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Abstract

Determining sensitive drugs for a patient is one of the most critical problems in precision

medicine. Using genomic profiles of the tumor and drug information can help in tailoring the

most efficient treatment for a patient. In this paper, we proposed a classification machine

learning approach that predicts the sensitive/resistant drugs for a cell line. It can be per-

formed by using both drug and cell line similarities, one of the cell line or drug similarities, or

even not using any similarity information. This paper investigates the influence of using pre-

viously defined as well as two newly introduced similarities on predicting anti-cancer drug

sensitivity. The proposed method uses max concentration thresholds for assigning drug

responses to class labels. Its performance was evaluated using stratified five-fold cross-vali-

dation on cell line-drug pairs in two datasets. Assessing the predictive powers of the pro-

posed model and three sets of methods, including state-of-the-art classification methods,

state-of-the-art regression methods, and off-the-shelf classification machine learning

approaches shows that the proposed method outperforms other methods. Moreover, The

efficiency of the model is evaluated in tissue-specific conditions. Besides, the novel sensi-

tive associations predicted by this model were verified by several supportive evidence in the

literature and reliable database. Therefore, the proposed model can efficiently be used in

predicting anti-cancer drug sensitivity. Material and implementation are available at https://

github.com/fahmadimoughari/CDSML.

1 Introduction

As defined by The National Research Council, Precision medicine can be used to classify the

patients into subgroups that vary in response to a medical treatment [1]. Tailoring efficient

treatments based on their personalized characteristics can improve the quality of therapies,

avoid extra expense, and diminish undesirable side effects [2]. Therefore, predicting the sensi-

tivity of patients toward specific treatments is an essential issue in precision medicine. Cur-

rently, the massive collection of data prepare the ground for the development of data analysis
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and computational methods such as machine learning and artificial intelligence approaches

[2].

Generally, the computational methods for predicting drug response have been analyzed in

two ways: 1- Classification (predicting sensitive drug-cell line pairs), 2- Regression (Predicting

the value of a criterion for measuring the response of a cell line toward a drug). Numerous

computational approaches have been proposed to solve the classification methods that predict

anti-cancer drug sensitivity using transcriptomic features of cell lines and chemical substruc-

tures of drugs.

Zhang et al. have designed a heterogeneous network based on drug-target associations and

drug sensitivity of cell lines. It also takes drug similarities, cell line similarities, and Protein-

Protein Interaction (PPI) network into account. Their method, termed HNMPRD, uses an

information flow-based algorithm to predict novel sensitive pairs of cell line-drug [3].

Recently, Choi et al. have designed RefDNN, a computational model based on a deep neural

network and myriads of ElasticNet regressors [4]. They considered a set of reference drugs and

a benchmark for classifying drugs for assessing the other drugs. They predicted drug sensitivity

probabilities for a specific cell line-drug pair based upon the drug’s similarity to the reference

set. RefDNN has the potentiality to be used for anti-cancer drug repositioning. One of the lat-

est works in classifying cell line-drug pairs is DSPLMF [5]. This method uses a logistic matrix

factorization with regularization terms. The regularization terms consider the drug similarity

based on the chemical substructure and three types of cell line similarity based on gene expres-

sion profile, copy number variation, and mutation. Another similarity for cell lines was also

calculated according to the response values of cell lines toward the drugs.

Furthermore, several computational regression approaches have been designed, which pre-

dicted the half-maximal inhibitory (IC50) of cell lines toward the drugs. In 2017, Wang et al.
have suggested that the similarity of cell lines and the similarity of drugs can aid in predicting

drug response values. They have proposed SRMF, a matrix factorization with regularization

based on gene expression similarity of cell lines and chemical similarity of drugs [6]. They

used SRMF for drug re-purposing in lung cancer cell lines. Suphavilai et al. have designed a

recommender system, called CaDRReS, which benefits solely from cell line similarities [7].

They have shown that CaDRReS can extract meaningful information about drug mechanisms

from the predicted drug responses. Wei at al. have introduced CDCN, which predicted drug

response by inferring information from a simple network composed of cell lines and drugs [8].

