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Abstract

Cooperation is key for the evolution of biological systems ranging from bacteria communities

to human societies. Evolutionary processes can dramatically alter the cooperation level.

Evolutionary processes are typically of two classes: comparison based and self-evaluation

based. The fate of cooperation is extremely sensitive to the details of comparison based pro-

cesses. For self-evaluation processes, however, it is still unclear whether the sensitivity

remains. We concentrate on a class of self-evaluation processes based on aspiration,

where all the individuals adjust behaviors based on their own aspirations. We prove that the

evolutionary outcome with heterogeneous aspirations is the same as that of the homoge-

neous one for regular networks under weak selection limit. Simulation results further sug-

gest that it is also valid for general networks across various distributions of personalised

aspirations. Our result clearly indicates that self-evaluation processes are robust in contrast

with comparison based rules. In addition, our result greatly simplifies the calculation of the

aspiration dynamics, which is computationally expensive.

Author summary

Cooperation is the cornerstone to understand how biological systems evolve. Previous

studies have shown that cooperation is sensitive to the details of evolutionary processes,

even if all the individuals update strategies in the same way. Here we propose a class of

updating rules driven by self-evaluation, where each individual has its personal aspiration.

The evolutionary outcome is the same as if all the individuals adopt the same aspiration

for regular networks, provided the selection intensity is weak enough. In addition, we pro-

vide a simple numerical method to identify the favored strategy. Our result shows a very

robust class of strategy updating rules. And it implies that complexity in updating rules

does not necessarily lead to the sensitivity of evolutionary outcomes.

Introduction

Cooperation is forgoing the focal individual’s own interest to benefit others. It is ubiquitous

across every level of biological systems. Yet cooperation seemingly contradicts the evolution
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theory, since free riders, who contribute nothing, are better off than cooperators in fitness. The

gap has attracted considerable attention to tackle how and why cooperation evolves [1].

A pairwise game, in which there are only two players, is widely employed to model the con-

flicts between cooperation and defection. The well-known Prisoners’ Dilemma is a pairwise

game [2]. While the dyadic games capture the conflicts between cooperators and defectors,

they neglect that the interactions in the real world usually involve more than two individuals.

For example, all the nations are involved to reduce the emission of greenhouse gases, leading

to a multiplayer collective risk dilemma [3–5]. More than two yeast cells interact to form a

multicellularity when the resource is rare, resulting in a multiplayer game [6]. Thus, it is natu-

ral to adopt multiplayer games as a paradigm to study cooperation.

The last decade has seen an intensive study on the mechanisms promoting cooperation

including group selection, direct reciprocity and spatial reciprocity [7–14]. In particular, spa-

tial reciprocity attracts considerable attention with the development of network science. Spatial

structure is typically described as networks, where nodes represent individuals and links social

ties. Individuals on networks play games only with their neighbours. In this case, cooperators

form clusters not only to invade but also to resist a population of defectors [13]. Consequently,

the population structure promotes both the emergence and the stabilization of cooperation

[15]. Yet the evolutionary outcome can be dramatically altered on networks, even if some

detail of the evolutionary process changes: in degree-homogeneous networks, Death-birth pro-

cess can promote cooperation for the Prisoners’ Dilemma whereas Birth-death process cannot

[13]; In degree-heterogeneous networks, the fate of cooperation relies on the rate at which

interactions occur and how interactions transform into the fitness of strategies [16]. In fact,

the evolutionary outcome is not robust for different evolutionary processes even in the well-

mixed population where all the individuals interact with everyone else [17, 18]. Yet, all of the

above works assume that all the individuals adopt the same strategy updating rule. In reality, it

is a personal trait to adjust one’s own behavior. In other words, individuals are equipped with

their own updating rules, resulting in a great heterogeneity in strategy updating rule across the

population. Considering that the details of evolutionary processes would greatly alter the evo-

lutionary outcome, the fate of strategies is expected to be extremely sensitive to the heterogene-

ity in updating rules.

Here, we study aspiration dynamics of multiplayer games on regular networks and investi-

gate how the heterogeneity in aspiration levels alters the evolutionary outcome. The idea of

aspiration is self-evaluation: an individual is likely to keep its strategy if its aspiration is met by

the payoff, and to switch otherwise. Aspiration dynamics are widely present in behavioural

ecology. For example, experienced ants go back to their nest based on their own chemical trails

[19] or by counting their own previous steps [20]. In our manuscript, every individual has its

personal aspiration. We show that cooperation is more abundant over defection for all possible

personal aspiration levels provided cooperation is advantageous for a homogeneous aspiration

level. Furthermore, we analytically figure out the condition under which cooperation prevails,

which is also true for all two-strategy multiplayer games. On the one hand, our result clearly

shows that heterogeneity in aspiration does not alter the fate of strategies, in contrast with pre-

vious results that evolutionary outcome is sensitive to the details of the evolutionary processes

[18, 21]. On the other hand, the result also provides computational savings when identifying

the conditions under which one strategy is more abundant than the other.

