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abstract

 

The active absorption of fluid from the airspaces of the lung is important for the resolution of clini-

 

cal pulmonary edema. Although ENaC channels provide a major route for Na

 

�

 

 absorption, the route of Cl

 

�

 

 trans-
port has been unclear. We applied a series of complementary approaches to define the role of Cl

 

�

 

 transport in

 

fluid clearance in the distal airspaces of the intact mouse lung, using wild-type and cystic fibrosis 

 

�

 

F508 mice. Ini-
tial studies in wild-type mice showed marked inhibition of fluid clearance by Cl

 

�

 

 channel inhibitors and Cl

 

�

 

 ion
substitution, providing evidence for a transcellular route for Cl

 

�

 

 transport. In response to cAMP stimulation by
isoproterenol, clearance was inhibited by the CFTR inhibitor glibenclamide in both wild-type mice and the nor-
mal human lung. Although isoproterenol markedly increased fluid absorption in wild-type mice, there was no ef-

 

fect in 

 

�

 

F508 mice. Radioisotopic clearance studies done at 23

 

�

 

C (to block active fluid absorption) showed 

 

�

 

20%

 

clearance of 

 

22

 

Na in 30 min both without and with isoproterenol. However, the clearance of 

 

36

 

Cl was increased by
47% by isoproterenol in wild-type mice but was not changed in 

 

�

 

F508 mice, providing independent evidence for
involvement of CFTR in cAMP-stimulated Cl

 

�

 

 transport. Further, CFTR played a major role in fluid clearance in a
mouse model of acute volume-overload pulmonary edema. After infusion of saline (40% body weight), the lung
wet-to-dry weight ratio increased by 28% in wild-type versus 64% in 

 

�

 

F508 mice. These results provide direct evi-
dence for a functionally important role for CFTR in the distal airspaces of the lung.
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I N T R O D U C T I O N

 

The mechanisms that regulate the removal of salt and
water from the distal airspaces of the lung are relevant
to understanding the resolution of clinical pulmonary
edema. Most experimental studies have attributed a
primary role for active sodium transport in the vecto-
rial transport of salt and water from the apical to the
basal surface of the alveolar epithelium. Several in vivo
studies have demonstrated that inhibition of sodium
uptake by amiloride, or one of its analogues, reduces
the rate of vectorial salt and water transport in the
sheep, rat, rabbit, mouse, and human lung (Berthi-
aume et al., 1987; Effros et al., 1989; Matthay et al.,
1996). In vitro studies support a role for sodium in driv-
ing salt transport across cultured alveolar epithelial
type II cells (Cheek et al., 1989; Matalon and O’Brodo-
vich, 1999; Jain et al., 2001). Also, the 

 

�

 

 subunit of the
apical epithelial sodium channel (ENaC)* is essential
for the perinatal removal of alveolar fluid in the mouse
lung (Hummler et al., 1996).

 

The contribution of chloride transport to the isosmo-
lar reabsorption of fluid from the distal airspaces of the

lung is less clear. Measurements on cultured alveolar epi-
thelial type II cells suggested that cAMP mediated apical
uptake of sodium may be driven by an increase in chlo-
ride conductance (Jiang et al., 1998). However, the re-
sults were considered inconclusive, partly because the ex-
periments were done using cultured alveolar epithelial
cells of uncertain phenotype (Lazrak et al., 2000; Widdi-
combe, 2000). Furthermore, studies of isolated alveolar
epithelial type II cells do not address the possibility that
vectorial fluid transport may be mediated by several dif-
ferent epithelial cell types including alveolar epithelial
type I cells (Borok et al., 2002; Johnson et al., 2002) as
well as distal airway epithelial cells (Folkesson et al.,
1996). Studies in several species have indicated that the
distal airway epithelium is capable of ion transport (Bal-
lard et al., 1992; Al-Bazzaz, 1994). Both ENaC and the
CFTR are expressed in distal airway as well as alveolar ep-
ithelia (Engelhardt et al., 1994; Rochelle et al., 2000).

