate combination therapies, and advance clinical
translation. In conclusion, mRNA- and RNP-based therapies
offer a promising avenue for treating various diseases and
have the potential to revolutionize medicine, providing new
hope for patients worldwide.
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INTRODUCTION
Background on mRNA and ribonucleoprotein therapies

In vitro transcription (IVT) of mRNA involves utilizing linearized
plasmid DNA or PCR templates, which necessitate a promoter and
the corresponding mRNA construct sequence.1–3 Polymerases such
as T7, T3, or SP6 are added to facilitate IVT, but additional capping
is necessary to prevent rapid degradation of uncapped mRNA by
RNase, which contains a 50-ppp group causing heightened immune
stimulation.4,5 Capping can be achieved through two methods: co-
transcriptional and post-transcriptional capping.6 Co-transcriptional
capping involves incorporating cap dinucleotidemixtures at the 50 end
of RNA during transcription, allowing coordinated transcription with
mRNAcapping.7However, thismethod encounters challenges such as
the competitive incorporation of GTP nucleosides, which can impact
capping efficiency. Initially, GTP binds to RNA chains through a 50-50
Molecular Thera
Published by Elsevie

This is an open access article under the CC BY-NC
triphosphate bond and undergoes 7-methylation at the 50 terminal
guanosine during post-transcriptional capping.8 Capping enzymes
derived from vaccinia virus are efficient in capping mRNA, producing
cap 0, while cap-specific 20-O methyltransferase can further modify
cap 0 to cap 1 or cap 2, reducingmRNA immunogenicity.9,10However,
capping can lead to the formation of m7GpppGpG in a reversed link-
age, hindering mRNA translation. Anti-reverse cap analogs are syn-
thesized to enhance translation efficiency by modifying the m7G
part of caps.11,12 Poly(A) tails in IVT mRNAs can be encoded in the
DNA template or added enzymatically, with the former method
providing more precise control.8,13,14 Linearization of plasmid tem-
plates using type II restriction enzymes can lead to overhangs at the
30 end of poly(A) tails, affecting translational efficacy, necessitating
the use of type IIS restriction enzymes to avoid this issue.1,15

In-vitro-transcribed mRNAs necessitate purification to eliminate im-
munostimulatory contaminants, free ribonucleotides, as well as short
mRNA and DNA templates.16–19 DNase is typically used to degrade
excess DNA templates, followed by commercial purification kits
and precipitation methods using ethanol or isopropanol to obtain
high-purity mRNA. Chromatographic methods such as molecular
exclusion chromatography, ion-exchange chromatography, or affin-
ity chromatography can further purify mRNA, while reversed-phase
HPLC is effective in removing dsRNA contaminants but may not be
scalable for large-scale production.18,19 Alternatively, RNase III has
been proposed for the removal of dsRNA contaminants, and cellulose
chromatography has shown promise in purifying IVT mRNAs effi-
ciently and on a larger scale. Gel electrophoresis can also be employed
to remove short RNAs and separate long RNAs. Ultimately, the
choice of purification method depends on the specific purity require-
ments and scale of production, with stringent quality control being
essential for maximizing the benefits of mRNA therapeutics.18
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Figure 1. The differences between conventional mRNA and self-amplifying mRNA

saRNA, derived from alphaviruses, self amplifies for efficient protein expression, promising high antibody titers against pathogens.32
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Different formats of mRNA, such as self-amplifying mRNA
(saRNA),20 unmodified mRNA with codon usage optimization,21 nu-
cleoside-modified mRNA,22 and trans-amplifying mRNA (taRNA),23

offer distinct advantages and challenges in therapeutic applications.
saRNA, derived from alphaviruses, contains a replicase sequence
enabling self-amplification and efficient protein expression24 (Fig-
ure 1). Despite its longer sequence compared with conventional
mRNA, saRNA shows promising results in inducing high antibody
titers against pathogens.25–28 Unmodified mRNA with codon optimi-
zation promotes immunogenicity by augmenting antigen presenta-
tion, acting as an adjuvant in mRNA vaccines.29 Nucleoside-modified
mRNA, incorporating modified nucleosides such as 2ʹ-O methyl
nucleoside, suppresses immune response by inhibiting TLR-mediated
dendritic cell activation, potentially improving safety and efficacy.30

taRNA, an advanced version of saRNA, separates the replicase from
multiple target mRNAs, allowing simultaneous amplification of
various proteins.31 This flexibility simplifies transfection protocols
and offers potential in infectious disease vaccines. Each mRNA
format has its advantages and limitations, highlighting the impor-
tance of selecting the appropriate format based on specific therapeutic
needs and challenges.

Importance and potential impact on modern medicine

Efficient intracellular delivery of mRNA remains a significant chal-
lenge due to its large molecular weight, high negative charge density,
and inherent instability. Various strategies, including microinjec-
tions, gene gun-based administration, and encapsulation in nanopar-
2 Molecular Therapy: Nucleic Acids Vol. 35 September 2024
ticles, have been explored to improve RNA delivery.33–37 Formulating
mRNA with delivery systems protects it against degradation and fa-
cilitates cellular uptake. Mechanisms for mRNA loading include elec-
trostatic interactions, hydrogen bonds, or coordination interactions.
Vectors such as lipid nanoparticles (LNPs), polymeric nanoparticles,
and cationic nanoemulsions have been engineered to augment
mRNA delivery.38–40 Optimization of these delivery systems holds
promise for enhancing mRNA transfection efficiency, thereby
advancing mRNA therapeutics. Examples include LNPs modified
with cationic peptides,41 graphene oxide, and polyethylenimine
(PEI) hydrogels carrying mRNA vaccines,42 and mesoporous silica
nanoparticles encapsulating mRNA and RNA-activated protein ki-
nase inhibitors.43

OBJECTIVES OF THE REVIEW
This review provides a comprehensive overview of the advancements
and challenges in mRNA and ribonucleoprotein (RNP)-based thera-
pies, focusing on delivery systems, mechanisms of action, therapeutic
applications, and future directions.