Models

Let us consider a two-strategy d-player game. An individual using strategy A obtains payoff ak
when encountering k coplayers using strategy A. And an individual using strategy B gets payoff
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bk when facing k coplayers using strategy A. The number of coplayers adopting strategy A, i.e.,

k, ranges from 0 to d − 1. The game is given by the following payoff table [22]:

In a well-mixed population with finite sizeN, an individual randomly chooses d − 1 individ-

uals from the entire population to play with based on Table 1. It results in a hypergeometric

distribution of d − 1 players with respect to the number of individuals using strategy A. In

other words, individuals interact globally in the well-mixed population. The interaction

between individuals, however, may be limited by territorial constraints. Thus we concentrate

on the more realistic local interaction. We assume that all the individuals are located on a regu-

lar network of size N with degree d − 1. In this case, each of the N individuals in the population

has d − 1 neighbours. At each time, an individual, namely i ranging from 1 to N, is randomly

selected. It plays the d-player game with its d − 1 neighbours, and obtains payoff πi. The focal

individual i is likely to switch its strategy if its current payoff πi does not meet its aspiration ei.
We assume that every individual has its own way of switching. To this end, we allow that

individual i, ranging from 1 to N, switches its strategy with a probability given by its own deci-

sion making function gi. Here gi is a function of β(ei − πi), with selection intensity β� 0 [23].

All through our manuscript, we assume that the decision making function gi is

1. differentiable on the real line with its derivative strictly positive, i.e., g 0i > 0;

2. between zero and one, i.e., 0< gi< 1.

For 1), the positive derivative of the decision making function g 0i > 0 implies that the deci-

sion making function is strictly increasing. In this case, an individual whose aspiration is not

met is more likely to change its strategies. For 2), the bound between zero and one yields that

gi is a probability and that there is always a non-zero probability of changing strategies.

The aspiration dynamics on a network is a Markov chain. The state space of the Markov

chain is S = {(s1, s2. . ., sN)|si 2 {A, B}}, where si is 1 if the strategy of individual i is A, and is 0

otherwise.
PN

i¼1
si is the number of individuals using strategy A. There is no absorbing state of

the Markov chain, since the decision making functions we propose ensure that all the individ-

uals could alter their strategies at any time. The Markov chain is ergodic, thus there is a station-

ary distribution κs, s 2 S. The average abundance of strategy A in the stationary regime is

obtained by
P

s2S ksð
PN

i¼1
siÞ=N. Here κs is a function of selection intensity. We are interested

in the condition under which strategy A is favored. In other words, we try to figure out the

condition under which the average abundance of strategy A is more abundant than that of

strategy B. i.e.,
P

s2S ksð
PN

i¼1
siÞ=N > 1=2.

(Table 2) summarizes key notations in this section. It is noteworthy that both the aspiration

and the decision making function are personal traits, resulting in the heterogeneity in decision

making.

An equivalent condition that strategy A is favored

We show that the average abundance of strategy A is one half when the selection intensity van-

ishes. And this remains true for all possible individualised aspirations ei and decision making

functions provided gi(0)> 0 for all i = 1, 2. . ., N (see Section The average abundance is 1/2 for

Table 1. Payoff table.

Number of coplayers with strategy A 0 1 . . . k . . . d − 1

A a0 a1 . . . ak . . . ad−1

B b0 b1 . . . bk . . . bd−1

https://doi.org/10.1371/journal.pcbi.1006035.t001
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vanishing selection intensity in S1 File. for the proof). In particular, it is true for our decision

making functions, since our decision making function gi is positive for the real line. Intuitively,

no individual has any bias towards any strategy for the vanishing selection intensity, although

they update strategies in their own ways. Thus strategy A is more abundant than strategy B if
and only if the abundance of strategy A is more than that of its neutral case, which holds for all

possible individualised aspirations, aspiration-based decision making functions and selection

intensities.

The criterion is a linear inequality

In the following, we introduce two lemmas, which are crucial to the main result.

Lemma 1 For the decision making function gi with 0< gi< 1 and positive derivative on the
real line g 0i > 0 (i = 1, 2,. . ., N), under weak selection limit, there exist parameters αk, ωk (k = 0,

1, . . ., d − 1) and ϕi (i = 1, 2, . . ., N), which are neither dependent on the payoff entries nor the
aspiration levels, such that if

Xd� 1

k¼0

akak þ
Xd� 1

k¼0

okbk þ
XN

i¼1

�iei > 0; ð1Þ

strategy A is more abundant than strategy B.