We reasoned that intact lung studies were required to
define the role of chloride and CFTR in active salt and
water transport across the distal airspaces. Several strat-
egies were used. Inhibition and ion substitution experi-
ments indicated an important role for transcellular
chloride transport. Experiments in wild-type mice and
the ex vivo human lung demonstrated that isoprotere-
nol-stimulated fluid absorption was inhibited by glib-
enclamide, suggesting a role for CFTR. To test the role
of CFTR directly, cystic fibrosis mice (

 

�

 

F508) were stud-
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ied. Both fluid absorption and 

 

36

 

Cl uptake from the dis-
tal airspaces were stimulated by isoproterenol in wild-
type, but not in 

 

�

 

F508 mice. Finally, the significance of
the impaired fluid transport in 

 

�

 

F508 mice was tested
in a model of acute hydrostatic pulmonary edema. The
impaired fluid clearance in 

 

�

 

F508 mice resulted in
high lung water and alveolar edema. These studies pro-
vide the first direct evidence for a major function of
CFTR in the distal epithelium of the lung.

 

M A T E R I A L S  A N D  M E T H O D S

 

Transgenic Mice

 

�

 

F508 mice on a C57BL6/J-C3H/HeJ hybrid genetic background
were provided by the CFRDP animal core at the University of Cal-
ifornia, San Francisco. Heterozygous offspring, which appeared
phenotypically normal, were intercrossed to generate homozy-
gous mutant 

 

�

 

F508 mice. Genotype analysis of tail DNA was
done by PCR at 10 d of age. The wild-type and heterozygous mice
were fed a standard diet and the 

 

�

 

F508 mice a liquid diet as
recommended (Kent et al., 1996). The 

 

�

 

F508 mice show patho-
logical and electrophysiological changes consistent with a CF
phenotype (Colledge et al., 1995). Measurements were done in
litter-matched mice (8–12 wk of age). The investigators were
blinded to genotype information for all comparative transport
measurements. Protocols were approved by the University of Cal-
ifornia at San Francisco Committee on Animal Research.

 

Measurements of Fluid Clearance in Mice

 

Mice were killed using intraperitoneal pentobarbital (200 mg/kg).
A tracheostomy was rapidly done with a 20-gauge angiocatheter.
Lungs were inflated with 100% oxygen at 4 cm H

 

2

 

O continuous
positive airway pressure throughout the experiment. In these in
situ experiments, body temperature was maintained at 37–38

 

�

 

C us-
ing an infrared lamp and intra-abdominal monitoring thermister.
In in situ perfused experiments, the pulmonary artery was cannu-
lated with polyethylene PE-20 tubing and the left atrium was
transected to permit fluid exit. The pulmonary artery was gravity
perfused at 5 cm H

 

2

 

O pressure, and the perfusate was maintained
at 37

 

�

 

C as described previously (Bai et al., 1999; Ma et al., 2000).
To measure fluid clearance from the distal airspaces, 10 ml/kg

of instillate was delivered to both lungs over 30 s through the tra-
cheal cannula. The instillate consisted of Ringer’s lactate ([in
mM] 102.6 NaCl, 4.02 KCl, 1.36 CaCl

 

2

 

, and 28 sodium lactate)
containing 5% BSA and [

 

131

 

I]albumin (0.1 

 

�

 

Ci) adjusted to 325
mOsm with NaCl and pH 7.4 to match the mouse serum osmo-
larity. At the end of the experimental time period, a fluid sample
(50–100 

 

�

 

l) was aspirated with a 1-ml syringe connected directly
into the catheter. The aspirate was weighed and assayed for 

 

131

 

I
radioactivity. The percent fluid absorption at 15 min was com-
puted from the ratio of instillate and aspirate radioactivities as
described previously (Fukuda et al., 2000; Ma et al., 2000).

For the ion substitution experiments, perfusion was started 10
min before the airspace solution was instilled. The perfusate was
identical to the instillate except for the absence of the volume
marker [

 

131

 

I]albumin. In some studies, 1 mM amiloride, 0.1 mM
NPPB, 0.1 mM ouabain, 0.1 mM glibenclamide, 0.1 mM isopro-
terenol, or 0.1 mM each of forskolin 

 

�

 

 IBMX was added to the
instillate. The ion substitution solution was as follows: “100%
NaCl” ([in mM] 162 NaCl, 0.9 CaCl

 

2

 

, and 1.5 KH

 

2

 

PO

 

4

 

), “50%
Na

 