Overview of mRNA- and RNP-based therapies

mRNA therapies involve the delivery of mRNA molecules into cells,
where they are translated into proteins that can perform therapeutic
functions.44 The mRNA is designed to encode specific proteins
needed to treat or prevent diseases.45 RNP therapies involve the use
of RNPs, complexes of RNA and proteins, to achieve therapeutic ef-
fects.46 These therapies often utilize CRISPR-Cas9 technology for
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Figure 2. mRNA delivery systems

Efficient mRNA delivery is challenging due to its size and charge.48
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genome editing, where RNPs can precisely target and modify specific
genetic sequences.47 While both mRNA and RNP therapies aim to
treat diseases at the molecular level, mRNA therapies focus on protein
production, whereas RNP therapies primarily involve gene editing.
Both approaches offer unique advantages and face specific challenges
in terms of delivery, efficiency, and safety.

Advancements in delivery systems

An overview of various delivery systems (different vectors and car-
riers employed to deliver mRNA effectively into target cells) used
for mRNA-based therapies are shown in Figure 2. It includes sections
on viral vectors, which utilize modified viruses to deliver genetic ma-
terial; hybrid carriers, which combine multiple delivery mechanisms;
polymer-based carriers, which use synthetic polymers to encapsulate
and protect mRNA; lipid-based carriers, such as LNPs, which are
commonly used for their efficiency in protecting and delivering
mRNA into cells; protein-mRNA complexes, which involve the use
of proteins to stabilize and transport mRNA; and non-viral vectors,
which include a range of synthetic and natural materials designed
to facilitate mRNA delivery without using viral components. These
varied approaches are crucial for optimizing the stability, efficiency,
and targeting of mRNA-based treatments.

LNPs

Lipid-based carriers, including LNPs and lipoplexes, are extensively
utilized for delivering nucleic acids.49 Proper engineering allows effec-
tive encapsulation of mRNA into LNPs and lipoplexes, protecting it
from degradation and facilitating cellular uptake and endosomal
escape. Components such as cationic or ionizable lipids, cholesterol,
poly(ethylene) glycol (PEG)-lipid, and phospholipids are crucial for
mRNA encapsulation and stability.50 Precise molar ratios of these
components generate LNPs with desired functionalities for mRNA
delivery. Optimization studies have focused on factors such as
lipid-to-mRNA weight ratio, phospholipid identity, and molar ratios
of lipid components to enhance transfection efficiency. Novel cationic
or ionizable lipids with modified head or tail groups have been
explored to improve delivery efficacy.50 In addition, various compo-
nents such as proteins, vitamins, and aminoglycosides have been uti-
lized to construct effective LNPs for mRNA delivery. For example,
mechanism of action of mRNA-LNP vaccines are shown in Figure 3.
Zwitterionic phospholipids have also gained attention for their
involvement in endosomal escape membrane via membrane
fusion.51,52 pH-switchable ionizable phospholipids with multi tails
have shown promise in mRNA delivery, exhibiting organ selectivity
in vivo.53 However, concerns regarding their toxicity, especially those
composed of polycationic and pegylated lipids, have been raised in
several studies.54 Polycationic lipids, known for their ability to encap-
sulate nucleic acids effectively, can also induce cytotoxic effects due to
their positive charge, which may disrupt cellular membranes and lead
to cell death.55,56 This is particularly relevant in the context of thera-
peutic applications, where the balance between effective delivery and
cellular safety is critical.57,58 Pegylated lipids, while enhancing the sta-
bility and circulation time of LNPs in the bloodstream, can also elicit
immune responses that may lead to adverse effects.59 Studies have
shown that pegylation can alter the pharmacokinetics of nanopar-
ticles, potentially resulting in unexpected toxicity.60 For instance,
the formation of anti-PEG antibodies has been documented, which
can lead to accelerated clearance of pegylated nanoparticles and
reduced therapeutic efficacy.60 Furthermore, the accumulation of
these nanoparticles in various tissues can provoke inflammatory re-
sponses, highlighting the need for careful design and optimization
of lipid formulations.60

Polymer-based delivery systems

Polymeric nanoparticles are a promising delivery system for mRNA-
based therapeutics62 (Figure 4). Cationic polymers can complex with
mRNA to form nanoparticles called mRNA polyplexes.63 While early
materials such as PEI and poly(l-lysine) showed limited in vivo effi-
cacy and toxicity, recent attention has turned to functional and biode-
gradable polymers for better outcomes.64 Charge-altering releasable
transport (CART) systems, capable of changing charge properties
in different pH environments, aid in mRNA release in the cytoplasm,
enhancing transfection efficacy.65 Several chemical structures of
CARTs have been explored successfully. In addition, poly(b-amino
esters) (PBAEs) and their derivatives, such as polycaprolactone-based
PBAEs and oligopeptide end-modified PBAEs, have shown promise
in mRNA delivery by facilitating complex formation and enhancing
endosomal escape.66 Hyperbranched PBAEs, synthesized with a tri-
functional amine, have demonstrated superior stability and transfec-
tion efficiency compared with linear PBAEs, particularly in delivering
mRNA to the lung epithelium.67 Libraries of biodegradable polymers
such as poly(amine-co-ester)s have been developed to quantitate en-
dosomal escape, with high encapsulation efficiency identified as a
crucial step in mRNA transfection.68 Ionizable amphiphilic Janus
dendrimers (IAJDs) have emerged as a simple yet effective one-
component system for mRNA delivery.69 Various IAJDs have been
synthesized and evaluated, with some showing high transfection effi-
cacy, while the cation-p interaction has been identified as a potential
avenue for further design optimization.69

Viral vectors and non-viral delivery methods

Delivery of mRNA can be accomplished using both viral and non-
viral vectors.71,72 Viral vectors, such as adeno-associated viruses
and genetically modified viruses, offer the advantage of local
Molecular Therapy: Nucleic Acids Vol. 35 September 2024 3
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Figure 3. Mechanism of action of mRNA-LNP vaccines

