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Reduced expression of the mitochon-
drial protein Frataxin (FXN) is the

underlying cause of Friedreich’s ataxia.
We propose a model of premature termi-
nation of FXN transcription induced by
pathogenic expanded GAA repeats that
links R-loop structures, antisense tran-
scription, and heterochromatin forma-
tion as a novel mechanism of
transcriptional repression in Friedreich’s
ataxia.

Expanded GAA Repeats Induce
an Altered Chromatin

Environment at the FXN Locus
in Friedreich’s Ataxia

Tandem repeats make up »3% of the
human genome.1 These sequences are
often highly polymorphic and both their
normal variability as well as pathological
changes can drastically affect phenotype,
predominantly via altering gene expres-
sion. Mutations in selected short tandem
repeats composed of 3–6 nucleotide units
are responsible for »30 severe neurologi-
cal and neuromuscular diseases, including
fragile X syndrome, myotonic dystrophy,
Huntington’s disease, and Friedreich’s
ataxia (FRDA).2 Friedreich’s ataxia, the
most common inherited form of ataxia, is
a fatal neurodegenerative disease that
results from large expansions of GAA tri-
nucleotide repeat sequences in intron 1 of
the Frataxin (FXN) gene, leading to tran-
scriptional repression.3 While unaffected
individuals carry less than 40 repeats,
patients have large GAA tracts reaching
several hundreds of GAAs.3

In 2003, Saveliev et al.4 demonstrated
that insertion of these expanded polypur-
ine-polypyrimidine repeats induce posi-
tion effect variegation leading to

transcriptional silencing of the nearby
located transgenes. Detailed histone modi-
fication analyses conducted in various
FRDA animal and cell line models, as well
as in FRDA patient cells, readily con-
firmed the heterochromatin-like charac-
teristics of this locus, featuring enriched
histone H3 lysine 9 methylation
(H3K9me2/me3) and decreased histone
H3 and H4 acetylation.5-7 These GAA-
induced chromatin changes were localized
in direct proximity of the GAA repeats
and did not spread more than 2 kb from
the expanded repeats.

Although significant downregulation of
FXN expression (~75-95%) is undoubt-
edly the underlying cause of the FRDA,
the molecular trigger as well as mecha-
nisms of the transcriptional repression
induced by the expanding intronic GAA
repeat tract are unclear. Importantly, tran-
script stability and FXN pre-mRNA splic-
ing are not affected by GAA expansion,
nor has formation of GAA repeat-contain-
ing RNA foci been detected in FRDA
samples.8 A consensus in the field exists
regarding significant changes in histone
modification patterns induced by GAA-
expansions. Treatment with particular his-
tone deacetylase inhibitors results in the
moderate elevation of frataxin mRNA lev-
els and is accompanied by increased his-
tone acetylation both in the promoter and
vicinity of the GAAs.8,9 On the contrary,
treatment with the G9a histone methyl-
transferase inhibitor BIX-01294 decreases
the level of H3K9me2 but fails to reacti-
vate FXN expression.10 Additional investi-
gation into potential combinatorial
approaches is necessary to fully elucidate
the effects of histone modification-tar-
geted therapies on FXN transcription.

Evidence has been presented indicating
that transcription initiation at the FXN
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promoter is affected by spreading of the
heterochromatin-like environment toward
the transcription initiation region.11,12

Other studies indicated that transcription
elongation rather than initiation is criti-
cally affected by expanded GAAs.10,13,14

RNA polymerase II (RNAP II) profiling
data (both total and serine 2 phosphory-
lated RNAP II) showed that RNAP II
recruitment and transcription initiation
proceed with similar efficiency in both
control as well as in FRDA cells.10 Nota-
bly, an antisense transcript termed FAST1
has been identified in proximity to the
GAA repeats.15 Strand-specific RNAP II
profiling experiments could determine
whether transcription initiation and elon-
gation of sense and antisense transcripts
contribute to this conflicting data. Pre-
mRNA quantitation analyses demon-
strated a significant decrease of the pri-
mary transcript downstream of the
expanded GAAs, indicating that elonga-
tion is the primary step affected by GAA
expansion.14 These conclusions are sup-
ported by RNA sequencing analyses of
ribo(-) transcripts in control and FRDA
cell lines showing a defect in transcription
elongation rate (Li et al., unpublished).

R-loop formation inhibits FXN
transcription

The critical link between the DNA
mutation and silencing of FXN is missing.
Results of 2 recent studies point toward a
novel molecular mechanism by which
long GAAs can impede transcription.
First, Groh et al.13 uncovered that
expanded GAAs form R-loop structures in
both human FRDA cells and model cell
lines, and elimination of these DNA-RNA
hybrids by RNase H1 overexpression reac-
tivated frataxin transcription in a lucifer-
ase reporter system. R-loop formation has
been observed for other expanded repeats,
including transcribed CTG, CGG,
CCCCGG repeats,16-19 as well as at
GAAs in prokaryotic models.20 The work
by Groh et al. was the first report showing
that these structures per se may be impor-
tant not only for GAA instability but also
for transcriptional silencing. Thus, these
analyses identified a likely trigger for tran-
scriptional inhibition. However, the exact
mechanism linking R-loops with chroma-
tin changes remained unknown.