�

 

/choline

 

�

 

” ([in mM] 81 NaCl, 81 choline Cl, 0.9 CaCl

 

2

 

, 1.5
KH

 

2

 

PO

 

4

 

), “50% Cl

 

�

 

/NO

 

3

 

” ([in mM] 81 NaCl, 81 NaNO

 

3

 

, 0.9
CaCl

 

2

 

, and 1.5 KH

 

2

 

PO

 

4

 

), and “50% Cl

 

�

 

/gluconate

 

�

 

” ([in mM]

81 NaCl, 81 sodium gluconate, 0.9 mM CaCl

 

2

 

, and 1.5 KH

 

2

 

PO

 

4

 

).
All solutions were adjusted to 325 mOsm and pH 7.4.

 

Measurement of Fluid Clearance in Human Lung

 

The ex vivo human lung study was done with the approval of Hu-
man Research Committee at UCSF. Human lungs were obtained
from 42 human lung donors whose lungs were rejected for trans-
plantation. As previously described (Sakuma et al., 1994, 1996), a
segmental bronchus was occluded by a balloon catheter.
Through the catheter, the lung was inflated with 8 cm H

 

2

 

O air-
way pressure with 100% oxygen and placed in a plastic bag and a
humidified incubator at 37

 

�

 

C for 3–4 h to warm the lung. Next,
60–120 ml of isosmolar 5% human albumin solution containing
5 

 

�

 

Ci [

 

131

 

I]albumin warmed at 37

 

�

 

C was instilled into the oc-
cluded segment followed by 40 ml of air to advance the instilled
albumin solution into the distal airspaces. 1 h after instillation,
alveolar fluid was aspirated. The aspirate sample was assayed for

 

131

 

I radioactivity and fluid absorption calculated. In some experi-
ments, 0.1 mM terbutaline and/or 0.1 mM glibenclamide were
added to the instillate.

 

Uptake of 

 

22

 

Na and 

 

36

 

Cl in the Mouse Lung

 

These studies were done in the in situ perfused mouse lung at
room temperature (23

 

�

 

C). Identical solutions (102.6 mM NaCl,
4.02 mM KCl, 1.36 mM CaCl

 

2

 

, 28 mM sodium lactate, 5% albu-
min, and 325 mOsm, pH 7.4) were used in the perfusate and in-
stillate, except for the presence of tracer quantities of 

 

22

 

Na and

 

36

 

Cl in the airspace instillate. 

 

22

 

Na was measured using a 

 

�

 

counter, and 

 

36

 

Cl by a scintillation counter (with correction for

 

22

 

Na counts). A sample of the instilled fluid was obtained at 1
and 30 min (1 min was taken as 0 point because the instillate may
be diluted initially). In some experiments, 0.1 mM isoproterenol
and/or 0.1 mM glibenclamide was added to the instillate and
perfusate. Albumin concentrations were measured at 1 and 30
min to confirm that there was no net fluid clearance from the air-
spaces of the lung, as we and others have reported previously that
room temperature abolishes active fluid clearance (Matthay et
al., 1996). In some experiments [

 

14

 

C]mannitol was instilled as a
paracellular permeability marker.

 

Hydrostatic Volume-overload Studies in Mice

 

A standard model of acute hydrostatic edema was used (Broad-
dus et al., 1990; Frank et al., 2000). Mice were anesthetized (ket-
amine 80 mg/kg and xylazine 12 mg/kg) and ventilated with a
constant volume ventilator (Harvard Apparatus) with a tidal vol-
ume of 8 ml/kg, a positive end–expiratory pressure of 3 cm H

 

2

 

O,
and 100% oxygen. A catheter was inserted into the left carotid ar-
tery to obtain blood samples and infuse fluid. The respiratory
rate was adjusted to maintain the PaCO

 

2

 

 at 30–40 mmHg. The
mice were monitored by electrocardiography. After a 20-min
baseline period, an intra-arterial infusion of saline was given by
an infusion pump over 2 h (total volume 

 

	

 

 40% of body weight,
with 40% of the total volume given over the first 20 min, the re-
maining 60% volume administered over 100 min). In some ex-
periments, propranolol was given at escalating dose (5–21 

 