This schematic diagram illustrates the process of how mRNA-LNP (messenger RNA-lipid nanoparticle) vaccines elicit an immune response. (1) mRNA packaging: mRNA

encoding the pathogen’s spike protein is encapsulated in LNPs to protect it from degradation and aid its delivery into human cells. (2) Delivery and translation: LNPs transport

mRNA into dendritic cells (DCs), mainly in the lymph nodes, where it is translated into the spike protein. (3) Antigen presentation: the spike protein is displayed onDCs viaMHC

molecules, activating CD4+ and CD8+ T cells. (4) T cell activation: CD4+ T cells recognize MHCII-bound spike proteins, secreting cytokines to stimulate immune responses,

while CD8+ T cells recognize MHCI-bound proteins and release cytotoxic molecules to kill infected cells. (5) B cell activation and memory: B cells recognize the spike protein,

producing antibodies via plasma cells and forming memory B cells for long-term immunity against future infections.61
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replication and expression in the cytoplasm.73,74 However, cytotoxic
effects and potential host rejection pose challenges for viral vectors.
Non-viral vectors include naked mRNA, which can be administered
intramuscularly, subcutaneously, or intradermally, bypassing obsta-
cles associated with systemic administration.71,75,76 Naked mRNA
has demonstrated efficient translation and immune response induc-
tion, particularly when administered subcutaneously. Various phys-
ical and active methods have been employed to enhance skin penetra-
tion and mRNA delivery, including electroporation, microporation,
and microneedle-based delivery.77 These approaches offer advantages
such as reduced cost and potential risk, although naked mRNA faces
challenges such as short plasma half-life and susceptibility to degra-
dation. Delivery systems have been developed to protect mRNA
and promote cellular uptake, addressing these challenges.78

Protein-mRNA complex

Natural positively charged proteins can form complexes with nega-
tively charged mRNA via electrostatic interactions, facilitating the
self-assembly of protein-mRNA complexes.79 Protamine, a positively
charged protein abundant in arginine, has been utilized to complex
4 Molecular Therapy: Nucleic Acids Vol. 35 September 2024
with mRNA vaccines, enhancing immune stimulation by activating
the TLR7 receptor.80 Studies have demonstrated that protamine-
complexed mRNA encoding tumor-associated antigens can induce
a strong antitumor immune response in mice and metastatic mela-
noma patients with minimal toxicity.81 In addition, mammalian
retrovirus-like protein PEG10 has been reported as a promising
vehicle for mRNA delivery, capable of binding, stabilizing, and deliv-
ering mRNA efficiently in human cells, including both single-guide
RNA and Streptococcus pyogenes Cas9 (SpCas9).82–84

INNOVATIONS IN TARGETED DELIVERY AND TISSUE-
SPECIFIC TARGETING
Advancements in targeted delivery, such as tissue-specific ligands and
hybrid carriers, aim to improve the precision and efficacy of mRNA
and RNP therapies.

Hybrid carriers

Hybrid carriers, combining both lipid and polymer components, offer
advantages in mRNA delivery.85 These carriers can enhance stability
and pharmacokinetics, particularly when decorated with lipid to
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prolong circulation time by evading uptake by the reticuloendothelial
system.85 Organic/inorganic hybrid nanoparticles, including metal-
organic frameworks, gold nanoparticles, and graphene oxide-PEI
complexes, have shown promise in mRNA delivery.86 A study by
Choi et al. demonstrated the efficacy of PEI-conjugated graphene ox-
ide in mRNA delivery.87 This hybrid nanoparticle increased loading
capacity, protected mRNA against degradation, and significantly
enhanced transfection efficacy compared with conventional mate-
rials.87 Wang et al. utilized PEI-modified mesoporous organosilica
for mRNA delivery, achieving high transfection efficacy by incorpo-
rating large-pore structures and tetrasulfide to activate the mTORC1
pathway.88 Lipid/polymer hybrid nanoparticles are also promising
mRNA carriers. Islam et al. combined cationic lipid, PLGA, and
DSPE-PEG to construct robust hybrid nanoparticles, exhibiting supe-
rior transfection efficacy compared with conventional lipids.89

MECHANISMS OF ACTION AND THERAPEUTIC
TARGETS
Current therapeutic targets (e.g., infectious diseases, cancer,

genetic disorders)

mRNA-based therapeutics show great potential for treating a diverse
range of challenging diseases, such as infectious diseases, metabolic
genetic disorders, cancer, cardiovascular ailments, and others.1 Mul-
tiple studies have illustrated mRNA’s advantages over traditional
protein and DNA drugs, including enhanced transfection efficiency,
prolonged protein expression, and reduced risk of genomic integra-
tion.90,91 Moreover, mRNA can be synthesized rapidly through
IVT, facilitating quick adaptation to various therapies. Chemical
modifications of specific nucleotides address concerns regarding
immunogenicity and stability, further enhancing the appeal of
mRNA therapy.92 The burgeoning interest in mRNA has attracted
substantial investment, contributing to the establishment of well-
funded biotechnology companies such as Moderna, CureVac,
BioNTech, and others. These companies are actively engaged in
advancing mRNA-based drug technologies, underscoring the signifi-
cant potential of mRNA in drug development.93

Hematologic diseases

Preclinical studies have investigatedmRNA-based protein replacement
therapy for hematologic diseases, particularly hemophilia.94,95 Hemo-
philia, characterized by deficiencies in blood coagulation factors, such
as factor VIII (hemophilia A) and factor IX (hemophilia B), has been
targeted for correction usingmRNA technology.95 LNPs encapsulating
mRNAs encoding different variants of factor VIII (F8) induced rapid
and sustained expression of FVIII in hemophilia A mice.95 In hemo-
philia B, mRNA encoding factor IX (FIX) was delivered using lipidoids
called TTs, leading to restoration of FIX function in FIX-knockout
mice.96 In addition, lipid-enabled LUNAR LNPs encapsulating hFIX
mRNA showed promising results in treating hemophilia B mice,
with a rapid onset of FIX expression lasting up to several days.96

