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ABSTRACT Although the microbiota in the proximal gastrointestinal (GI) tract have
been implicated in health and disease, much about these microbes remains under-
studied compared to those in the distal GI tract. This study characterized the micro-
biota across multiple proximal GI sites over time in healthy individuals. As part of a
study of the pharmacokinetics of oral mesalamine administration, healthy, fasted vol-
unteers (n � 8; 10 observation periods total) were orally intubated with a four-lumen
catheter with multiple aspiration ports. Samples were taken from stomach, duode-
nal, and multiple jejunal sites, sampling hourly (�7 h) to measure mesalamine (ad-
ministered at t � 0), pH, and 16S rRNA gene-based composition. We observed a pre-
dominance of Firmicutes across proximal GI sites, with significant variation compared
to stool. The microbiota was more similar within individuals over time than between
subjects, with the fecal microbiota being unique from that of the small intestine.
The stomach and duodenal microbiota displayed highest intraindividual variability
compared to jejunal sites, which were more stable across time. We observed signifi-
cant correlations in the duodenal microbial composition with changes in pH; linear
mixed models identified positive correlations with multiple Streptococcus operational
taxonomic units (OTUs) and negative correlations with multiple Prevotella and Pas-
teurellaceae OTUs. Few OTUs correlated with mesalamine concentration. The stom-
ach and duodenal microbiota exhibited greater compositional dynamics than the je-
junum. Short-term fluctuations in the duodenal microbiota were correlated with pH.
Given the unique characteristics and dynamics of the proximal GI tract microbiota, it
is important to consider these local environments in health and disease states.

IMPORTANCE The gut microbiota are linked to a variety of gastrointestinal diseases,
including inflammatory bowel disease. Despite this importance, microbiota dynamics
in the upper gastrointestinal tract are understudied. Our article seeks to understand
what factors impact microbiota dynamics in the healthy human upper gut. We
found that the upper gastrointestinal tract contains consistently prevalent bacterial
OTUs that dominate the overall community. Microbiota variability is highest in the
stomach and duodenum and correlates with pH.

KEYWORDS mesalamine, microbiota, pH, small intestine, stomach

The microbiota of the proximal gastrointestinal tract in humans represent an under-
studied yet highly relevant microbial community (1). Physiological processes such

as gastric emptying, bile acid secretion, and the transit of food can influence the
proximal gastrointestinal (GI) tract and disease development (2–5). However, there is
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limited information on how the microbiota in this region are related to these processes
and how these impact health and disease throughout the GI tract.

Much of our knowledge about the involvement of the human GI microbiota in
maintaining health and preventing disease has relied on fecal sampling, a noninvasive
sampling method that is largely representative of the large intestine (6, 7). Although it
is known that the microbiota across the GI tract vary in composition and density (8–10),
studying the microbiota at these sites is difficult, limiting our knowledge to invasive
procedures, specific patient populations, or single time points (1). Analyses of mucosal
samples from autopsies, endoscopies, and colonoscopies have revealed that strepto-
cocci and lactobacilli— both members of the oral and esophageal microbiota—are
abundant members of the jejunal and ileal microbiota (11–17). Studies using naso-ileal
catheters and ileostoma effluent, which allow collection over time, have supported
these conclusions and revealed that the small intestinal microbiota is highly dynamic
over short time courses, likely reflective of physiological processes at the stomach-small
intestine interface (18–21).

Understanding how the microbiota along the GI tract are related is of physiological
relevance, particularly in relation to intestinal homeostasis and disease. Recent evi-
dence suggests that the drug mesalamine, designed to reach high concentrations in
the GI tract as a treatment for inflammatory bowel disease (IBD), may directly target the
microbiota in addition to host effectors (22, 23). Interestingly, mesalamine is less
effective in treating IBD in the upper GI tract, which manifests as Crohn’s disease, than
the lower GI tract, which manifests as ulcerative colitis. It is possible that some of the
effectiveness of mesalamine as a treatment for IBD, or lack thereof, is mediated by the
microbiota, potentiating the need to characterize these microbial communities to a
fuller extent in the context of mesalamine administration.