�

 

g/
kg/min) before volume overload. At 2 h, the mice were killed by
exsanguination, a blood sample was obtained for measurement
of hemoglobin concentration and the wet-to-dry weight ratio of
blood. The lungs were removed and homogenized for measure-
ment of the wet-to-dry weight ratio using standard methods (Ber-
thiaume et al., 1987; Fukuda et al., 2000). Histopathology was
done as previously described (Kaner et al., 2000): lungs were in-
flated to total lung capacity, and the tracheas were ligated. Lungs
were placed in 300 ml PBS heated to 60

 

�

 

C for 3 min in a micro-
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wave oven and transferred to 4% paraformaldehyde overnight.
The lungs were embedded with paraffin and sections were cut at
4-

 

�

 

m thickness stained with hematoxylin and eosin.

 

Statistics

 

Data are summarized as mean 

 




 

 SEM. Analysis of variance was
used to compare the different animal groups. Where appropri-
ate, an unpaired 

 

t

 

 test was used

 

. P

 

 

 

� 

 

0.05 was taken as statistically
significant.

 

R E S U L T S

 

Role of Transcellular Sodium and Chloride Transport

 

Isosmolar fluid absorption, measured initially in the in
situ nonperfused mouse lung, was reduced by 70–80%
with amiloride or NPPB (Fig. 1), indicating that inhibi-
tion of sodium or chloride transport can prevent basal

vectorial fluid transport across the distal pulmonary ep-
ithelium. These results provide evidence that transcel-
lular fluid transport probably occurs for both sodium
and chloride. As expected, inhibition of Na

 

�

 

/K

 

�

 

-ATPase
by ouabain markedly inhibited fluid absorption.

To assess qualitatively the relative contributions of so-
dium and chloride to fluid absorption, isosmolar ion
substitution studies were performed in the in situ per-
fused mouse lung. In the in situ perfused model, the
basal fluid clearance rates are 

 

�

 

50% of those in the non-
perfused in situ lung (Ma et al., 2000). The same con-
centration of solutes on both sides of the distal pulmo-
nary epithelium was achieved by using the same solution
for both the perfusate and the instillate in the airspaces.
This approach avoids the problem of solute imbalance
that can occur with ion substitution experiments that

Figure 1. Effect of amiloride, NPPB, and oua-
bain on isosmolar fluid clearance at 37�C in the in
situ nonperfused lung of wild-type mice. Fluid
clearance is expressed as the percent fluid absorp-
tion at 15 min (n 	 6–8 mice in each group).
Where indicated, the instillate contained 1 mM
amiloride, 0.1 mM NPPB, or 0.1 mM ouabain. *P �
0.05 compared with control, data as mean 
 SEM. 

Figure 2. Effect of ion sub-
stitution on isosmolar fluid
clearance from the distal air-
spaces. Experiments were
done in the in situ perfused
lung at 37�C in wild-type
mice. The x-axis indicates the
composition of the test solu-
tions. Measurements were
done under basal (open bars,
n 	 6 mice in each group)
and isoproterenol stimulated
(closed bars, n 	 6 in each
group) conditions. *P � 0.05
compared with all other con-
trol conditions; **P � 0.05
compared with basal in each
group, data as mean 
 SEM.
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change solute concentrations on only one side of the
transporting epithelium. A reduction in [Na

 

�

 

] to 50%
by the substitution of choline

 

�

 

 had little effect on basal
fluid clearance (Fig. 2, open bars). However, reduction
in [Cl

 

�

 

] to 50% by the substitution of gluconate

 

-

 

 inhib-
ited distal airspace fluid clearance by 

 

�

 

50%. Reduction
in the concentration of [Cl

 

�

 

] to 50% by substitution of
nitrate

 

�

 

, an anion that can generally substitute for Cl

 

�

 

 in
Cl

 

�

 

 channels, had no effect on basal fluid clearance.
Also, fluid absorption after cAMP agonists was signifi-
cantly lower with a 50% reduction of [Cl

 

�

 

] than with a
50% reduction of [Na

 

�

 

] (Fig. 2, closed bars).
The results suggest that chloride can be rate limiting

in isosmolar fluid transport under both basal and iso-
proterenol-stimulated conditions. However, substitu-
tion of Cl

 

�

 

 for gluconate

 

�

 

 may depolarize the apical
membrane potential and could reduce the driving
force for Na

 

�

 

 transport. Alternatively, the low free–
ionized calcium in the gluconate solutions may re-
duce possible calcium-dependent chloride permeabil-
ity. Therefore, the results of these studies provided
suggestive, but not conclusive, evidence for a role of
chloride in transcellular epithelial transport. Additional
experiments were performed to assess the role of chlo-
ride transport by CFTR, using both pharmacologic in-
hibition of CFTR and cystic fibrosis mice.