Metabolic diseases

mRNA-based therapies offer promise for treating metabolic diseases
that currently lack effective treatments. Conditions such as hepatore-
nal tyrosinemia, acute intermittent porphyria, Fabry disease, glycogen
storage disease type 1 A, Crigler-Najjar syndrome type 1, and orni-
thine transcarboxylase deficiency could potentially benefit from
mRNA therapies.97–103 For instance, in hepatorenal tyrosinemia, den-
drimer LNPs loaded with mRNA encoding fumarylacetoacetate-hy-
drolase were designed to restore liver function in mice models.104

In acute intermittent porphyria, LNP-encapsulated mRNA induced
expression of porphobilinogen deaminase, normalizing urine
porphyrin precursor excretion and mitigating porphyria attacks.105

Methylmalonic acidemia, another metabolic disorder, showed reduc-
tion in plasma methylmalonic acid levels with systemic expression of
functional mitochondrial methylmalonyl-CoA mutase delivered via
LNPs.106 Hybrid mRNA technology was utilized to deliver ornithine
transcarboxylase mRNA, improving plasma ammonia levels and sur-
vival in deficient mice.103,107 In addition, mRNA therapies have
shown promise in treating diseases such as Fabry disease and alpha
1-antitrypsin deficiency.108,109 Moreover, mRNA-based therapies
have been explored for tumor treatment, with PTEN mRNA delivery
inhibiting tumor growth in PTEN-null mice, and p53 mRNA delivery
inducing growth inhibition and apoptosis in tumor cells.110 Further-
more, mRNA encoding anti-angiogenic proteins has shown efficacy
in inhibiting tumors.111

mRNA-based stem cell therapeutics

RNA-based genome editing has emerged as a potent tool for treating a
variety of diseases, particularly in stem cell therapy.112 Retroviral vec-
tors have been utilized to deliver ZFN protein, mRNA, and DNA to
disrupt targeted genes with high efficiency.113 ZFN mRNA has
demonstrated superior specificity compared with TALEN mRNA
andCRISPR-Cas9mRNAwhen delivered via electroporation into pri-
mary human hematopoietic stem and progenitor cells.113 Plasmid-
derived gRNA and Cas9 mRNA exhibited comparable acute cytotox-
icity, emphasizing the need for optimization in CRISPR-Cas9 delivery
to these cells. Innovative strategies involving macaque-specific CCR5
ZFN mRNA have enabled successful ex vivomodification of hemato-
poietic stem and progenitor cells in large animal models.114–116

mRNA-based monoclonal antibodies

Nucleic acid-encoded monoclonal antibodies (mAbs), particularly
mRNA-based mAbs, hold promise for improving therapy efficacy
and reducing production costs compared with traditional mAbs.117

mRNA-mAbs are mainly applied in treating infections and tu-
mors.117 For instance, mRNA encoding the broadly neutralizing
anti-HIV-1 antibody VRC01 successfully produced the antibody in
mice and protected them from HIV-1 infection.118 Similarly,
mRNA encoding neutralizing antibodies against respiratory syncytial
virus (RSV) and chikungunya virus (CHKV-24) demonstrated effi-
cacy in inhibiting virus replication and protecting against disease in
animal models.119,120 In tumor treatment, mRNA-based antibodies
induced rapid and sustained serum antibody levels, allowing mice
to survive tumor challenges. Delivery methods such as LNPs have
been employed to efficiently transfer mRNA-encoding antibodies.
Moreover, mRNA-based bispecific T cell-engaging antibodies
(bsAbs) showed promising results in inhibiting tumor growth.121
Molecular Therapy: Nucleic Acids Vol. 35 September 2024 5
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Figure 4. Polymer-mRNA delivery system for protein expression

This schematic diagram illustrates the process of mRNA delivery using a cationic polymer carrier, highlighting the key steps involved in cellular uptake and protein expression.

(1) Complex formation: the mRNA (depicted as a red strand) is complexed with a cationic polymer (depicted as a blue strand) to form a polymer-mRNA complex. The cationic

polymer protects the mRNA and facilitates its delivery into the cell. (2) Cellular uptake: the polymer-mRNA complex is taken up by the cell through endocytosis, a process

where the cell membrane engulfs the complex and brings it into the intracellular environment. (3) Endosomal encapsulation: once inside the cell, the polymer-mRNA complex

is encapsulated within an endosome, a membrane-bound vesicle. (4) Endosomal escape: the mRNA is released from the endosome into the cytoplasm. (5) Translation and

protein expression: the released mRNA is translated by the cellular machinery to produce the target protein, completing the process of gene expression.70
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However, some challenges remain, such as safety concerns with
certain delivery vectors like those that viral vectors used for SARS-
CoV-2 mRNA vaccine development.

Non-formulated mRNA vaccine

Non-formulated mRNA, administered intradermally or intranodally,
has proven effective in initiating T cell responses in bothmice and hu-
6 Molecular Therapy: Nucleic Acids Vol. 35 September 2024
mans.21,122–124 Intranodal injection specifically targets dendritic cells
in the area of T cell activation, utilizing macropinocytosis for up-
take.124 Clinical trials with metastatic melanoma patients have
demonstrated the safety and feasibility of naked mRNA vaccines,
stimulating antigen-specific T cell responses.123 For instance, in mel-
anoma patients, intradermal injection of autologous tumor mRNA
combined with GM-CSF enhanced T cell responses. Similarly, in
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renal cell carcinoma (RCC) patients, intradermal administration of
non-formulated mRNA encoding various antigens along with GM-
CSF led to stable disease and partial responses, with a majority of pa-
tients showing antigen-specific T cell responses.123

CHALLENGES AND LIMITATIONS
Stability and degradation of mRNA

RNA is inherently unstable and can trigger immune responses, neces-
sitating delivery vehicles for efficient transport to target cells.125 Nat-
ural RNAs are prone to degradation by native nucleases, but stability
can be significantly enhanced through synthetic modifications.126

Developing effective carriers to protect RNA from the harsh physio-
logical environment is crucial due to RNA’s substantial negative
charges and chemical alterations.127 These challenges have impeded
the clinical advancement of some RNA-based therapies, resulting in
varied outcomes in trials. However, recent promising trial results
indicate that these obstacles can be surmounted with improved syn-
thetic delivery carriers and chemical modifications of RNA therapeu-
tics. Encapsulating RNA within various carriers protects it from
nuclease degradation after systemic administration, thereby
enhancing its stability and longevity.128–131