We outline the proof: The differentiability of the decision making function ensures that the

average abundance of strategy A, i.e.,
P

s2S ksð
PN

i¼1
siÞ=N, is differentiable with respect to the

selection intensity [24]. Thus the average abundance of strategy A under weak selection limit is

given by

X

s2S

ksð0Þ
XN

i¼1

si

 !

=N þ
X

s2S

k0sð0Þ
XN

i¼1

si

 !

=N

 !

bþ oðbÞ: ð2Þ

The first term is the average abundance of strategy A when the selection intensity vanishes, it is

one half based on Section The average abundance is 1/2 for vanishing selection intensity in S1

File. Therefore, the average abundance of strategy A is more than that in the neutral case if
P

s2S k0sð0Þð
PN

i¼1
siÞ is positive. Thus

P
s2S k0sð0Þð

PN
i¼1
siÞ > 0 is the condition under which

strategy A is more abundant than strategy B. We show that
P

s2S k0sð0Þð
PN

i¼1
siÞ is linear in pay-

off and aspiration level with no constant term, i.e., a term does not contain payoff entries or

aspirations (Section The criterion is a linear inequality of payoffs and aspirations in S1 File).

Lemma 2 If all the payoff entries are the same, i.e., there exists a constant h such that ak =

bk = h for all k = 0, 1. . ., d − 1, then the average abundance of strategy A is one half for all possible
individualised aspirations and all aspiration-based decision making functions fulfilling gi(0) > 0,

i = 1, 2, . . ., N and all selection intensities.

Table 2. Notation list.

Notation Implication

N population size

d group size, degree of regular network+1

β selection intensity

gi decision making function of individual i
πi payoff of individual i
ei aspiration/expectation of individual i
si state of individual i

https://doi.org/10.1371/journal.pcbi.1006035.t002
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(See Section The average abundance is 1/2 for neutral mutants for any selection intensity in

S1 File for the proof.)

Lemma 2 suggests that if a neutral mutant arises, the heterogeneity in the decision updating

rule and aspiration level does not alter the evolutionary outcome, compared with the homoge-

neous case. In particular, Lemma 2 is true for any selection intensity. Intuitively, both strate-

gies are identical in payoffs when all the payoff entries are the same. It resembles a neutral

mutant in population genetics [25]. Furthermore, each individual shows no bias towards any

of the two strategies, although everyone has its own way to update strategies. By symmetry, the

two strategies should be equally abundant.

Results

The condition is independent of individualised aspirations

Theorem 1 Consider a regular network with degree d − 1, and the decision making function with
0< gi< 1 and positive derivative on the real line g 0i > 0 (i = 1, 2, . . ., N), in the limit of weak
selection, there exist d parameters σks (k = 0, 1. . ., d − 1) which are neither dependent on payoff
entries nor aspiration levels such that if

Xd� 1

k¼0

skðak � bd� 1� kÞ > 0; ð3Þ

then strategy A is more abundant than strategy B.

Proof 1 For the payoff table with all the entries being zero, i.e., ak = bk = 0 for 0� k� d − 1,

strategy A and B are equally abundant for any selection intensity by Lemma 2. Thus the two strat-
egies are equally abundant under weak selection limit. On the one hand, strategy A is not more
abundant than strategy B. Thus there exist N parameters ϕis (i = 1, 2. . ., N) which are neither
dependent on the aspiration levels nor payoff entries such that

PN
i¼1
�iei � 0 holds by Lemma 1.

On the other hand, strategy B is notmore abundant than strategy A. Thus
PN

i¼1
�iei � 0 holds

with the same argument by Lemma 1. Therefore, it yields that

XN

i¼1

�iei ¼ 0: ð4Þ

Note that the parameters ϕis, i = 1, 2, . . ., N, are independent of the aspirations levels.And Eq (4)

is valid for any eis (i = 1, 2, . . ., N). In particular, for any j (1� j� N), let ei = δij, where δij is the
Kronecker Delta. We have that ϕj = 0 by Eq (4).

Therefore, based on Lemma 1, the condition under which strategy A is more abundant than
strategy B is

Xd� 1

k¼0

akak þ
Xd� 1

k¼0

okbk > 0: ð5Þ

Switching the name of A and B, by Lemma 1, strategy B is more abundant than strategy A if

Xd� 1

k¼0

akbd� 1� k þ
Xd� 1

k¼0

okad� 1� k > 0 ð6Þ

holds.
On the one hand, the linear combination of Inequality (6) is proportional to the first-order

derivative of the abundance of strategy B; On the other hand, the sum of the abundance of strat-
egy A and B is always one for any selection intensity. Thus the first-order derivative of the sum of

Individualised aspiration dynamics
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the two abundances is zero. In other words, the first-order derivative of the abundance of strategy
A is always different from that of strategy B in sign, provided neither of them is zero. Thus, strat-
egy A is more abundant than strategy B if and only if Inequality (6) does not hold.