 

Role of CFTR in cAMP-stimulated Fluid Absorption

 

Two strategies were used to test the potential role of
CFTR in fluid absorption in the distal airspaces of the
lung. The first approach was to inhibit chloride trans-

port with glibenclamide, a relatively selective inhibitor
of CFTR (Schultz et al., 1999). The second approach
was to measure fluid absorption in 

 

�

 

F508 mice that
lack functional CFTR in the cell plasma membrane
(Clarke et al., 1992). Studies were done under both
basal- and cAMP-stimulated conditions.

The initial experiments showed that glibenclamide
had no effect on basal clearance (Fig. 3 A). Isoprotere-
nol stimulated basal fluid clearance, as previously re-
ported (Bai et al., 1999; Fukuda et al., 2000), but glib-
enclamide prevented the cAMP-induced increase in
fluid clearance (Fig. 3 A). These results provided sup-
port for the hypothesis that CFTR may mediate the
cAMP stimulated increase in fluid clearance.

To determine if CFTR inhibition by glibenclamide
would also impair cAMP-stimulated clearance in the
human lung, an ex vivo human lung preparation was
used (Sakuma et al., 1998). Glibenclamide alone had
no effect on basal fluid clearance in the ex vivo human
lung (Fig. 3 B). cAMP stimulation with terbutaline in-
creased fluid clearance. cAMP-stimulated fluid clear-
ance was prevented by glibenclamide, which is similar
to the studies in the mouse lung.

To directly test the role of CFTR in isosmolar fluid
clearance in the in situ mouse lung, we used cystic fi-
brosis mice. Studies of fluid absorption in wild-type and

 

�

 

F508 mice showed no difference in basal isosmolar
fluid clearance (Fig. 4, open bars), which is consistent
with the observation that glibenclamide did not impair
basal clearance in the human or mouse lung. In the
presence of isoproterenol, fluid clearance was mark-

Figure 3. Effect of glib-
enclamide on fluid clearance
in mouse and human lung.
(A) Fluid clearance in the in
situ perfused lung of wild-
type mice at 37�C. Fluid clear-
ance is expressed as the per-
cent absorption at 15 min un-
der control conditions (n 	
12), glibenclamide (0.1 mM,
n 	 6), isoproterenol (0.1
mM, n 	 18), and isoprotere-
nol � glibenclamide (n 	 6).
*P � 0.05 compared with
control, data as mean 
 SEM.
(B) Measurements of fluid
clearance in rewarmed ex
vivo human lung at 37�C.
Fluid clearance is expressed
as the percent absorption at
1 h under control conditions
(n 	 23), glibenclamide (0.1
mM, n 	 5), terbutaline (0.1
mM, n 	 8), and terbutaline
� glibenclamide (n 	 6).
*P � 0.05 compared with
control, data as mean 
 SEM.
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edly increased in the wild-type mice but not changed in
the 

 

�

 

F508 mice (Fig. 4, closed bars). To be certain that
the lack of response to isoproterenol was not due to
downregulation of 

 

�

 

 receptors, additional studies were
done with forskolin/IBMX (0.1 mM each, 

 

n

 

 

 

	 

 

10 wild-
type and 6 

 

�

 

F508 mice). There was a 57 

 




 

 7% increase
in fluid clearance in the wild-type mice, but no change
in fluid clearance in the 

 

�

 

F508 mice. The data support
the conclusion that CFTR is required for cAMP-medi-
ated upregulation of fluid clearance, but is not neces-
sary for basal fluid absorption.