Immunogenicity and immune response

RNA therapy, utilizing RNA-based molecules to influence biological
pathways, represents a versatile and specific therapeutic approach
with significant potential for treating a diverse array of diseases.132

One of major hurdles to advancing RNA therapy is immunogenicity;
injected or administered RNAs can be recognized by the immune sys-
tem as foreign entities, triggering an innate immune response that
might reduce the therapeutic efficacy, and possibly cause side ef-
fects.133 There have been efforts to address this by modifying the
structure or sequence of RNA nucleotides, coding sequence optimiza-
tion, suppressing the immune system, and packaging RNA within a
shielding delivery system.134 In a study, researchers have identified
a novel method to mitigate the immunogenicity problem. They
used an acylating reagent to add acyl groups to the 20-hydroxyl
(OH) groups on RNAs.135 Studies have shown that local delivery of
naked small interfering RNAs (siRNAs) or aptamers, often preferred
for lung, eye, and skin applications, can trigger a proinflammatory
response due to the activation of TLRs and suffer from poor cellular
uptake and nuclease sensitivity.135 In some cases, these issues can be
mitigated by encapsulating the nucleic acid with a synthetic carrier or
introducing chemical modifications. These strategies are expected to
enhance the specificity, stability, and immunoresistance of RNA-
based drugs.136 Modified ribonucleotides, such as N1-methylpseu-
douridine, are incorporated into therapeutic mRNAs primarily to
reduce their innate immunogenicity.137 The reduction of immune
recognition is crucial for avoiding hyperinflammatory responses,
ensuring that therapeutic mRNA reaches its target cells without being
prematurely degraded by the body’s innate immune system. These
modifications have been essential to the success of mRNA vaccines,
allowing them to deliver genetic instructions effectively and with
fewer side effects.137 However, incorporating N1-methylpseudouri-
dine can lead to +1 ribosomal frameshifting during the translation
of mRNA. These +1 frameshifted products may initiate immune re-
sponses, as demonstrated by cellular immunity to these abnormal
proteins after vaccination with mRNA vaccines containing N1-meth-
ylpseudouridine. This response involves T cells and possibly B cells,
indicating the potential for unintended immunogenic effects.137,138

Frameshifting is mainly attributed to ribosomal stalling at particular
slippery sequences, potentially leading to the synthesis of abnormal
proteins. This phenomenon has been observed in both lab-based
studies and cultured cells, possibly due to disruptions in aminoacyl-
tRNA binding that slow down the translation process.139–141 Despite
evidence that N1-methylpseudouridine can induce frameshifting, it is
important to note that no adverse reactions have been reported in hu-
mans who have received mRNA-based SARS-CoV-2 vaccines. The
safety of these vaccines has been thoroughly assessed, and frameshift-
ing has not been linked to any major clinical consequences.142–144 To
reduce the risks associated with frameshifting, researchers have pin-
pointed synonymous targeting of slippery sequences as an effective
method. Optimizing mRNA sequences can reduce the occurrence
of frameshifting events, thereby decreasing the production of aberrant
proteins. This approach is crucial for enhancing the safety and effi-
cacy of future mRNA-based therapies.145 Further investigation into
alternative ribonucleotide modifications is needed. For instance, us-
ing 5-methoxyU has shown to decrease translation efficiency, which
could limit its clinical application.146 Researching various modifica-
tions may lead to strategies that maintain low immunogenicity
without affecting translation fidelity.146

Efficiency of delivery and cellular uptake

Recent advancements in nanotechnology and materials science offer
promising solutions to the intricate challenges of delivering oligonucle-
otide drugs, especially for achieving effective intracellular penetration
across biological barriers and membranes.147 Nanoparticle-based
drug delivery systems provide several advantages, including the ability
to finely tune biophysical parameters such as size, shape, and chemical
composition, alongside optimizing biological properties through tar-
geted ligand functionalization.148 Ensuring efficient RNA delivery
into the cytoplasm is critical for successful RNA therapy, as RNA’s
large size, hydrophilicity, and negative charge hinder its passive diffu-
sion across lipid bilayers.149Overcoming extracellular and intracellular
barriers involves evading serum nucleases, bypassing macrophage
scavenging in the reticuloendothelial system, and navigating through
the extracellularmatrix via receptor-mediated endocytosis.150 Effective
endosomal escape and non-toxic release of RNAs into the cytoplasm
remain significant technical hurdles.151 To address these challenges, re-
searchers are exploring various chemicalmodifications and engineered
delivery formulations to optimize pharmacodynamic andpharmacoki-
netic profiles. The complexity of delivering RNA-based drugs, due to
their larger size compared with traditional therapeutics, underscores
the need for precise targeting strategies within the body.

Off-target effects and specificity

Jackson and Linsley reported the first instances of off-target effects us-
ing genome-wide microarray profiling.152 They observed modest al-
terations (1.5- to 3-fold changes) in the expression of numerous genes
Molecular Therapy: Nucleic Acids Vol. 35 September 2024 7

http://www.moleculartherapy.org


www.moleculartherapy.org

Review
upon transfecting individual siRNA molecules.152 The degree of
complementarity between the siRNA’s sense or antisense strand
and off-target genes varied widely, resulting in distinct off-target
expression profiles for each siRNA sequence.153 Off-target effects
occur when siRNA is processed by the RNA-induced silencing com-
plex, inadvertently suppressing unintended gene targets.154 These
unintended changes in gene expression can lead to observable pheno-
typic variations, such as false positives, underscoring the need to
elucidate the underlyingmechanisms of off-targeting.155 Understand-
ing these mechanisms is crucial for developing strategies to mitigate
off-target effects. Similarly, ribozymes and aptamers encounter chal-
lenges related to delivery and off-target toxicity, akin to those faced by
siRNAs.156,157