CDCN yielded high-quality results despite its simple calculations. Ahmadi Moughari et al.
have proposed ADRML, a framework for anti-cancer drug response prediction using manifold

learning [9]. ARDML maps drug response values into a low-dimensional latent space and

infers the drug response value for new cell line-drug pairs from the latent space. It takes several

types of cell line similarities and drug similarities into account and uses them in the manifold

learning procedure. They have shown that ADRML predicted good results correlated with

drug pathway activities.

In recommending efficient remedies for a patient, it is essential to determine the drugs that

a patient is sensitive to them; therefore, knowing drug response values itself may not give extra

information in medical cases. Therefore, classifying cell line-drug pairs into sensitive/resistant

pairs is a more fundamental and helpful problem than regressing their response values. On the

other hand, a regression problem can be transferred to a classification problem via a threshold-

ing technique.

In this work, as inspired by ADRML [9], we proposed CDSML, which applies the manifold

learning method [10] for the classification problem using the maximum concentration thresh-

old. Since predicting sensitive pairs is much more important than predicting drug response

values, providing an efficient classification method can have a great impact in this field. We
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show that using binary response as the input in the classification method leads to significantly

higher performance of CDSML over ADRML.

Another contribution of this paper is introducing two novel and inclusive similarities for

anti-cancer drugs besides using previously defined similarities. Due to incorporating the com-

bination of various information in newly introduced drug similarities, using these similarities

in other precision medicine models or related fields can be helpful. An interesting part of this

paper is the assessment of the influence of each similarity type on the performance of CDSML.

The proposed method uses a novel combination of standardization and normalization for

transforming the similarity matrices into the ones with more desirable characteristics.

Moreover, this paper provides an extensive validation of using k-nearest neighbor strategy

for imputing the missing values. Since the available datasets for cancer cell line sensitivity are

not complete, there are numerous missing values. These assessments validate the rationality of

using this technique to fill in the missing values.

In addition to the mentioned contributions, we extended the CDSML application in order

to have the capability of handling missing values without imputation. Furthermore, the pro-

posed method can be performed in various scenarios with or without similarity information

and achieves highly reliable results in all scenarios. We provide a framework to assess the

regression methods on classification mode.

The performance of CDSML in the classification problem is compared to the performance

of off-the-shelf machine learning classifiers, as well as state-of-the-art classification and regres-

sion methods, all in the same setting. The tissue-specific results and literature evidence for the

predicted sensitive pairs confirm CDSML performance.

2 Materials and methods

2.1 Data

Drug screening data and the transcriptomic data of the cell lines were obtained from the Geno-

mics of Drug Sensitivity in Cancer (GDSC) [11] and Cancer Cell Line Encyclopedia (CCLE)

[12]. The molar concentration of a drug needed for half inhibition of cell growth (IC50) as

well as molecular information of cell lines in GDSC and CCLE, such as gene expression pro-

files, mutation, and copy number variation were downloaded using PharmacoGx R package

[13]. The max concentration values for drugs were obtained from GDSC website http://

cancerrxgene.org.

GDSC contains 439 drugs and 1124 cell lines; however, some IC50 values were not inserted

in GDSC. Therefore, we purified the data using some pre-processing steps similar to several

previous works [5, 9, 14, 15]. After applying data pre-processing steps, we obtained 555 cell

lines and 98 drugs.

Moreover, CCLE dataset contains the information for 24 drugs. It should be noted that we

require the max concentration values for drugs. Therefore, according to the previous studies

[4], we restrict the CCLE dataset on the drugs that their max concentration values can be

obtained from GDSC website. The final CCLE dataset, after applying pre-processing steps,

contains 363 cell lines and 18 drugs.