 

22

 

Na and 

 

36

 

Cl Uptake in Mouse Lung under 
Isotopic Conditions

 

Active transport across the distal lung epithelium at
37

 

�

 

C couples salt (sodium and chloride) and water to
maintain isosmolar conditions (Serikov et al., 1993).
Thus, it is not possible to study the separate transport
of sodium and chloride. Experiments were designed to
measure the passive transport of tracer 

 

22

 

Na and 

 

36

 

Cl in
in situ perfused mouse lungs at room temperature
(23

 

�

 

C). Since room temperature abolishes active ion
transport, isotopic transport of 

 

22

 

Na and 

 

36

 

Cl

 

 

 

from the
distal airspaces of the lung occurs without a change in
the net air space fluid volume, and can occur by an
exchange mechanism without obligate counterion co-
transport. Measurement of alveolar protein concen-
tration confirmed there was no net clearance of distal
airspace fluid during these experiments, since the con-
centration of albumin was the same at 1 and 30 min af-
ter instillation. Under basal conditions, 

 

22

 

Na and 

 

36

 

Cl
loss from the air spaces was similar, 

 

�

 

20% in 30 min
(Fig. 5). In the presence of isoproterenol, 

 

36

 

Cl removal
was accelerated significantly, whereas 

 

22

 

Na removal was
not changed. The isoproterenol-induced increase in

 

36

 

Cl transport was inhibited by glibenclamide, provid-
ing evidence that the cAMP stimulated uptake of 

 

36

 

Cl
under isotopic conditions may be mediated by CFTR.

To determine the contribution of CFTR in mediating
cAMP-induced 

 

36

 

Cl transport from the distal air spaces,
similar studies were performed in 

 

�

 

F508 mice. The loss of

 

22

 

Na and 

 

36

 

Cl

 

 

 

in 

 

�

 

F508 mice was not affected by isoprotere-
nol (Fig. 5). These results provide direct evidence for a role
of CFTR in cAMP-stimulated Cl

 

�

 

 transport in the distal air-
way epithelium. [

 

14

 

C]mannitol loss from the airspaces was

Figure 4. Fluid clearance from the distal airspaces of wild-type
(open bars) and �F508 (closed bars) mice. Measurements were
done in the in situ perfused lung at 37�C under basal conditions
(n 	 24 wild-type, n 	 7 �F508) and in the presence of 0.1 mM iso-
proterenol (n 	 9 wild-type, n 	 6 �F508). *P � 0.05 compared
with control group, data as mean 
 SEM.

Figure 5. Isotopic 22Na and 36Cl transport from the airspace compartment of wild-type and �F508 mice. Measurements were done in the
in situ perfused lung preparation at 23�C. The y-axis is the ratio of final (30 min after instillation) to initial (1 min after instillation) 22Na or
36Cl radioactivities in fluid sampled from the distal airspaces. Individual (closed circles) and averaged (mean 
 SEM) values are shown.
Where indicated, the instillate contained 0.1 mM isoproterenol (iso), 0.1 mM glibenclamide (glib), and 0.1 mM isoproterenol � 0.1 mM
glibenclamide. *P � 0.05 compared with all other groups.
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the same under basal conditions and with isoproterenol
stimulation, thus excluding an effect of cAMP agonists
stimulation on paracellular epithelial permeability.

Hydrostatic Volume-overload Model of Pulmonary Edema

The previous experiments established a role for CFTR in
cAMP stimulated fluid clearance from the distal air-
spaces of the lung. The final set of experiments were de-
signed to test the contribution of CFTR to fluid clear-
ance using a model of hydrostatic volume overload. Pre-
vious studies established that endogenous release of
epinephrine stimulates fluid clearance from the air-
spaces of the lung during a hydrostatic stress (Campbell
et al., 1999). These experiments were done to test the hy-
pothesis that the lack of functional CFTR in �F508 mice
would limit their capacity to remove alveolar edema.

Hydrostatic pulmonary edema was induced in venti-

lated mice using a standard preparation of acute intra-
vascular volume expansion. After volume overload by
saline infusion, there was 27% and 31% increase in the
lung wet-to-dry weight ratio in wild-type and heterozy-
gous mice, respectively (Fig. 6). In the �F508 mice, the
lung wet-to-dry weight ratio increased by 64% (P �
0.05). Lung histology showed moderate interstitial
edema with perivascular fluid cuffs in wild-type mice
without alveolar flooding, but marked alveolar edema
was present in �F508 mice (Fig. 6, insets).