Risks associated with mRNA therapies

Continuous positive PCR tests for SARS-CoV-2 have been obser-
ved in patients long after recovery, raising questions about the
cause.158–160 While reinfection is possible, some studies suggest that
these cases are not due to new infections, as no active virus has
been isolated from such individuals.161–163 One theory is that viral
RNA might integrate into the host genome via a reverse transcription
mechanism, leading to persistent RNA detection.164 SARS-CoV-2, an
RNA virus, replicates its RNA using an RNA-dependent RNA poly-
merase. However, nonretroviral RNA viruses such as SARS-CoV-2
could potentially be reverse-transcribed and integrated into host
DNA by endogenous reverse transcriptase, such as those from
LINE-1 elements.165 These elements, prevalent in the human genome,
can be activated by viral infections, including SARS-CoV-2, poten-
tially explaining the persistent detection of viral RNA. This mecha-
nismmight also account for why some patients test positive long after
recovery, as integrated viral DNA could lead to RNA expression,
mimicking active infection.166 Zhang et al. provide evidence that
SARS-CoV-2 sequences can be reverse-transcribed and integrated
into human cell DNA, primarily through endogenous LINE-1 ele-
ments. Such integration results in the expression of chimeric virus-
host RNAs, possibly affecting clinical outcomes by continuously stim-
ulating immune responses without producing infectious virus. While
only a small fraction of cells may express viral sequences, this process
could potentially influence the disease course or even trigger autoim-
munity. This discovery also highlights potential challenges in using
PCR tests to monitor antiviral treatment effectiveness, as they may
detect integrated viral sequences rather than active infections.166

The mRNA vaccines from Moderna and Pfizer-BioNTech use LNPs
to deliver synthetic mRNA into human cells. This mRNA encodes
the spike protein of SARS-CoV-2, facilitating the immune system’s
ability to recognize and fight the virus. Importantly, this mRNA
does not enter the cell nucleus and thus does not interact with or inte-
grate into human DNA.167–169 The cellular machinery translates the
mRNA into the spike protein in the cytoplasm, after which the
mRNA is naturally degraded by normal cellular processes.170

CLINICAL APPLICATIONS AND TRIALS
Various RNA-based strategies have been explored extensively in both
experimental and clinical settings. There is significant interest in
8 Molecular Therapy: Nucleic Acids Vol. 35 September 2024
exploring the synergistic effects of combining mRNA- and RNP-
based therapies with other treatments such as immunotherapy or
chemotherapy, potentially enhancing patient outcomes. Moving for-
ward from preclinical investigations to clinical trials is crucial to
establish the safety and effectiveness of mRNA- and RNP-based ther-
apies in human patients. This progression is essential to pave the way
for broader adoption and application of these therapies in clinical
practice.171 RNA-based therapeutics have gained initial traction in
addressing diseases with clear pathological mechanisms, such as
oncology, neurological disorders, and infectious diseases (Table 1)172–
175. These therapies are particularly aimed at conditions where con-
ventional treatments have limited efficacy. Ongoing clinical studies
are exploring RNA-based approaches for a wide range of incurable
diseases. The specific RNA sequence plays a pivotal role in modu-
lating the expression or activity of target molecules. Notably, a signif-
icant portion of phase I trials involving antisense oligonucleotide
(ASO)-based therapies has progressed to phase II/III trials over the
past 5 years, focusing on rare and common diseases, including orphan
genetic disorders and cancer. The US FDA has approved several ASO
drugs, such as mipomersen and inotersen (notably identified by the
-rsen suffix), underscoring their clinical relevance and potential
impact.176 In 2013, the FDA-approved mipomersen as the second
ASO drug, targeting homozygous familial hypercholesterolemia. Mi-
pomersen functions by binding to the mRNA sequence of apolipo-
protein B-100 (ApoB-100) and cleaving it to reduce cholesterol levels.
Other FDA-approved ASO drugs, such as nusinersen, eteplirsen, and
golodirsen, modulate target pre-mRNAs’ splicing processes. In addi-
tion, the FDA has approved three siRNA-based drugs: patisiran, givo-
siran, and lumasiran, identified by the -siran suffix. Patisiran,
approved in 2018, addresses hereditary transthyretin-mediated
amyloidosis by targeting transthyretin mRNA to inhibit protein syn-
thesis. Givosiran, the second approved siRNA-based drug, treats
acute hepatic porphyria by reducing levels of aminolevulinic acid
(ALA) and porphobilinogen, metabolic intermediates in heme
biosynthesis pathway, thus alleviating symptoms associated with
the disease.177,178 Givosiran functions by targeting ALA synthase 1,
thereby suppressing its expression and restoring normal heme
biosynthesis.179 Its delivery involves a trivalent N-acetylgalactos-
amine conjugate attached to the 3ʹ end of its passenger strand,
enabling subcutaneous administration and specific targeting of hepa-
tocytes via the asialoglycoprotein receptor. This delivery approach,
effective for liver-targeting siRNAs, is widely employed for similar
therapeutics. In 2021, the US FDA-approved inclisiran for the treat-
ment of primary hypercholesterolemia or mixed dyslipidemia.171,180

SAFETY AND REGULATORY CONSIDERATIONS
RNA therapy involves using RNA-based molecules to treat or prevent
diseases. Unlike DNA therapy, RNA therapy does not pose significant
genotoxic effects. In DNA-based therapies, the DNA molecule is
introduced into cells using a viral vector, which can integrate into
the genome and potentially cause mutations. This risk is mitigated
with RNA therapy, as RNA is used instead of DNA. Despite its prom-
ise, RNA therapy faces challenges, including poor pharmacological
properties, difficulties in intracellular delivery, and immune-related
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toxicity. Issues such as off-target binding, sequence-induced toxicity,
and oversaturation of the endogenous RNA processing pathway also
impact the effectiveness of RNA-based approaches.171,181,182