This study investigated the bacterial composition across the intact upper GI tract in
the same healthy, fasted adults over time. We used a multilumen tube designed to
sample multiple sites along the upper GI tract. As part of a previously published study
aimed at measuring mesalamine dissolution, subjects were given a dose of mesalamine
and the proximal GI tract lumen was sampled over time (24). We used these samples
to (i) characterize and compare microbial community dynamics over time at multiple
upper GI sites within an individual and (ii) identify how environmental factors, such as
pH and the acute effect of mesalamine, shaped the microbiota. To the best of our
knowledge, this is the first study to characterize the luminal microbiota across multiple
upper GI sites over time within the same individual.

RESULTS
Study population. Using a multichannel catheter with multiple aspiration points,

samples collected from the upper GI tract of 8 healthy subjects during 10 different
study visits were processed for 16S microbial community analysis (24) (Table 1; see Text
S1 and Table S1 in the supplemental material). Samples were collected hourly up to 7
h primarily from the proximal GI tract in the following possible locations: the stomach
(n � 44), duodenum (n � 64), proximal/mid/distal jejunum (n � 46), and stool (n � 3).
At the beginning of the study, subjects were given one form of mesalamine (Table 1).
One of the seven subjects was studied three times over the course of 10 months; for
most analyses, each study visit from this subject was considered independently.

The proximal GI microbiota are dominated by Firmicutes and distinct from the
fecal microbiota. Analysis of the relative abundances of 16S rRNA-encoding genes
from the GI tract across all time points and individuals demonstrated that the small-
intestinal microbiota was compositionally unique compared to stool (Fig. 1A). At all four
sites in the proximal GI tract, Firmicutes composed the most abundant phyla (i.e.,
Streptococcus, Veillonella, and Gemella). Higher levels of Bacteroidetes species (Pre-
votella) were detected in the stomach and duodenum. Proteobacteria and Actinobac-
teria predominated in the remainder of the community at all sites. Diversity of the
microbiota (inverse Simpson index) was decreased in sites of the upper GI tract
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compared to stool, which was enriched in Firmicutes (Blautia, Ruminococcaceae, and
Faecalibacterium) and depleted in Bacteroidetes in these individuals (n � 3) (Fig. 1B).

The proximal GI microbiota are individualized and variable over time. To
compare the microbiota across the proximal GI tract within and across individuals, we
assessed pairwise community dissimilarity using the Yue and Clayton dissimilarity index
(�YC), which takes into account relative abundance of operational taxonomic unit (OTU)
compositional data. Both across (interindividual) and within (intraindividual) subjects,

TABLE 1 Subject recruitment

Subjecta

Mesalamine
formulationb Age (yr) BMI Sex

No. of samples from:

Stomach Duodenum

Jejunum

Stool TotalProximal Mid Distal

M046-A Pentasa 38 21.2 M 1 8 7 1 17
M046-B Apriso 38 21.3 M 8 5 6 19
M046-C Lialda 38 21.7 M 8 6 7 1 22
M047 Pentasa 36 21.1 M 8 6 14
M048 Apriso 51 34.3 F 5 7 12
M053 Apriso 34 25.2 F 1 7 3 11
M061 Pentasa 51 21.6 M 7 8 15
M062 Pentasa 37 27.3 M 7 7 1 15
M063 Lialda 26 28.6 M 7 5 5 17
M064 Lialda 25 27.5 F 8 7 15
Summary 40% Pentasa,

30% Apriso,
30% Lialda

37 � 8.6 25 � 4.4 70% M 44 64 13 27 6 3 157

aShown are selected metadata and sample collection demographics for 10 admissions. Subject M046 was admitted for three visits: A, B, and C. All subjects identified
as Caucasian, and none identified as Hispanic/Latinx.

bPentasa has immediate release in stomach acid, Apriso has extended release at a pH of �6, and Lialda has extended release at a pH of �7.
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FIG 1 Bacterial community relative abundance and diversity in the upper GI tract. (A) The mean relative abundance of
genera at each GI site (sample number [n] is indicated). (B) Box plots of the inverse Simpson index measuring community
diversity across the GI tract (shown as median with first and third interquartile ranges). Statistical analysis was performed
with the Kruskal-Wallis test (not significant).
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stool was highly dissimilar to any proximal GI site (Fig. 2A and B). Across proximal GI
sites, subjects were more similar to their own samples than samples across other
individuals (Fig. 2A to D). The stomach microbiota were highly dissimilar across
individuals compared to the duodenum or any part of the jejunum, which exhibited the
least amount of dissimilarity (Fig. 2C). A similar degree of dissimilarity was observed
within an individual in the stomach, duodenum, and combined parts of the jejunum
(Fig. 2D).