Therefore, strategy A is more abundant than strategy B if

Xd� 1

k¼0

akbd� 1� k þ
Xd� 1

k¼0

okad� 1� k < 0 ð7Þ

or

Xd� 1

k¼0

ð� od� 1� kÞak þ
Xd� 1

k¼0

ð� ad� 1� kÞbk > 0: ð8Þ

Both Inequality (5) and (8) are the condition under which strategy A is more abundant than
strategy B. Thus there exists a positive rescaling factor λ> 0 such that they are mapped to
each other, i.e., αk = −λωd−1−k and ωk = −λαd−1−k hold for 0� k� d − 1. In particular, we have
α0 = −λωd−1 and ωd−1 = −λα0. Thus λ2 = 1.We have that λ = 1 since the constraint λ> 0. This
yields that αk = −ωd−1−k for k = 0, 1,. . ., d − 1. In this way, Inequality (5) becomes

Xd� 1

k¼0

ak|{z}
sk

ðak � bd� 1� kÞ > 0: ð9Þ

By Lemma 1, αk is not dependent on the aspirations or the payoff entries. Therefore σk is neither
dependent on the aspirations nor the payoff entries.

With the aid of Lemma (1) and Lemma (2), we obtain the condition under which strategy A
is more abundant than strategy B. Herein, Lemma 1 states that the criterion under which a

strategy is more abundant than the other is determined by both payoff entries and individual-

ised aspirations. Yet Lemma 2 implies that the criterion is not dependent on the aspiration lev-

els at all, and it is the cornerstone of the proof.

The theorem indicates that the criterion under which strategy A is favored is a simple linear

inequality (3). The coefficients of the inequality are neither dependent on the payoff entries

nor the aspirations, but are determined by the decision making functions, the way of payoff

collecting, population size and the population structure.

The coefficients of the inequality do not depend on the payoff entries, which is similar to the

σ-rule of the mutation-selection dynamics [24, 26]. The independence ensures that the coeffi-

cient σk is obtained by adopting the payoff table with ak = 1 and all the rest being zero. Thus it

opens up an avenue to compute the evolutionary dynamics under weak selection limit [27].

The theorem ensures that the coefficients do not depend on the aspiration levels at all. Sim-

ulations also show that the abundance of strategy A almost keeps invariant for a diverse class

of distributions of individual aspirations (Figs (1) and (2)). It is counter-intuitive that the coef-

ficients are independent of the aspiration levels. In fact, it is well-known for games on net-

works that the heterogeneity of personal traits alters the evolutionary outcome [28–32]. For

example, cooperation can be greatly promoted if individuals have heterogeneous neighbor-

hood sizes [33]. Aspirations are part of the individual’s updating rule. Thus the heterogeneity

in updating rule should have changed the evolutionary outcome for some games. The intuitive

understanding resorts to weak selection limit. On the one hand, the evolutionary outcome is

not determined by the aspiration under weak selection limit when the aspiration is homoge-

neous in the population [34]. On the other hand, the driving force of the strategy updating is

stochastic neutral drift under weak selection. Therefore, the effect of heterogeneity in aspira-

tion is weakened, resulting in a similar dynamics with the case of homogeneous aspiration. In

Individualised aspiration dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006035 September 25, 2018 6 / 15

https://doi.org/10.1371/journal.pcbi.1006035


fact, individual i uses strategy Bmore often if the switching probability from A to B is greater

than the other way around. In other words, strategy B is more abundant for individual i if

g(β(ei − πA)) > g(β(ei − πB)), i.e., πB> πA under weak selection. This suggests that the criterion

should be independent of the individualised aspiration, consistent with our theorem.

The coefficients are only dependent on individuals’ decision making functions, population

size, the way of payoff collecting and the underlying population structure. In particular, they

are determined by all the decision making functions gi, i = 1, 2� � �, N. Thus personalised updat-

ing rules might alter the evolutionary outcome, which is not the focus of our manuscript.