Innovations in delivery systems and formulation

Effective delivery of RNA-based drugs poses a formidable hurdle in
their therapeutic application. Current strategies include integrating
targeting elements, encapsulating in lipid-based nanoparticles, or
direct administration to specific organs with minimal alteration.
Kim et al. emphasize the urgent need for advancing RNA drug deliv-
ery techniques as a cornerstone of future research efforts.183 RNA
therapeutics operate by modulating the expression and function of
precise target molecules, offering a novel approach to treating diseases
resistant to traditional pharmaceuticals. These therapies hold promise
for customization across diverse RNA and protein formats, poten-
tially revolutionizing personalized medicine and addressing unmet
needs in rare disease treatments.132 Stephenson and Zamecnik’s
pioneering work in 1978 marked the first therapeutic use of RNA
base-pairing, employing an ASO to target the 35S RNA of the Rous
sarcoma virus and inhibit viral replication.184 Nearly two decades
later, the US FDA approved the first ASO drug for treating cytomeg-
alovirus retinitis, illustrating a significant milestone in RNA-based
therapy.185,186 RNA splicing, crucial for removing introns and joining
exons in RNA transcripts, was first elucidated in 1977.187 Variations
in splicing are implicated in various human diseases, challenging con-
ventional drug treatments but offering potential targets for RNA-
based therapies such as ASOs.188,189

In contrast to the extended development timeline of ASO drugs, the
progress from discovery to clinical application of siRNAs was notably
swift. RNA interference (RNAi) was initially characterized in 1998,
demonstrating potent and specific inhibition of targeted mRNAs in
Caenorhabditis elegans embryos treated with sense and antisense
RNAs.190 The simplicity and effectiveness of RNAi quickly gained
traction in scientific research and applications.191 In 2002, RNAi
was shown to inhibit hepatitis C virus replication in mice, prompting
widespread exploration of its therapeutic potential.192 Clinical trials
employing RNAi technologies began in 2010, with a notable study us-
ing an siRNA targeting the M2 subunit of ribonucleotide reductase to
treat melanoma, achieving successful mRNA cleavage via targeted
nanoparticle delivery.193 Subsequent evaluations led to the approval
of the first siRNA-based drug for hereditary transthyretin-mediated
amyloidosis in 2018, highlighting the transformative impact of
RNA-based therapies in modern medicine.132 Chemical modification
represents a promising approach for enhancing the delivery of RNA-
based drugs. By altering the nucleic acid backbone, ribose ring, and
nucleobase, researchers can optimize these molecules to exhibit
more favorable drug-like properties. For instance, extensive chemical
modifications enable gapmer ASOs to reach various tissues effectively
without requiring additional delivery agents. Currently, 8 out of the
10 approved oligonucleotide treatments are administered without
the need for supplemental delivery vehicles. However, caution is war-
ranted as certain synthetic nucleotides, such as LNA-modified nucleic
acids, have been associated with significant hepatotoxicity risks. In
response, bioengineered RNAi agents have emerged as a promising
new class of in vivo RNA agents designed with minimal post-tran-
scriptional modifications, offering exciting prospects for future
applications.132,171

NEW THERAPEUTIC TARGETS AND APPLICATIONS
Targeting undruggable targets

RNA-based therapeutics offer a significant advantage in their ability
to target virtually any genetic component within a cell, including
those traditionally considered undruggable by small molecules and
antibodies.194,195 Noncoding RNAs, particularly small RNAs, are
distinguished by their specific RNA sequences, enabling drugs such
as antisense RNA and siRNA to bind selectively to their targets.196

This sequence specificity suggests that these therapies can effectively
target noncoding RNAs, which play crucial roles in disease pathogen-
esis.197 Given the prevalence of noncoding RNAs in the human
genome and their documented significance in various diseases,
RNA-based treatments are increasingly recognized for their potential
impact and therapeutic relevance.198,199

Less than one-third of human proteins are thought to be suitable tar-
gets for small-molecule drugs.200–202 This limitation arises from the
structural similarities shared among many proteins, which compli-
cates the direct targeting of specific ones.203 Membrane-integrated
proteins pose an additional challenge because their interaction sites
within the cytoplasm are limited, making them difficult targets for
small molecules or antibodies.204 In contrast, RNA-based drugs offer
a different approach by targeting the biogenesis of these proteins. By
inhibiting their production, RNA-based therapies have the potential
to enhance therapeutic effectiveness in cases where direct protein tar-
geting is challenging.205,206 This strategy represents a promising
avenue for developing treatments that can address conditions associ-
ated with membrane-integrated proteins and other challenging
therapeutic targets.205,206 Developing new small-molecule- or anti-
body-based drugs usually involves a lengthy timeline.206 In contrast,
once the chemical structure of RNA and its deliverymethod are deter-
mined, RNA-based drugs can be swiftly designed and synthesized for
clinical trials.202 For example, an siRNA drug designed to target a dis-
ease caused by excessive gene expression in a specific organ can easily
be modified to treat other diseases affecting the same organ by adjust-
ing the siRNA sequence.207 This adaptability is evident in the exten-
sive development of siRNA drugs using liver cell-specific conjugates
to address various liver metabolism-related disorders.207 This rapid
adaptability underscores the potential of RNA-based therapies to
quickly respond to emerging medical needs and expand treatment
options within specific organs.207

LONG-TERM OUTLOOK AND FUTURE RESEARCH
DIRECTIONS
Despite facing substantial hurdles in clinical testing, RNA-based ther-
apeutics have gleaned invaluable insights from previous trials. These
efforts have shown early potential in treating cancers, viral infections,
and genetic disorders. However, fully realizing the capabilities of
RNAi- and RNA-based therapies necessitates advanced delivery
Molecular Therapy: Nucleic Acids Vol. 35 September 2024 9
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Table 1. Approved and clinical trials for RNA therapeutics

Trade name Approved and clinical trials Disease type Admiration route Delivery system

mRNA: (elasomeran) Moderna 2021FDA approved infectious intramuscular LNP

mRNA:Comirnaty(tozinameran)
Pfizer-BioNTech

2021 FDA approved infectious intramuscular LNP

siRNA:Givlaari(givosiran)Alnylam 2019 FDA approved genetics subcutaneous conjugate (GalNAc)

siRNA:Onpattro(patisiran) Alnylam 2018 FDA approved genetics intravenous LNP

siRNA:Oxlumo(lumasiran)Alnylam 2020 FDA approved genetics subcutaneous conjugate (GalNAc)

siRNA:Leqvio (inclisiran)Novartis 2021 FDA approved genetic and physiological subcutaneous conjugate (GalNAc)