Using a dissimilarity measure such as �YC allowed us to assess stability based on
changes in the relative abundance of OTUs. It is possible that certain GI sites fluctuate
more in total OTUs. To measure whether any site had a higher rate of flux in their
community (i.e., a higher rate of OTU turnover), we calculated the percentage of OTUs
detected at a given time point from the total number of OTUs detected within that
individual at a given site. We observed that for each proximal GI site, a mean of 36.6%
of the OTUs ever detected in that subject at a given site (mean number of total OTUs
ever detected per subject per site � 135; range, 78 to 212) were detectable at a given
time point (Fig. 3A). Similarly, we calculated the number of OTUs that were consistently
present in all samples collected at that site within an individual (mean number of
consistently detected OTUs per subject per site � 14.1; range, 2 to 45). Overall, only
28.7% of the total OTUs ever detected at a given time point within an individual at a
given site were represented by these consistently prevalent OTUs (Fig. 3B). However,
these prevalent OTUs explained an average of 72.0% of the relative abundance
observed in the samples (Fig. 3C). Of all sites, the relative abundance explained by the
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FIG 2 Dissimilarity of the proximal GI tract within and across individuals. (A and B) Heat map of the Yue and Clayton dissimilarity
index (�YC), comparing different proximal GI sites and stool across individuals (interindividual pairwise comparisons) (A) and within
individuals (intraindividual pairwise comparisons) (B). (C and D) Interindividual (C) and intraindividual (D) dissimilarities in the
stomach, duodenum, and jejunum (sites combined). Statistical analysis was performed with the Kruskal-Wallis test. We plot each
sample at a given site rather than site averages, since this allows us to capture potential extreme states that those communities
might adopt over time. Statistical analyses were performed with Dunn’s test for multiple comparisons with a Benjamini-Hochberg
P value adjustment: **, P � 0.001; ***, P � 0.0001.
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individual’s most prevalent OTUs in the stomach was lowest, followed by the duode-
num, suggesting more variation at these sites compared to the jejunum (Kruskal-Wallis,
P � 0.05).

One subject (M046) returned three times over the course of 10 months, allowing us
to compare long-term changes. Across the sites that were sampled during multiple
visits (the duodenum and mid-jejunum), prevalent OTUs were still detected during all
three visits, explaining 74.4% and 66.1% OTUs in the duodenum and mid-jejunum,
respectively (see Fig. S1 in the supplemental material).

Large fluctuations in the duodenal microbiota are associated with pH but not
mesalamine. We next investigated how these compositional trends changed over time
across the subjects. We focused on the duodenum and stomach since these sites were
highly sampled across and within individuals and demonstrated variable pH. In the
duodenum, we observed large fluctuations in genus-level composition across hourly
time points within individuals (Fig. 4; see Fig. S2 and S3 in the supplemental material).
Specifically, the relative abundance of Streptococcus, Prevotella, and an unclassified
Pasteurellaceae species fluctuated in all individuals. We hypothesized that these fluc-
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FIG 3 Fluctuations in prevalent OTUs observed within an individual across the proximal GI tract. (A) Box
plots of the percentage of OTUs detected in a given sample out of all OTUs detected (all OTUs possible
for that individual) at a subject site. (B) Box plots of the percentage of OTUs that were consistently
detected at a subject site out of the total OTUs detected in a given sample. (C) The percentage of relative
abundance explained by prevalent OTUs at a subject site in a given sample. Statistical analyses were
performed with the Kruskal-Wallis test.
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tuations could be driven by mesalamine, administered in different forms to each
subject at study onset. However, no visible pattern was observed with mesalamine
levels. Interestingly, we observed that these compositional changes tracked with pH
fluctuations (Fig. 4). These patterns were less apparent in the stomach, where individ-
uals displayed variable dynamics and highly individualized compositional patterns
independent of mesalamine levels or pH. A similar trend was observed in the jejunum
of the subject with three different admissions, where pH fluctuated less (Fig. S1 and S2).