R-loops have been implicated in a
plethora of molecular processes including
DNA rearrangements, repeat instability,
recombination and silencing of centro-
meric chromatin (reviewed in21). Recent
work by Skourti-Stathaki et al.22 revealed
a critical connection between R-loop for-
mation, repressive chromatin marks and
transcription terminators in mammalian
genes. Initial studies by the same group
demonstrated that R-loops facilitate
RNAP II pausing before efficient termina-
tion in yeast.23 Continuation of these
studies in mammalian cells revealed that
R-loops located nearby transcription ter-
mination regions represent RNAP II
pause sites that induce antisense transcrip-
tion leading to the recruitment of DICER,
AGO1 and AGO2. Moreover, G9a his-
tone methyltransferase recruited to these
R-loop regions deposits H3K9me2 marks
further stimulating the recruitment of
HP1g and reinforcing RNAP II pausing
at the termination regions.22 These find-
ings were supported by genome-wide
analyses indicating that the R-loop-medi-
ated termination mechanism applies to a
substantial subset of mammalian genes.22

Altogether, the formation of R-loops,
increased levels of H3K9me2 and HP1g
binding, and the presence of the antisense
FAST1 transcript all in proximity to the
repeats in FRDA patient cells strongly
suggest that a similar, RNAi-based tran-
scription termination mechanism may be
responsible for aberrant FXN silencing
(Fig. 1). FAST1 expression is significantly
higher in FRDA cells when compared to
controls lacking expanded GAAs,15 thus
mimicking R-loop stimulated antisense
transcription at the termination regions.22

Moreover, the FAST1 transcript was also
demonstrated to form a double-stranded
RNA (dsRNA) with the FXN sense tran-
script, and the RNA duplex interacted
with argonaute proteins, Ago 1 and Ago
2.24 However, the identified FXN-FAST1
dsRNA aligns to the transcription initia-
tion region and not to the GAAs. Results
of a recent genome-wide screen aimed to
uncover a modulator of GAA repeat sta-
bility and fragility in yeast demonstrated
that expanded GAAs serve as promoters
and recruit transcription initiation fac-
tors,25 suggesting a potential mechanism
to generate GAA�TTC dsRNA from the

GAA repeat region. Therefore, either
FAST1 is a longer antisense transcript
originating at the GAA region, or a second
putative antisense transcript is initiated at
the expanded GAA repeats (Fig. 1B).

Premature termination of FXN
transcription is induced by the GAA
repeat expansion in FRDA

A clear resemblance between R-loop
mediated transcription termination at the
30 untranslated regions (UTRs) and silenc-
ing of the mutated FXN gene suggests that
transcriptional deficiency in FRDA may
not be caused simply by defective initia-
tion or elongation, but rather might
involve recognition of aberrant transcrip-
tion termination signals. Indeed, tran-
scription through the expanded GAAs can
be restored by overexpression of RNase H
but not by inhibition of H3K9me2 meth-
ylation, similar to the 3’UTR R-loop asso-
ciated termination.10,13,22 Additionally,
termination of transcription frequently
occurs at multiple locations within a 30

UTR, demonstrating that some termina-
tion signals can be bypassed by elongating
RNAP II. In support, FRDA cells harbor-
ing expanded repeats express a small frac-
tion, 5–25%, of FXN mRNA relative to
control cells indicating that the GAA-
mediated transcription impediment is not
100% efficient and can be overcome,
allowing for some transcripts to escape
premature termination.

RNAP II pausing and transcription ter-
mination occurs in the R-loop region
downstream of the polyadenylation signal
(PAS) in the subset of genes identified as
containing pause-type termination
regions.22 Intron 1 of the FXN gene shares
some characteristic sequence features of
transcription termination regions. Nota-
bly, several canonical AAUAA signals are
present in the vicinity of the GAA repeats
followed by GU rich sequences resem-
bling the downstream sequence element
shown to facilitate 30 end mRNA forma-
tion. Additionally, polymorphisms of that
region, especially polyA stretches 50 and 30

of the GAAs, may facilitate transcription
termination when R-loops are present. In
fact, the GAA region in the FXN gene
evolved from an Alu element,26 and polyA
sequences typical for Alu sequences have
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been mutated to create canonical
AAUAAA PAS motifs.27

Thus, R-loop formation, followed by
antisense transcription and activation of
the RNAi pathway could lead to dsRNA-
induced local chromatin changes and
aberrant transcription termination at the
mutated FXN gene. This model, if vali-
dated in FRDA cells, could shift therapeu-
tic efforts toward alleviating
R-loop formation at the GAA repeats

rather than targeting the silencing histone
marks that appear to be a consequence of
the DNA-RNA hybrid formation. Until
recently R-loops have been considered a
rare transcription nuisance that may affect
genome stability. Discoveries of the past 2
years have demonstrated that these hybrid
structures are rather frequent and are
indispensable to gene expression regula-
tory processes.21 Therefore, targeting
pathogenic R-loops has to be conducted

very precisely and specifically without
affecting physiologically important DNA-
RNA hybrids.
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