If the higher lung water and alveolar edema in the
�F508 mice were explained by the inability of elevated
endogenous catecholamines to stimulate cAMP-depen-
dent fluid clearance from the distal airspaces in the
�F508 mice, blockade of endogenous catecholamines
in the wild-type and heterozygous mice should produce
a similar increase in lung water. Therefore, the effect of
the � antagonist propranolol was tested. Blockade of

Figure 6. Effect of acute volume overload on the lung wet-to-dry weight ratio in wild-type, heterozygous, and �F508 mice. 40% of body
weight fluid was infused over 2 h (materials and methods). The y-axis is the lung wet-to-dry weight ratio. Individual (closed) and aver-
aged (mean 
 SEM) values are shown for indicated genotypes of mice. In the volume-overload group, where indicated, measurements
were performed with and without propranolol (0.1 mM) pretreatment. (*P � 0.05 compared with basal control; **P � 0.05 compared
with wild-type and heterozygous mice in the same group. [Insets] Micrographs show typical lung histopathology from three different
groups, as indicated with the dashed lines). Normal distal airway and alveolar structure in control ventilated wild-type mice not subjected
to volume overload (left). Thickening of interstitial space and perivascular fluid cuffs (arrow) in volume-overloaded wild-type mice (mid-
dle). Alveolar edema in most sections of volume-overloaded �F508 mice (right). Bar, 30 �m. 
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endogenous catecholamines with propranolol resulted
in similar increases in lung wet-to-dry weight ratio in
the wild–type and heterozygous mice to the level mea-
sured in the �F508 mice. Thus, the impaired capacity
to remove edema fluid from the distal airspaces of the
lung in �F508 mice resulted in a significant increase in
extravascular lung water in the presence of hydrostatic
pulmonary edema.

D I S C U S S I O N

These experiments provide new information regarding
the role of chloride and CFTR in the isosmolar reab-
sorption of fluid from the distal airspaces of the lung.
Pharmacologic, ion substitution, isotopic ion transport,
and gene knockout experiments indicated that cAMP-
dependent fluid absorption from the distal airspaces of
the lung involves chloride transport by CFTR. A poten-
tial role for chloride in cAMP-mediated fluid transport
has been suggested in studies of cultured alveolar type
II cells (Jiang et al., 2001), but the lack of intact lung
studies has made it difficult to evaluate the role of chlo-
ride under conditions that are germane to in vivo fluid
absorption. There are several cell types that may partici-
pate in salt and water transport from the distal airspaces
of the lung including alveolar type I cells (Ding et al.,
1997; Dobbs et al., 1998; Borok et al., 2002; Johnson et
al., 2002), alveolar type II cells (Matalon and O’Brodo-
vich, 1999), and distal airway epithelial cells (Ballard et
al., 1992; Al-Bazzaz, 1994). The primary goal for these
studies was to test the role of chloride and CFTR in the
intact lung where the normal in vivo tissue morphology
and driving forces for ion and water transport are
present. Experiments in the intact lung also made it
possible to study the role of chloride transport and
CFTR in the pathophysiology of pulmonary edema.

The majority of the studies reported here were done
in the intact mouse lung, a species that has a maximal
rate of alveolar fluid clearance (Fukuda et al., 2000; Ma
et al., 2000) that is similar to the rate of maximal alveo-
lar fluid clearance measured during the resolution of
alveolar edema in the human lung in patients with pul-
monary edema (Verghese et al., 1999; Ware and Mat-
thay, 2001). Pharmacologic studies were also done in
an ex vivo human lung to confirm the relevance of
findings in the mouse to the human lung.

The studies with glibenclamide, an inhibitor of
CFTR, provided pharmacologic evidence that CFTR
may be important in cAMP-stimulated fluid absorption
in mouse lung as well as in the human lung. Because of
the imperfect specificity of glibenclamide (Schultz et
al., 1999), experiments also were done in homozygous
�F508 mutant mice. In contrast to wild-type mice, nei-
ther isoproterenol nor forskolin increased fluid absorp-
tion. Also, isoproterenol did not increase 36Cl uptake in

the isotopic studies in the �F508 mice. Although CFTR
is necessary for cAMP-unregulated fluid clearance,
basal clearance did not depend on CFTR, as demon-
strated by normal rates of fluid clearance and 36Cl up-
take in the �F508 mice and the lack of effect of glib-
enclamide on basal fluid clearance in the human or
mouse lung. These studies indicate that basal fluid
clearance in the mouse is CFTR- independent while
cAMP stimulated fluid transport is CFTR-dependent.