To identify whether any singular OTUs correlated with changes in pH, we applied a
generalized linear mixed-model approach that takes into account subject specificity
(25–27). Within duodenal samples (n � 56), we observed 15 OTUs that significantly
correlated with pH changes. Linear regression of pH and relative abundance of these
OTUs were significant across all samples (Fig. 5; see Table S2 in the supplemental
material). Of the negatively correlated OTUs, six OTUs were classified as Bacteroidetes—
mainly Prevotella—and two OTUs were classified as Pasteurellaceae (Proteobacteria). The
majority of the OTUs that were positively correlated with pH were Firmicutes, mainly
Streptococcus, alongside an Actinomyces OTU (Actinobacteria). Only one OTU in the
duodenum was significantly correlated to mesalamine (Table S2). We identified 17
OTUs that correlated with pH or mesalamine in the stomach; however, these were not
representative at all sites (Table S2).

DISCUSSION

Our results demonstrate that the microbial communities inhabiting the GI tract are
distinct and dynamic across different sites within the proximal GI tract. Our sampling
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procedure provided us with an opportunity to longitudinally characterize such micro-
bial populations in conjunction with the administration of a commonly used drug,
mesalamine. We observed high stability of the microbiota in the jejunum compared to
the stomach or duodenum, indicating that the indigenous microbiota residing in more
proximal regions of the GI tract may experience greater changes. While we did not
observe strong correlations between mesalamine concentration and particular micro-
biota members at any site, we did observe a strong correlation between the microbiota
composition and pH, particularly in the duodenum.

In this report, we describe the use of a multilumen catheter design with unique
aspiration ports that enabled sampling of small-intestinal content over the course of 7
h (24). Many studies aimed at investigating the microbiota of the proximal GI have
overcome sampling difficulty in this region by using ileostoma effluent, samples from
newly deceased individuals, or naso-ileal tubes. Although easy to access, ileostoma
effluent does not fully recapitulate the distal small intestine, as it more closely resem-
bles the colon than the small intestine due to increased oxygen concentrations near the
stoma (28–31). Single lumen naso-ileal tubes are unable to sample multiple sites
simultaneously (18, 20, 21, 32). GI fluid collected with our methodology was sufficient
for determining mesalamine concentration, assaying fluid pH, and isolating microbial
DNA across time and GI sites, which has not been previously described (24).

Our results support previous observations that the small intestine is dynamic with
higher interindividual than intraindividual variability (18, 21, 33). However, the mid- to
distal small intestine also contains a resilient microbial community composed of several
highly abundant OTUs. This resilience is demonstrated by the shift from an altered to
a normal ileal microbiota following the resolution of an ileostoma (34). This mirrors the

FIG 5 Relative abundance of significant OTUs versus pH. Shown is the log relative abundance [log10(RA)] as a function of pH of OTUs found to be significantly
correlated with pH using linear mixed models (all samples with measurable pH). Lines represent linear fit per OTU. OTUs classified as Firmicutes (A), Bacteroidetes
(B), Proteobacteria (C), and Actinobacteria (D) are depicted. The genus-level OTU classification is defined in the color code key in each panel.
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colonic microbiota, which also has a small community that is stable over long periods
of time (30, 35, 36).

This and other studies have shown that the jejunal and proximal ileal microbiota are
distinct from the colonic microbiota (10, 37). Despite changes in overall community
structure and an overall decrease in microbial diversity across the stomach and small
intestine compared to stool, many of the same organisms commonly observed in stool
were also present in the upper GI tract, albeit at very different abundances (10).
Interestingly, colonic resection and ileal pouch-anal anastomosis have been shown to
shift the terminal ileum microbiota to a state similar to the colon, suggesting that a
colonic community structure can develop at these sites given the right conditions (21,
31, 37–39).