In addition to the mentioned information, the PaDel descriptors of drugs in PubChem

[16] were extracted using the rdkit package in Python [17]. The target proteins for drugs

were gained from GDSC and DrugBank [18] databases as well as literature. The interaction

information for proteins and drugs are obtained from STRING [19] and STiTCH [20]

databases.
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2.2 Pre-processing

We construct three types of matrices for assessing the gathered data. The first matrix is the

response matrix which contains the drug response information. The rows of the response

matrix corresponds to the cell lines and its columns are related to the drugs. The elements of

response matrix are either the IC50 values or sensitivity labels. The second type of matrices is

cell line feature matrices, in which the rows pertain to the cell lines and the columns represents

different features. The last type of matrices is drug feature matrices, in which each row repre-

sents a drug and drug features are organized in the columns. After constructing these matrices,

pre-processing steps were applied on them in order to impute the missing values, remove sam-

ples with significantly low information, calculate the cell line similarities and drug similarities,

and make the data suitable for the proposed method. The pre-processing procedure includes

the following four steps:

• Imputing missing values

• Converting IC50 values into binary categories

• Similarity calculation

• Standardization and normalization

These steps are elaborated in the following subsections.

2.2.1 Imputing the missing values. There are numerous missing values in the IC50

response matrix, cell line feature matrix based on copy number variation, and cell line feature

matrix based on mutation profile. In order to remove the samples that have a significant lack

of information, we omitted the drugs that have missing IC50 for more than half of the cell

lines. Moreover, we removed the features of cell lines that have the missing values for the

majority of cell lines. Afterward, we excluded the cell lines with missing entries for more than

half of the columns in each of these matrices. Nevertheless, there were still some missing values

in the matrices; therefore, we imputed these missing entries using a weighted mean of other

entries. If we did not omit the samples with a significant lack of information and tried to

impute all missing entries first, the obtained information would not be much reliable. The per-

centage of imputed data must be low enough to maintain the authenticity of data. For example,

in the case of GDSC dataset, the raw IC50 matrix contains about 49% missing values. After

removing the drugs and cell lines with a great extent of missing values, the obtained IC50

matrix contains only 2.7% missing pairs. Imputing such a limited fraction of data does not

damage the data authenticity.

We used the following strategy to impute the remaining missing values, which is similar to

the imputation procedure used in previous studies. [5, 14]. Let E(ci) be the gene expression

profile of cell line ci and I(ci, dj) be the IC50 value for cell lines ci against drug dj. The missing

value for I(c, d) is imputed as the Eq 1.

Iðc; dÞ ¼
X

i2NðcÞ

Iðci; dÞDðc; ciÞP
j2NðcÞDðc; cjÞ

ð1Þ

Dðci; cjÞ ¼ jjEðciÞ � EðcjÞjj
2

2
ð2Þ

where ||.||2 is the norm-2 and N(c) is the set of indices for cell lines which are the k nearest

neighbors of the cell line c with respect to the distance function D. We considered k = 10 for

imputing missing values in GDSC and CCLE.
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Moreover, the missing entries in copy number variation and mutation matrices are

imputed similarly. Let V(c, g) and M(c, g) be the copy number variation and mutation status of

gene g in cell line c. The missing values for V(c, g) and M(c, g) are imputed according to Eqs 3

and 4, respectively.

Vðc; gÞ ¼
X

i2NðcÞ

Vðci; gÞDðc; ciÞP
j2NðcÞDðc; cjÞ

ð3Þ

Mðc; gÞ ¼
X

i2NðcÞ

Mðci; gÞDðc; ciÞP
j2NðcÞDðc; cjÞ

ð4Þ

It is noteworthy that gene expression profiles of cell lines are considered for calculating sample

distance because the cell line feature matrix based on gene expression profiles does not contain

any missing value. Therefore, the distance function D can be computed for all pairs of cell

lines.

2.2.2 Convert IC50 values into binary categories. CDSML requires discrete drug

responses for classifying the cell line-drug pairs. Numerous studies have divided IC50 values

into sensitive and non-sensitive classes [3–5, 14, 21]. Currently, various thresholds (θ) are used

to convert IC50 values into sensitive/resistance classes. In several studies, a fixed threshold is

used for converting IC50 values to binary labels. For example, Brubaker et al. [22] used θ = 0.1

and Chang at al. [21] used θ = −2. Some studies used statistical thresholds such as drug-wise

median [5, 14], mixed Gaussian distribution [3, 23], or a certain deviation from the normalized

mean [24] as the threshold. While some others used reliable pharmacokinetic thresholds such

as the maximum concentration of drugs (Cmax) [4].