The involvement of chloride transport and CFTR in
lung fluid absorption were tested using an established
mouse model of acute hydrostatic pulmonary edema
that is associated with an increase in endogenous cate-
cholamine levels. An acute increase in endogenous cate-
cholamines is normally associated with a compensatory
increase in the rate of distal epithelial fluid clearance
that can protect against alveolar edema and reduce the
quantity of edema formation in the lung (Pittet et al.,
1994). A hydrostatic stress with volume overload resulted
in significantly more pulmonary edema �F508 mice
than in wild-type �F508 heterozygous mice. Alveolar
edema was detected only in the �F508 mice. To confirm
that the wild-type and heterozygous mice were protected
by upregulated cAMP-stimulated fluid transport, the ef-
fect of endogenous catecholamines was inhibited by �
blockade, as reported previously (Pittet et al., 1994,
1996). � blockade produced similar degrees of pulmo-
nary edema in wild-type and �F508 mice, supporting the
conclusion that cAMP stimulated CFTR activity plays an
important role in the clearance of edema fluid from the
distal airspaces of the lung.

There are several implications of these experiments.
Since basal alveolar fluid clearance is rapid in the
mouse and the human lung, the lack of CFTR would
not be expected to prevent the normal clearance of
perinatal fluid at the time of birth. This conclusion fits
well with the observation that the lack of CFTR does
not increase the risk of acute respiratory failure at birth
in humans with cystic fibrosis nor in �F508 mice. How-
ever, the lack of CFTR in the adult lung could impair
clearance of fluid from the distal airspaces of the lung
under some pathological conditions that may be rele-
vant to human cystic fibrosis. The most common cause
of acute respiratory failure in cystic fibrosis is advanced
obstructive airway disease, which is often complicated
by bacterial pneumonia (Boucher et al., 2000). We pre-
viously reported that the removal of excess fluid from
the distal airspaces of the lung is an important protec-
tive mechanism in P. aeruginosa pneumonia in rats
(Rezaiguia et al., 1997), and cAMP fluid dependent
clearance is important in minimizing alveolar edema in
septic and hypovolemic shock (Pittet et al., 1994,
1996). In addition, in patients with pulmonary edema
from several different etiologies, the inability to gener-
ate maximal alveolar fluid clearance is associated with a
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longer duration of mechanical ventilation and a higher
mortality (Ware and Matthay, 2001).

Finally, although the functional importance of CFTR
is well recognized in the pathophysiology of cystic fibro-
sis in the proximal airways of the lung, it has been pro-
posed without direct evidence that CFTR may have
important functional significance in the distal lung
(Boucher et al., 2000). These studies provide the first
evidence for a functional role of CFTR in the distal pul-
monary epithelium. Because the alveolar epithelium
comprises the vast majority of the surface area of
the lung (Weibel, 1989), previous estimates have dis-
counted a significant role for the distal airway epithe-
lium in the reabsorption of pulmonary edema. How-
ever, the findings of these studies indicate that distal
airway epithelium may play an important role, partly
because the expression of CFTR is greater in distal air-
way epithelium than in the alveoli (Engelhardt et al.,
1994; Rochelle et al., 2000). Recent studies have shown
that water channel AQP4 (expressed in airway, but not
alveolar, epithelia) plays a small but significant role in
osmotically driven lung fluid transport (Song et al.,
2001). cAMP fluid transport through CFTR also may
occur across the alveolar epithelium based on evidence
of expression of CFTR and � receptors in type I and II
alveolar epithelial cells (Carstairs et al., 1985; Engel-
hardt et al., 1994; Rochelle et al., 2000; Liebler et al.,
2001). Thus, the resolution of airspace edema is likely
to depend on vectorial salt and water transport at the
level of both the distal airway and alveolar epithelium,
although further studies are needed to define the exact
contributions of alveolar versus distal airway epithelium
to the removal of distal airspace edema fluid.
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