Fig 1. Average abundance of strategy A for a three-player game with individualised aspirations. Personal

aspirations are randomly assigned based on a uniform distributions on the interval [0, 1] (left panels) or [0, 5] (right

panels). Within each class, two sets of aspirations are assigned to represent two populations with different aspirations

from the same distribution. In this way, we established two kinds of heterogeneity in aspiration: one resorts to the

underlying distribution, and the other is based on the actual values sampled from the same distribution. Intuitively,

both of the two heterogeneities would alter the evolutionary outcome. Simulations in line with our theorem, however,

show that both kinds of the heterogeneity in aspiration lead to the identical abundance in A for both the well-mixed

population (upper panels) and that on rings (lower panels). We illustrate other details of the simulation in the

following. In well-mixed populations, the focal individual randomly chooses two individuals from the rest of the

population, whereas it plays only with the nearest two neighbours on the ring. In the beginning, we randomly set 5% of

the population to be of strategy A and the rest to be of strategy B. For each data point, it is the mean of 20 independent

runs. In each run, we iterate the evolutionary process for 1 × 108 generations. The average abundance of strategy A is

obtained by averaging abundance of strategy A over the last 5 × 107 generations. The population size N = 100. And the

payoff entries are a0 = 3, a1 = 2, a2 = 1, b0 = 4, b1 = 1 and b2 = 1, respectively.

https://doi.org/10.1371/journal.pcbi.1006035.g001
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To sum up, the theorem shows that personalised updating rules might alter the evolutionary

outcome, but not via heterogeneous aspiration levels.

Computation of the criterion for one strategy to be favored over the other

So far, we have obtained the condition under which a strategy is more abundant than the

other, when everyone is equipped with its own aspiration. The condition is a linear inequality

with as many coefficients as the game size. Further investigations show that those coefficients

are always non-negative, and at least one of them is positive (see Section Non-negativity of the
coefficients in S1 File). It mirrors the non-negativity of the structure coefficients of the σ-rule

for mutation-selection dynamics [35].

In the following, we estimate the d coefficients, i.e., σk k = 0, 1, 2. . ., d − 1. For simplicity, we

assume that all the individuals adopt the Fermi function as the decision making function, i.e.

gi(x) = [1 + exp(−x)]−1 for i = 1, 2���N.

By our theorem, the coefficients for a population with individualised aspirations are exactly

the same as the coefficients for a population with the homogeneous aspiration. Therefore, the

coefficients for the population with heterogeneous aspirations can be calculated via those with

a homogeneous aspiration (Section Calculation of coefficients in S1 File). And we obtain that

sk ¼
d � 1

k

� �

; k ¼ 0; 1 . . . ; d � 1: ð10Þ

Eq (10) implies that the condition under which strategy A is more abundant on regular net-

works is exactly the same as that when the population is well-mixed. Generally, Eq (10) holds,

Fig 2. Average abundance of strategy A as a function of the payoff entry a0. Our simulation results clearly show that strategy A is more abundant than strategy B if

a0 is approximately greater than 2.0 for regular networks (k = 2) (Panel (a)). This is in perfect agreement with our calculation based on the theorem, i.e., inequality

a0 + 2a1 + a2 > b0 + 2b1 + b2 with a1 = 2, a2 = 1, b0 = 4, b1 = 1 and b2 = 1. Note that the criterion a0 > 2 is valid for aspiration across various distributions. It implies that

the criterion to favor one strategy over the other is independent of the individualised aspiration, as stated in the theorem. Furthermore, the criterion also holds beyond

regular networks (Panel (a)), namely, on random (Panel (b)) and scale-free networks (Panel (c)). It suggests that the criterion can be extrapolated to general population

structures. The details of the simulations are as follows: The minimum degree of all the networks is set to be two such that all the individuals have enough neighbours

to play the three-player game with. Personal aspirations are randomly assigned in a population with homogeneous aspiration ei = 2 for all i = 1, 2. . .N (blue◯), and a

population with heterogeneous aspirations generated based on uniform distribution on the interval [0, 5] (red□), bimodal distribution with ei � 0:4N ð2:5; 0:52Þ þ

0:6N ð4:5; 0:52Þ (orange ^), and power-law distribution with probability density function f(x) = 2x−3 (purple4). Here, N ð2:5; 0:52Þ stands for the normal distribution

with mean 2.5 and standard deviation 0.5. In addition, the minimum value of aspiration sampled from the power-law distribution is 1.0. In the beginning, we

randomly set 45% of the population to be of strategy A and the rest to be of strategy B. At each time step, the focal individual randomly chooses two individuals from its

neighborhood and play a single three-player game with them to obtain the payoff. Fermi function is employed as the decision making function for all the individuals.

Each data point is the mean of the average abundance of strategy A calculated from three independent runs (5 × 109 samples in each run, 1.5 × 1010 samples in total). In

each run, we start sampling after a relaxation time of 5 × 107 time steps. The average abundance of strategy A is obtained by averaging the abundance of strategy A over

5 × 109 time steps. The population sizeN = 1000. The selection intensity β = 0.005.

https://doi.org/10.1371/journal.pcbi.1006035.g002
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provided all the individuals have the same decision making function with non-vanishing

derivative at zero. (see Section Estimating coefficients S1 File).