Among the various thresholds used for label assigning to drug response values, Cmax is

more logical since it is based on the pharmacokinetic properties of the drug. Cmax is the maxi-

mum (peak) concentration in plasma, which is achieved by a drug. Therefore, it is evident that

if a cell line requires the molar concentration of more than Cmax of a drug for half inhibition, it

is resistant to the drug.

The cell lines in the GDSC database are specified as sensitive and resistant to a drug, using

Cmax thresholds [11]. To clearly explain the label assignment of IC50 values, Suppose there are

m cell lines and n drugs and Bm×n is a binary matrix, showing the sensitivity or resistance of

cell line-drug pairs. If B(ci, dj) = 1, it denotes that cell line ci is sensitive to drug dj, and resistant

to it if B(ci, dj) = 0. The entries of the matrix B were determined according to the following:

• If I(c, d) < Cmax(d) it is labeled sensitive, which is represented by 1.

• Otherwise, it is labeled non-sensitive, which is represented by 0

Applying Cmax threshold on the response matrix leads to labeling 59.13% of cell line-drug

pairs in GDSC as sensitive pairs (i.e. 32,164 out of 54,390 pairs). Moreover, 65.1% of CCLE

pairs (4,254 out of 6,534 pairs) were labeled as sensitive pairs. The remaining pairs were con-

sidered as resistant pairs.

2.2.3 Similarity calculation. Previous studies have frequently confirmed that similar cell

lines yield similar responses to similar drugs [5–7, 25]. Therefore, the machine learning

approaches can learn to predict the drug response using the similarities between cell lines and

the similarities between drugs. Three types of cell line similarities and three types of drug simi-

larities were computed for GDSC and CCLE datasets. The similarity calculation procedure is

elaborated in the following.
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The genomic features of cell lines are mainly characterized using gene expression profiles,

copy number variation, and mutation profiles. The gene expression similarity between ci and

cj cell lines is represented by SCE(ci, cj), which is computed by Pearson Correlation Coefficient

(PCC) between the gene expression profiles of the ci and cj (See Eq 5).

SCE ¼

X

g
ðEðci; gÞ � �EðciÞÞðEðcj; gÞ � �EðcjÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðEðci; gÞ � �EðciÞÞ
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðEðcj; gÞ � �EðcjÞÞ
2

q ð5Þ

where E(ci, g) denotes the expression of gene g in cell line ci and �EðciÞ represents the mean

expressions of all genes in cell line ci.
Moreover, SCV represent the cell line similarity based on copy number variation. Let V(ci,

g) be the copy number variation of gene g in cell line ci and �V ðciÞmean of copy number varia-

tions of all genes for cell line ci. The similarity of cell lines corresponding to copy number vari-

ation is calculated as Eq 6.

SCVðci; cjÞ ¼

X

g
ðVðci; gÞ � �V ðciÞÞðVðcj; gÞ � �V ðcjÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðVðci; gÞ � �V ðciÞÞ
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðVðcj; gÞ � �V ðcjÞÞ
2

q ð6Þ

In addition to the mentioned similarities between cell lines, another important feature in

cancer cell lines is mutation profiles. Gene mutations play crucial functions roles in cancer

development and progression [26]. Suppose M(ci, g) be a binary value, showing the mutation

status of gene g in cell line ci, where it equals “1” if gene g is mutated in cell line ci and “0” if it is

wild type. SCM(ci, dj) represent the mutation similarity of cell lines ci and cj which is defined

based on Jaccard Index (JI) of their mutation profiles.

SCMðci; cjÞ ¼

X

g
Mðci; gÞMðcj; gÞ

P
g0 ðMðci; g 0Þ þMðcj; g 0ÞÞ �

P
g0 ðMðci; g 0ÞMðcj; g 0ÞÞ

ð7Þ

One of the frequently used similarities for drugs is the similarity of chemical substructures

because chemical substructure of a drug determines its functionality up to a good extent [27–