Many of the abundant microbes observed in our study (Streptococcus, Veillonella,
Gemella, and Pasteurellaceae species) are also common residents of the oral cavity,
which reflects the proximity of these locations in the GI tract. Populations of Proteo-
bacteria, such as Pasteurellaceae, have also been observed consistently in the small-
intestinal microbiota in other studies, particularly in patients with IBD (14, 40–42). In our
study, Streptococcus and Veillonella were correlated with pH in duodenal samples. It is
possible that growth of these organisms drives a decrease in pH via metabolism of
short-chain fatty acids, an observed functional capacity of these genera (21, 43).
Conversely, large fluctuations in environmental pH may select for genera like Strepto-
coccus, which have evolved a variety of mechanisms to control pH intracellularly
(44–47). In any case, our data suggest a relationship between microbial dynamics and
environmental physiology of the duodenum, which is an important observation to
consider when comparing this site across individuals.

We observed little association between mesalamine concentration and changes in
microbial relative abundance in our cohort. Several studies have reported differences in
the fecal microbiota of patients with or without IBD, in particular Crohn’s disease, which
can affect the small intestine (40). Compositional shifts in the small intestine have been
reported during IBD, specifically increased levels of Enterobacteriaceae species, such as
Enterococcus, Fusobacterium, or Haemophilus (14, 41, 42). It has been hypothesized that
mesalamine’s ability to reduce inflammation in patients with ulcerative colitis could be
by altering the microbiota (22, 23). While acute effects of mesalamine on the microbiota
have not previously been reported, earlier work has demonstrated that mesalamine
decreases bacterial polyphosphate accumulation and pathogen fitness, suggesting an
influence on the microbiota (23). We did not observe strong correlations between
mesalamine concentration and the microbiota here. However, our study was small,
used different doses of mesalamine that may be metabolized differently across GI sites,
and was conducted in healthy individuals (24). It is possible that mesalamine is less
likely to impact the small-intestinal microbiota compared to the large intestine; indeed,
mesalamine is historically known to have a lower efficacy in treating Crohn’s disease,
which manifests in the small intestine, compared to ulcerative colitis, which manifests
in the large intestine (22, 48, 49). As indicated by the variability of mesalamine in the
subjects in this study, the effects of mesalamine on the small-intestinal microbiota may
be highly individualized (24, 50–52). Furthermore, individuals with disease may harbor
a distinct microbiota that responds to mesalamine differently.

Despite the opportunity provided by our method to describe the microbiota across
the GI tract, our study has some lingering questions. Movement by the subject during
the study can result in movement of each sampling port, particularly between the distal
stomach and antrum. This may explain the inconsistent pH values and severe fluctu-
ations of the microbiota observed in the stomach. Similarly, the shorter length of the
sampling device, compared to a naso-ileal catheter, prevented reliable collection of
fluid from the distal small intestine, limiting our sampling to the proximal region. We
also were limited to three concurrent fecal samples, each of which was low in Bacte-
roidetes, a profile generally observed in individuals on low-fat, high-fiber, non-Western
diets (53). While this could have been due to the influence of mesalamine on the
colonic microbiota, we did not have a sufficient n to test this hypothesis.
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The use of a novel catheter allowed us to assess the microbiota across several
proximal GI sites over time, representing a powerful clinical and/or investigative tool for
studying the small-intestinal microbiota. Future studies on the upper GI microbiota
should collect concurrent oral swab/sputum and fecal samples to strengthen the ability
to “track” microbial populations across the GI tract, potentiating our ability to correlate
the microbiota from fecal sampling, a more convenient method to study the microbi-
ota, to other sites of the GI tract.

MATERIALS AND METHODS
Study recruitment. Healthy individuals (ages 18 to 55 years) were included who were free of

medications for the past 2 weeks, passed a routine health screening, had a body mass index (BMI) of 18.5
to 35, and had no significant clinical illness within 3 weeks. Health screening included a review of medical
history and a physical examination (checking vital signs, electrocardiography, and clinical laboratory
tests) as described by Yu et al. (24).

Catheter design and sterilization. A customized multichannel catheter was constructed by Arn-
dorfer, Inc. (Greendale, WI), consisting of independent aspiration ports located 50 cm apart. The catheter
had a channel to fit a 0.035-in. by 450-cm guide wire (Boston Scientific, Marlborough, MA), a channel
connected to a balloon that could be filled with 7 ml of water to assist tube placement, and an end that
was weighted with 7.75 g of tungsten. Each single-use catheter was sterilized according to guidelines set
by the American Society for Gastrointestinal Endoscopy at the University of Michigan prior to insertion
(54) (Text S1).