Numerically, we estimate the coefficients for a three-player game on both well-mixed popu-

lations and rings. In well-mixed populations, the focal individual gets its payoff by playing

games with two coplayers randomly selected from the rest of the population while on rings, its

payoff is derived from interacting with its two nearest neighbours. We set the aspirations of

individuals based on a uniform distribution. In this case, the aspiration is so personal that it is

of great possibility that no one shares the aspiration with anyone else. The numerical results

imply that the coefficients are i) exactly the same for both well-mixed populations and rings,

ii) σ0 = 1, σ1 = 2 and σ2 = 1 ((Table 3)). Therefore they are in perfect agreement with the theo-

rem and Eq (10).

Simulation results, i.e., Fig (2b) and (2c) show that the criterion in the theorem to favor

strategy A is also valid for random and scale-free networks, beyond regular networks, i.e.,

Fig (2a). In particular, simulations also show that the criterion is independent of individual

aspirations. It is noteworthy that the number of neighbors each individual has should be no

less than d − 1 for non-regular networks, such that everyone has enough neighbours to play

the d-player game with.

Up till now, we assume that an individual organizes a d−player game with its d − 1 neigh-

bours, and it gets its final payoff via this single game. We now allow this individual participates

in the d−player games organized by thy neighbours besides the one organized by itself. In

other words, the focal individual takes part in d such d−player games, one of which is orga-

nized by itself and all the rest d − 1 games are organized by its d − 1 neighbors. The final payoff

of the focal individual is the average payoff over those d games. In this case, the focal individu-

al’s final payoff is not only determined by its nearest neighbors, but also is up to the second

nearest neighbours. We investigate whether this alternative way of payoff collection alters the

criterion under which strategy A is more abundant. We perform simulations on rings ((Fig

3)). We find that heterogeneity in aspiration does not change the evolutionary outcome either.

Thus, the simulation suggests that the way of payoff accumulation does not change our result

that the evolutionary outcome is insensitive to the individualised aspirations.

Note that the theorem is obtained under the assumption of weak selection limit. It implies

that the selection intensity can be sufficiently small, given the payoff entries and individual

Table 3. Estimating the coefficients σks by simulation. We establish three sets of individualised aspirations based on the uniform distribution in [0, 1] (see S2 File for

details). For three-player games with b0 = b1 = b2 = 0, the estimated coefficients σ0, σ1, σ2 are obtained by linear regression model in the form of σ0a0 + σ1a1 + σ2a2 + Intercept.

For rings, the regression coefficients σ0,σ1,σ2 and Intercept are close to 1,2,1 and 0, which agrees perfectly with theoretical calculations Eq (10). In addition, it holds for all

the three sets of aspirations, validating the theorem. For well-mixed populations, the d coefficients still hold, consistent with [34]. Thus the coefficients are robust to the

heterogeneity in aspiration for both ring and well-mixed population. The confidence interval for the corresponding estimated coefficients (EC) are [EC-ME, EC+ME],

where ME in the parentheses is calculated with confidence level 95%. Please refer to the Methods to see the details of the simulation. Population size N = 100, selection

intensity β = 5 × 10−2. More details of the simulation are found in S1 File.

Well-mixed Ring

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

σ0 0.9848 0.9618 1.0027 0.9910 1.0188 1.0248

(0.0347) (0.0344) (0.0338) (0.0340) (0.0337) (0.0342)

σ1 1.9743 1.9453 2.0020 1.9761 2.0260 2.0526

(0.0648) (0.0643) (0.0632) (0.0634) (0.0629) (0.0639)

σ2 0.9941 0.9716 1.0117 0.9841 1.0140 1.0351

(0.0347) (0.0344) (0.0338) (0.0340) (0.0337) (0.0342)

Intercept -0.0034 -0.0031 0.0011 0.0013 0.0019 -0.0045

(0.0039) (0.0039) (0.0038) (0.0038) (0.0038) (0.0039)

https://doi.org/10.1371/journal.pcbi.1006035.t003
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aspirations. In other words, given the payoff table and the individualised aspirations, the crite-

rion
Pd� 1

k¼0

�
d � 1

k

�
ðak � bd� 1� kÞ > 0 is valid for ensuring that strategy A is more abundant

than strategy B, provided the selection intensity can be tuned as small as possible. This does

not mean that given a small yet fixed selection intensity and individualised aspiration, the cri-

terion is valid. In fact, fixed selection intensity violates the assumption of the weak selection

limit in our theorem. However, it brings us into a question in simulation: how weak the weak

selection is to ensure that the criterion in the theorem is valid for a given individualised aspira-

tion. The key idea is to ensure that perturbation analysis is correct. In other words, all the indi-

viduals have to be mainly driven by blind switching. And the switching probability from A to

B differs little from the other way around, or the difference should be of order β. In other

words, g(β(ei − πA)) − g(β(ei − πB)), i.e.,

g 0ð0ÞðpB � pAÞbþ
1

2
g 00ð0Þ pB � pAð Þ ð2ei � pA � pBÞb

2
þ oðb2

Þ

¼ g 0ð0ÞðpB � pAÞb 1þ
g00ð0Þ
2g0ð0Þ ð2ei � pA � pBÞb

� �
þ oðb2

Þ

ð11Þ

should be of order β. It is required that j
g00ð0Þ
2g0ð0Þð2ei � pA � pBÞbj � 1 makes the criterion valid.