ASO:Vitravene(fomivirsen)
IsisPharmaceuticals–discontinued

1998 FDA approved infectious intravitreal Mod/Sub (PS)

Spinraza (nusinersen) Biogen 2016 FDA approved genetic intrathecal Mod/Subs (20-MOE, PS, 5-methyl cytosine)

Kynamro (mipomersen)
Genzyme–discontinued

2013 FDA approved genetic subcutaneous Mod/Subs (20-MOE, PS, 5-methyl cytosine)

Tegsedi (inotersen) Akcea 2018 FDA approved genetic subcutaneous Mod/Subs (20-MOE, PS)

Vyondys 53 (golodisen) Sarepta 2019 FDA approved genetic intravenous Mod/Subs (PMO)

Exondys 51 (eteplirsen) Sarepta 2016 FDA approved genetic intravenous Mod/Subs (PMO)

Milasen Brammer Bio 2018 FDA approved genetic intrathecal Mod/Subs (20-MOE, PS, 5-methyl cytosine)

Viltepso (viltolarsen) NS Pharma 2020 FDA approved genetic intravenous Mod/Subs (PMO)

Waylivra (volanesorsen) Akcea 2019 EMA genetic subcutaneous Mod/Subs (20-MOE)

Aptamer: Macugen (pegaptanib)
Gilead–discontinued

2004 FDA approved physiological intravitreal conjugate (PEG)

NCT04573140 phase I cancer intravenous liposome

NCT02316457 phase I cancer intravenous liposome

NCT02872025 early phase I cancer intralesional LNP

NCT03897881 phase II cancer intravenous LNP

NCT03871348 phase I cancer intratumoral LNP

NCT03164772 phase I/II cancer intradermal LNP

NCT03948763 phase I cancer intradermal LNP

NCT04163094 phase I cancer intravenous liposome

NCT03313778 phase I cancer intramuscular LNP

NCT04534205 phase II cancer intravenous liposome

NCT05043181 phase I genetic intravenous other (exosome)

NCT04990388 phase I/II genetic intravenous LNP

NCT04442347 phase I genetic intravenous LNP

NCT05130437 phase I/II genetic intravenous LNP

NCT04652102 phase II/III infectious intramuscular LNP

NCT05085366 phase III infectious intramuscular LNP

NCT05001373 phase I infectious intramuscular LNP

NCT04144348 phase I infectious intramuscular LNP
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strategies. Innovations such as aptamer-siRNA chimeras and trans-
ferrin-decorated nanoparticles are poised to significantly enhance
the precision and efficacy of RNA drug delivery. These engineered de-
signs represent crucial advancements in targeting specific tissues and
cells, thereby paving the way for broader applications of RNA-based
treatments in clinical settings.171,172 The future of RNA-based drugs
hinges on refining their biochemical properties to optimize potency
while reducing off-target toxicity and immunogenicity. Specifically,
10 Molecular Therapy: Nucleic Acids Vol. 35 September 2024
siRNAs will require precise chemical modifications to mitigate
nonspecific inflammatory responses, alongside the use of natural or
synthetic carriers to achieve efficient and targeted delivery to tissues.
These considerations have played a pivotal role in yielding promising
clinical outcomes for various siRNA drugs such as CALAA-01,
TD101, ALN-VSP02, and ALN-RSV01. While these successes high-
light the potential of siRNA therapeutics, they also underscore the
critical importance of developing tailored carriers that can selectively
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target specific cells and tissues, thereby maximizing therapeutic effi-
cacy while minimizing adverse effects. Continued advancements in
carrier design and chemical modification strategies are essential for
advancing RNA-based therapies into broader clinical applications.172
FUTURE DIRECTIONS AND EMERGING TRENDS
Continued research should focus on improving the efficiency of
mRNA and RNP delivery systems, particularly addressing chal-
lenges such as off-target effects, RNP denaturation during produc-
tion, and encapsulation efficiency. Developing strategies for precise
tissue-specific targeting of mRNA- and RNP-loaded LNPs will be
crucial for enhancing therapeutic outcomes while minimizing off-
target effects.208 The field of mRNA- and RNP-based therapies
holds immense promise for revolutionizing disease treatment,
ranging from cancer therapy to infectious diseases. Significant prog-
ress has been made in developing delivery systems, such as LNPs, to
efficiently transport mRNA and RNPs into target cells, enabling
precise genome editing and protein expression. Despite remaining
challenges, including optimization of delivery efficiency and tis-
sue-specific targeting, ongoing research efforts continue to drive
innovation in this rapidly evolving field.208 With continued ad-
vancements and translation into clinical practice, mRNA- and
RNP-based therapies have the potential to significantly impact the
landscape of modern medicine, offering new hope for patients
with a wide range of diseases.132
CONCLUSION
RNA-based approaches encompass a diverse array of techniques
applied in both experimental settings and clinical trials. Widely uti-
lized methods include commoditized ASOs, siRNAs, antagomirs,
and aptamers, which are instrumental in manipulating mRNA
expression levels and inhibiting noncoding RNA functions through
specific RNA targeting. Several ASOs, siRNAs, aptamers, and
mRNA vaccines have received clinical approval, underscoring their
therapeutic potential. Despite these advancements, the primary chal-
lenge hindering broader adoption of RNA-based therapies lies in
effectively delivering these drugs to target organs and tissues beyond
the liver. Issues such as off-target binding, sequence-induced toxicity,
and saturation of endogenous RNA processing pathways can also
impact treatment efficacy. To address these challenges, enhancing
RNA drug delivery efficiency through chemical modifications and
conjugation with nanocarrier systems holds promise. Continued
research into RNA-based therapeutics, including the exploration of
RNA molecules as therapeutic agents and their targeting with small
molecules, will drive advancements toward more effective treatments
for patients.
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