Collection of GI fluid samples. The full details of catheter placement have been described
previously (24). Briefly, catheter placement occurred approximately 12 h before sample collection. The
catheter was orally inserted into the GI tract, with aspiration ports located in the stomach, duodenum,
and the proximal, mid-, and distal jejunum, confirmed by fluoroscopy. Subjects were given a light liquid
snack approximately 11 h before sample collection and fasted overnight for 10 h prior to sample
collection. At 0 h, a mesalamine formulation was administered to each subject (Table 1). Luminal GI fluid
samples (approximately 1.0 ml) were collected from up to four sites of the upper GI tract hourly up to
7 h. Samples were collected by syringe, transferred to sterile tubes, and placed at �80°C until sample
processing. A paired sample was collected to detect pH using a calibrated micro-pH electrode (Orion pH
probe catalog no. 9810BN; Thermo Scientific, Waltham, MA).

DNA extraction and Illumina MiSeq sequencing. The detailed protocol for DNA extraction and
Illumina MiSeq sequencing was followed as previously described with modifications (55) (Text S1). Briefly,
0.2 ml of GI fluid or 20 mg of stool was used for DNA isolation using a Qiagen (Germantown, MD)
MagAttract Powermag microbiome DNA isolation kit (catalog no. 27500-4-EP). Barcoded dual-index
primers specific to the V4 region of the 16S rRNA gene were used to amplify the DNA (56), using a
“touchdown PCR” protocol (Text S1). Multiple negative controls were run parallel to each PCR. PCR
mixtures were normalized, pooled, and quantified (56). Libraries were prepared and sequenced using the
500-cycle MiSeq V2 reagent kit (catalog no. MS-102-2003; Illumina, San Diego, CA). Raw FASTQ files,
including those for negative controls, were deposited in the Sequence Read Archive (SRA) database.

Data processing and microbiota analysis. Analysis of the V4 region of the 16S rRNA gene was done
using mothur (v1.39.3) (56, 57). Full methods, including detailed processing steps, raw processed data,
and code for each analysis, are described in GitHub. Briefly, following assembly, quality filtering, and
trimming, reads were aligned to the SILVA 16S rRNA sequence database (v128) (58). Chimeric sequences
were removed using UCHIME (59). Prior to analysis, both mock and negative-control samples (water)
were assessed for potential contamination; samples with �2,500 sequences were excluded (Table S1).
Sequences were binned into operational taxonomic units (OTUs), with 97% similarity, using the opticlust
algorithm (60). The Ribosomal Database Project (v16) was used to classify OTUs or sequences directly for
compositional analyses (�80% confidence score) (61). Alpha and beta diversity measures (inverse
Simpson index and the Yue and Clayton dissimilarity index [�YC]) were calculated from unfiltered OTU
data (62). Basic R commands were used to visualize results, calculate percentage of OTUs shared between
samples, and conduct statistics, using the packages plyr, dplyr, gplots, tidyr, and tidyverse. The non-
parametric Kruskal-Wallis test, using Dunn’s test for multiple comparisons and adjusting P values with the
Benjamini-Hochberg method when indicated, was used for multigroup comparisons. The R packages
lme4 and lmerTest were used for mixed linear models for comparisons between OTU relative abundance
(filtered to include OTUs present in at least half of samples collected from a subject per site) and pH or
mesalamine (63, 64).

Ethics approval and consent to participate. Samples collected in this study were part of clinical
trial NCT01999400. The institutional review boards at the University of Michigan (IRBMED) and the
Department of Health and Human Services, Food and Drug Administration (Research Involving Human
Subjects Committee [RIHSC]), both approved the study protocol (IRB approved on 4 February 2015). All
subjects provided written informed consent in order to participate. Informed consent was obtained from
individuals prior to the time of sampling.

Availability of data. Raw FASTQ files, including those for negative controls, were deposited in
the SRA database under BioProject ID no. PRJNA495320 and BioSample ID no. SAMN10224451 to
SAMN10224634. Detailed processing steps, raw processed data, and code for each analysis are described
in GitHub at https://github.com/aseekatz/SI_mesalamine.
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