In other words, if g00(0) 6¼ 0, a sufficient condition to ensure that the criterion is valid is that

b�
g 0ð0Þ

jg 00ð0Þj½maxfjeijg þmaxfjakj; jbkjg�
:

It suggests that the larger the maximum value of the aspiration, the weaker the selection

intensity is to ensure that the criterion is valid. This is consistent with Fig 1 that aspirations

generated via uniform distribution on the interval [0, 5] need weaker selection intensity to

make the criterion valid than those generated via the uniform distribution on the interval

Fig 3. Robustness of the evolutionary outcome based on the way of payoff accumulation. Individuals are now

participating in three games for a time. One of the three is organised by itself and the rest two by its two nearest

neighbours. The final payoff is the average of the accumulated payoff in the three games. This payoff accumulation is

different from that in the theorem, where every individual only plays a single d−player game. Yet we find that the

heterogeneity of aspiration still does not change the abundance of strategy A. Thus our theorem might be generalised

to other ways of payoff accumulation. Details of the simulation: The aspiration values are randomly selected from the

uniform distributions on interval [0, 1] (left panel) or [0, 5] (right panel). Within each distribution, we establish two

populations with different individualised aspirations. All the rest parameters are the same as those of (Fig 1).

https://doi.org/10.1371/journal.pcbi.1006035.g003
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[0, 1]. If g00(0) = 0, then j
g00ð0Þ
2g0ð0Þð2ei � pA � pBÞbj ¼ 0� 1 holds. Higher order expansion of the

difference has to be performed to figure out how weak the weak selection is.

Discussion

Evolutionary processes are typically categorised into two classes, one is comparison based and

the other is self-evaluation based. Comparison means that strategies are adjusted via payoff

comparison. For example, imitation is comparison based. Therein, an individual compares its

payoff with another one’s, and is likely to adopt the strategy of the more successful. Thus the

comparison happens between a pair of individuals. Fitness-based process is also comparison

based, including Moran process [36–39] (Death-birth and Birth-death) and Wright-Fisher

process [40]. Therein, individuals reproduce with a probability, which is based on the payoff

comparison among all the competing individuals. Individuals with higher payoffs are more

likely to reproduce. In this case, the comparison occurs among all the individuals in the popu-

lation. Self-evaluation indicates that an individual is likely to alter its strategy if the payoff does

not meet its aspiration. It is similar to the ‘Win-stay-lose-shift’ strategy [41]. For the self-evalu-

ation process, we do not take the cost of evaluation into account for the sake of simplicity fol-

lowing the convention in evolutionary game theory [42–45]. Compared with the comparison-

based individuals, individuals with self-evaluation based updating rules only make use of their

own information to update the strategy. In addition it introduces ‘exploration’ [46], since an

entire population with all the same strategy can have a new mutant, provided an individual is

not satisfied with its current payoff. It, however, is impossible for comparison-based individu-

als unless exploration is additionally assumed. Differences between the two classes of evolu-

tionary processes suggest that they can lead to different evolutionary outcomes. In fact,

differences arise even when the population is well-mixed and selection intensity is weak

[34], where evolutionary outcomes are almost identical for all the comparison-based processes

[23, 47].

Strategy updating rule, either comparison-based or self-evaluation-based, has been typically

assumed to be homogeneous for all the individuals. All the individuals make decisions in the

same way. Yet strategy updating rule is a personal trait and differs among individuals. We

tackle how the heterogeneity in strategy updating rules alters the evolutionary outcome. Previ-

ous studies have shown that this heterogeneity could dramatically alter the evolutionary out-

come, if individuals are equipped with personalised comparison-based rules [28, 29, 31]. In

particular, the heterogeneity can promote cooperation in spatially structured populations. This

is in line with the expectation, since the evolutionary outcome is sensitive to the details of the

comparison-based processes, even if the updating rule is homogeneous [18]. However, it is still

unclear what happens if the evolutionary processes are chosen in the class of self-evaluation

based processes. Or how this heterogeneity affects the evolutionary outcome within the class of

self-evaluation processes. Intuitively, it is natural to expect that alternative outcomes emerge if

individuals are using their own self-evaluation rules. Our theorem, however, shows the oppo-

site: the outcome based on heterogeneous aspirations is the same as that for homogeneous

ones under weak selection limit. In fact, it results from the fact that the evolutionary outcome

is robust for different aspiration levels if they are homogeneous [34].