29]. The chemical substructure similarity of two drugs di and dj is shown by SDS(di, dj) which

is calculated using the JI of PaDel descriptors of drugs di and dj. Let P(di, l) be the lth element

of the PaDel descriptor for drug di. The SDS(di, dj) value is computed as Eq 8

SDSðdi; djÞ ¼

X

l
Pðdi; lÞPðdj; lÞ

P
l0 ðPðdi; l0Þ þ Pðdj; l0ÞÞ �

P
l0 ðPðdi; l0ÞPðdj; l0ÞÞ

ð8Þ

Another informative similarity of drugs can be obtained based on the interaction of drugs with

other chemicals and proteins. The STiTCH database provides a comprehensive resource

which presents the relationships between chemicals and proteins [20]. The relations in

STiTCH are based on various sources such as experimental evidence from ChEMBL [30]

PDSP Ki database [31], Protein Data Bank (PDB) [32], pathway databases including KEGG

[33], Reactome [34], and NCI nature pathway interaction database [35] as well as other data-

bases such as DrugBank [18] and MATADOR [36]. In addition to the experimental evidences

from reliable databases, it uses text mining, experimentally biochemical data, gene fusion, and

genomic context prediction [20]. Hence, the network obtained from STiTCH database pro-

vides an extensive insight about the drugs. The STiTCH network for CCLE drugs is illustrated

in Fig 1. The oval nodes in this figure represent the drugs in CCLE and other adjacent drugs,

while the circle nodes indicate the neighbor proteins. The STiTCH network for GDSC drugs is
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presented in the S2 File (S1 Fig in S2 File). The weights of edges between nodes in STiTCH net-

work for GDSC and CCLE drugs are presented in S1 and S2 Tables in S1 File, respectively.

We computed drug similarities based on STiTCH network (SDN) according to the Eq 9,

where Ni represents the immediate neighbors (both protein neighbors and chemical neigh-

bors) of drug di. Therefore the JI of the neighbor nodes in STiTCH network is used as the sec-

ond similarity of drugs.

SDNðdi; djÞ ¼
jNi \ Njj

jNi [ Njj
ð9Þ

In addition to the above drug similarities, we calculated another similarity based on PPI

network of target proteins. To this aim, we obtained drug targets and considered the target

Fig 1. STiTCH network for drugs in CCLE.

https://doi.org/10.1371/journal.pone.0250620.g001
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proteins for all drugs in the dataset as the target protein set. The target protein set for GDSC

and CCLE are presented in S3 and S4 Tables in S1 File, respectively. Afterwards, we acquired

PPI network for the target protein set from STRING database [19]. Fig 2 represents the

STRING PPI network for target protein set of CCLE drugs. The STRING PPI network for

GDSC drugs is presented in the S2 File (S2 Fig in S2 File). It is noteworthy that STRING data-

base uses various types of data such as Gene ontology terms, pathways experimental evidence,

and text mining features to compute the interactions between proteins. Hence, the weights of

edges in STRING PPI network are the combination of various evidence. The weights of edges

between nodes in STiTCH network for GDSC and CCLE drugs are presented in S5 and S6

Tables in S1 File, respectively.

To compute the PPI-based similarity of drugs (SDP) we constructed a bipartite graph for

each pair of drugs. To explain clearly, suppose that TPi and TPj are the sets of target proteins

for drugs di and dj, respectively. Bipartite PPI graph G(i, j)PPI is constructed such that the set of

nodes in one part is TPi, the set of nodes in another part is TPj and the edges are defined based

on STRING PPI network. For example, assume that that TPi = {Pi1, Pi2, Pi3} is the target pro-

teins of drug di, while TPj = {Pj1, Pj2, Pj3, Pj4} is the target proteins of drug dj. The bipartite

graph G(i, j)PPI is illustrated in Fig 3. The weights PPI edges between two parts in this graph

are set by the weights of PPI in STRING network. Afterwards, we applied the maximum

weighted matching algorithm [37] on this bipartite graph and consider the summation of

weights of matching edges as the PPI-based similarity of drug pairs. This similarity shows the

extent of accordance between the set of target proteins of two drugs. Therefore, SD(di, dj) is a

high value, if the set of target proteins for di, dj match highly.

2.2.4 Standardization and normalization of similarity matrices. After computing all

similarities, we standardized the similarity matrices in order to ensure that all similarity values

range from 0 to 1. Since all similarities were computed based on PCC or JI, the similarity val-

ues range from -1 to 1; therefore, this standardization transforms the values in the range of

[0, 1]. To clearly explain the standardization process, let S(i, j) be an entry in a similarity

matrix. Its standardized value is represented by Ŝði; jÞ and is computed according to Eq 10.

Ŝði; jÞ ¼
Sði; jÞ þ 1

2
ð10Þ

It is notable that performing standardization on similarity matrices does not change the sort-

ing of distances between samples because this is a linear transform.

In the next step, we normalized the standardized similarity matrices using the symmetric

normalized Laplacian [38]. The symmetric normalized Laplacian is a well-defined transform

of the similarity matrix with several favorable algebraic and spectral characteristics such as

being positive definite and diagonally dominant [39]. Moreover, its prevalence use in other

problems such as spectral clustering [40] and drug target interaction prediction [41] justifies

that using symmetric normalized Laplacian matrix represents the similarity of samples and

shows the structural properties in a better way [42]. For each similarity matrix S, the normal-

ized similarity matrix S is obtained as Eq 11.

S ¼ D� 1=2ðD � SÞD� 1=2 ð11Þ

In this equation, D is a diagonal matrix and Di,i = ∑j Si,j. All diagonal elements in D are non-

zero. Hence, D−1/2 is a diagonal matrix and its entries are reverse values of the square root of

elements in D. It should be noted that this normalization does not affect the correlation

between various types of similarity matrices. On the other hand, applying this normalization

improves the model speed and leads to quicker convergence of the CDSML.
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Fig 2. STRING network for drugs in CCLE.

https://doi.org/10.1371/journal.pone.0250620.g002

Fig 3. Schematic representation of the bipartite graph between the set of target proteins for a drug pair.

https://doi.org/10.1371/journal.pone.0250620.g003
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2.3 Applying classification method

The classification process is inspired from ADRML method [9], but with binary response

matrix B, rather than IC50 value matrix I. Moreover, it uses a threshold to convert obtained

results into binary labels. This method has several steps, including:

1. Decompose Bm×n matrix into Xm×k and Yn×k, such that B� XYT

(a). Initialize X(0) and Y(0) randomly.

(b). Compute a loss function defined as the summation of mean square error (MSE), simi-

larity conservation terms and regularization terms.

(c). Update X and Y matrices according to the Newton’s method.

(d). Repeat steps 1.b and 1.c until X and Y matrices converge.

2. Decompose BT into two latent matrices W and Z similar to step 1.

3. Compute ~B ¼
1

2
ðXYT þWZTÞ as the predicted sensitivity matrix.

4. Use a threshold to convert ~B into a binary matrix B̂.

These steps are shown in Fig 4 and explained elaborately in the following.

2.3.1 Compute loss function. To classify the cell line-drug pairs, Bm×n is decomposed

into two latent matrices Xm×k (cell line latent matrix) and Yn×k (drug latent matrix) with lower

rank. The decomposition must satisfy the following constraints:

• Decomposition Mean Square Error (MSE): The multiplication of latent matrices XYT must

be an appropriate estimation of binary response matrix B.

• Regularization: The elements of X and Y matrices should not grow excessively.

• Cell line similarity conservation: The similar cell lines must have not too far latent row vec-

tors in X matrix.

• Drug similarity conservation: The similar drugs must have not too far latent row vectors in

Y matrix.

Considering all the above constraints, the loss function is defined according to Eq 12.

Loss ¼
1

2

X

i;j

ðBði; jÞ � XðiÞYðjÞTÞ2 þ
a

2

X

i

jjXðiÞjj2 þ
X

j

jjYðjÞjj2
 !

þ
b

2

X

i;j

jjXðiÞ � XðjÞjj2SCði; jÞ þ
X

i;j

jjYðiÞ � YðjÞjj2SDði; jÞ

 !