The theorem ensures that the criterion to favor strategy A under weak selection limit is a

linear inequality, which is independent of all the aspirations. Based on the theorem, the coeffi-

cients of the inequality with heterogeneous aspirations are calculated via that with homoge-

neous aspirations instead. It paves the way to obtain the criterion analytically based on the

mean-field approximation [48] (see section Calculation of coefficients S1 File). Note that the

calculation of the coefficients itself has shown that the criterion to favor strategy A does not
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depend on the aspiration for homogeneous aspiration (see Eq. (12) in S1 File). Yet the calcula-

tion for the homogeneous case cannot be extrapolated to the heterogeneous case. The obstacle

is overcome by the theorem, which ensures the equivalence of the criterions between homoge-

neous and heterogeneous aspirations.

The proof of our theorem is similar to the proof in [24, 27, 49] in the sense that they both

are based on weak selection limit and symmetric evolutionary rule. Yet a transition probability

for the aspiration dynamics is a function of the products of payoff entry and selection intensity

and the products of the aspiration and selection intensity, whereas a transition probability

for [24, 27, 49] is a function of the products of payoff entry and selection intensity only. This

mathematical difference prevents us from directly applying their results [24, 49], and we over-

come the obstacle by introducing the two lemmas in the Method section.

We concentrate on a regular network with degree d − 1. It is to ensure that every individual

has exactly d − 1 neighbors such that every individual is able to play the d-player game. In fact,

the proof of the theorem applies to a set structured population, in which all the individuals

are in club-like sets. Therein, each sets consists of d individuals, but the number of sets one

belongs to varies from individual to individual. In particular, a regular network with degree

d − 1 is a set structured population, whose set size is d and the number of the sets one belongs

to is d for all the individuals [50]. Furthermore, Fig 2 shows that the criterion in the theorem

also holds for random and scale-free networks across a wide range of distributions of individ-

ual aspirations. It suggests that the theorem can be true for a wide range of population struc-

tures, which requires investigation in the future.

(Fig 1) indicates that there are games such that the heterogeneity in aspiration does not

alter the rank of the abundances for non-weak selection, although our theorem is based on

the weak selection limit. It seemingly suggests that the criterion to favor a strategy A under

strong selection is the same as that under weak selection. Yet, it is not true. Let us consider a

multiplayer game whose payoff entries are of order 1. In this case, the payoff is of order 1 for

both strategies. Let us assume that there are two types of aspirations in the population, one is

positive and the other is negative, which are both of higher order than 1. Under strong selec-

tion, individuals with high aspiration are never satisfied with their payoffs, and they switch

their strategies all the time. By the symmetry of the updating rule (similar to the proof in Sec-

tion The average abundance is 1/2 for vanishing selection intensity in S1 File), the two strate-

gies are equally abundant among individuals with high-aspiration. Yet individuals with low

aspiration are always satisfied and they act as zealous individuals who never alter strategies

[51, 52]. Thus individuals using strategy A are more abundant eventually if individuals using

strategy A with low aspiration are more abundant than those using strategy B with low aspi-

ration in the beginning. It clearly indicates that the criterion under which a strategy is more

abundant under strong selection differs from that under weak selection. Therefore there are

games such that the ranking of strategies is sensitive to the selection intensity in a population

with heterogeneous aspirations. In other words, the criterion in the theorem to favor a strat-

egy in abundance is sensitive to the selection intensity, in line with the mutation-selection

dynamics [18, 21].

The criterion under which a strategy is more abundant than the other is robust under aspi-

ration dynamics for weak selection limit. In fact, the criterion holds true for various networks,

individualised aspirations, and different ways of payoff collection. A potential way to violate

the present criterion is to allow individuals to use different updating functions when using

strategy A and B. In this case, updating of the two strategies is not symmetric anymore. And

the two strategies can be different in abundance even when all of the payoff entries in the table

are the same, violating Lemma 2, which is crucial for the theorem. A study along this way is

undergoing.
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To sum up, in the limit of weak selection, we show that the heterogeneity in aspiration does

not alter the evolutionary outcome compared with the homogeneous case. Our result not only

shows a striking difference between comparison based and self-evaluation based rules, but also

provides a novel way to compute the aspiration dynamics.
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(PDF)

S2 File. Table of personal aspiration values in simulations. In the table, personal aspiration

values for different simulations are listed. For example, the second column (Column B) shows

aspiration values of all the individuals indexed from 1 to 100 and it corresponds to Set 1 of the

uniform distribution on the interval [0, 1] used in Figs (1) and (3) (red circles in the left pan-

els).
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