ð12Þ

where α and β are the regularization and similarity conservation coefficients. X(i) and Y(i)
denotes the ith rows in X and Y matrices, respectively. The symbol SC in Eq 12 can be substi-

tuted by SCE, SCC, or SCM. Two latent matrices X and Y were updated using Newton’s method

to minimize the loss function iteratively. X(0) and Y(0) were initialized randomly and
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Fig 4. The overall framework of the proposed method. The features cell lines, IC50 and Cmax values were obtained from GDSC. Besides, drug substructures

were downloaded from PubChem, STiTH network from STiTCH datbase, and PPI network from STRING database. The sensitivity associations between cell

line-drug pairs were specified and used as the objective of manifold learning. The cell line similarities and drug similarities were calculated, standardized, and

normalized. These similarities were considered as the regularization terms in manifold learning. The output of manifold learning is a predicted score matrix

that assigns cell line-drug pairs into sensitive resistant classes by a threshold.

https://doi.org/10.1371/journal.pone.0250620.g004
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afterwards, X(k) and Y(k) were updated using the rules defined in Eqs 13 and 14, respectively.

Xðkþ1Þ ¼ XðkÞ �
rXðkÞLoss
r2

XðkÞLoss
ð13Þ

Yðkþ1Þ ¼ YðkÞ �
rYðkÞLoss
r2

YðkÞLoss
ð14Þ

These matrices were updated until they do not change significantly in two subsequent itera-

tions. Specifically, when ||X(k+1) − X(k)|| + ||Y(k+1) − Y(k)||< 0.01, the convergence criteria is

met. The detailed formulae for updating latent matrices are described in S2 File.

2.3.2 Predicting sensitivity/resistant labels. As described above, we decomposed B into

two latent matrices and after convergence, the last estimated latent matrices X(k) and Y(k) were

multiplied to estimate B:

~B1 ¼ XkYkT ð15Þ

Then, BT is decomposed into Wm×k and Zn×k using the described method. This is done due to

the fact that the predicted labels for samples (ci, dj) and (dj, ci) must be equal. After the conver-

gence, BT is estimated using the following equation:

~B2 ¼WkZkT ð16Þ

The predicted sensitivity matrix (~B) was calculated as the average of ~B1 and ~B2. It should be

noted that the estimated matrix ~B is not binary valued; thus, we converted it to a binary-valued

matrix B̂ using a threshold. So that the cell line-drug pairs were assigned to sensitive/resistant

classes. The computation of best threshold is explained in Section 2.4.

2.4 Evaluation criteria

The predictive performance of models was assessed using stratified five-fold cross-validation

on cell line-drug pairs. To this aim, the set of all cell line-drug pairs were partitioned randomly

to five subsets of equal sizes such that the fraction of sensitive over resistant pairs was almost

equal in all subsets. Four subsets were considered as the training data and the evaluation crite-

ria were computed on the remaining subset. This procedure was iterated for each subset and

the criteria were averaged over the iterations. The stratified five-fold cross-validation was

repeated 30 times in order to prevent bias in partitioning the dataset. The most prevalent eval-

uation criteria for classification problems are defined in the following:

Recall ¼
TP

TP þ FN
ð17Þ

Precision ¼
TP

TP þ FP
ð18Þ

F1 � score ¼
2� Recall� Precision
Recallþ Precision

ð19Þ

Accuracy ¼
TPþ TN

TP þ TN þ FP þ FN
ð20Þ
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Where TP, TN, FP and FN stands for true positive, true negative, false positive, and false nega-

tive, respectively. These statistics are defined in Table 1.

It should be noted that the mentioned criteria are threshold dependent. AUPR and AUC
are more reliable criteria that are independent of threshold values. AUPR is the area under the

plot of Precision versus Recall at various thresholds. AUC is the area under the ROC Curve

which plotted Recall against FPR ¼
FP

FPþ TN
at different threshold values.

The best threshold converting ~B estimated scores to binary labels were determined using

Precision − Recall curve. The threshold value related to the elbow-point in this curve is consid-

ered as the best threshold because at this threshold, there is a good balance between Precision
and Recall.

2.5 Variations of CDSML

The application of CDSML can be extended in order to be performed in various scenarios.

The following subsections includes two variations of CDSML.

2.5.1 Performing on the response matrix with missing values. CDSML can handle the

binary response matrix B without imputing missing values. To this aim, it is required to alter

the Eq 12 such that it computes the loss function only for known pairs. Eq 21 is capable of han-

dling the response matrix which contains missing values.

LossðMissingÞ ¼
1

2

X

i;j=2Missing

ðBði; jÞ � XðiÞYðjÞTÞ2 þ
a

2

X

i

jjXðiÞjj2 þ
X

j

jjYðjÞjj2
 !

þ
b

2

X

i;j

jjXðiÞ � XðjÞjj2SCði; jÞ þ
X

i;j

jjYðiÞ � YðjÞjj2SDði; jÞ

 !

ð21Þ

where Missing denotes the set of missing pairs. If we use Eq 21 instead of Eq 12, the method is

able to be performed without applying the imputation step for missing IC50 values. The

detailed formula for updating latent matrices in this version is explained in the S2 File. It

should be noted that using these formula works also for response matrix without missing. For

example, when the missing values are imputed, the set of Missing is empty; therefore, in that

case the loss terms are calculated for all pairs.

2.5.2 Using double, single, or no similarity matrices. One can perform CDSML in three

different scenarios based on similarity usage:

• Double similarity: using both SC and SD similarity matrices

• Single similarity: using either SC or SD similarity matrices

• No similarity: using no similarity matrix.

Table 1. The confusion table for defining classification statistics.

Real labels

Sensitive Resistant

Predicted labels Sensitive TP FP

Resistant FN TN

https://doi.org/10.1371/journal.pone.0250620.t001
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To this aim, the loss function in Eq 21 must be modified. If only SC is ignored, the loss func-

tion will be changed to the Eq 22.

LossðSDÞ ¼
1

2

X

i;j=2Missing

ðBði; jÞ � XðiÞYðjÞTÞ2 þ
a

2

X

i

jjXðiÞjj2 þ
X

j

jjYðjÞjj2
 !

þ
b

2

X

i;j

jjYðiÞ � YðjÞjj2SDði; jÞ

 !

ð22Þ

If only SD is ignored, the loss function will be changed to the Eq 23.

LossðSCÞ ¼
1

2

X

i;j=2Missing

ðBði; jÞ � XðiÞYðjÞTÞ2 þ
a

2

X

i

jjXðiÞjj2 þ
X

j

jjYðjÞjj2
 !

þ
b

2

X

i;j

jjXðiÞ � XðjÞjj2SCði; jÞ

 !

ð23Þ

If both SC, SD are ignored, the loss function will be changed to the Eq 24.

LossðNo simÞ ¼
1

2

X

i;j=2Missing

ðBði; jÞ � XðiÞYðjÞTÞ2 þ
a

2

X

i

jjXðiÞjj2 þ
X

j

jjYðjÞjj2
 !

ð24Þ

It is notable that, in each scenario, the equations for updating latent matrices will be adjusted

based on the related loss functions. The related equations for updating latent matrices in each

scenario is presented in the S2 File.

It is notewothy that both variations explained in Sections 2.5.1 and 2.5.2 can be performed

simultaneuosly. In other words, when the user wants to perform CDSML in each of similarity

scenarios, the response matrix may contain missing values or not. Because the formula used in

various similarity scenarios can ignore missing values if there are any.

3 Results

In this section, we present the results of evaluating CDSML and compring its performance

with other methods.

3.1 Tuning hyper-parameters

We tuned CDSML hyper-parameters using grid search on different values of hyper-parame-

ters on GDSC dataset using SCE, SDS. Then we used the same hyper-parameters for CCLE or

when using other similarities. We considered α, β 2 {0.125, 0.25, 0.5, 1, 1.5, 2, 2.5, � � �, 8} and K
= k0 � min(m, n), where k0 2 {0.1, 0.2, � � �, 0.9}. The best values for hyper-parameters was deter-

mined based on AUC criterion because this criterion is independent from threshold value and

assess the model more extensively. The best hyper-parameters for CDSML was α = 3.5, β = 4.5,

and k0 = 0.7.

3.2 The performance of CDSML

CDSML predicts drug sensitivity according to the cell line similarity and drug similarities. We

calculated three types of cell line similarities based on gene expression, mutation profile, and

copy number variation. Each of these cell line similarities can be utilized as SC in CDSML sim-

ilarity conservation terms. Furthermore, we computed three types of drug similarities based

on chemical substructure, STiTCH network and target PPI, each of which can be considered
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as SD in CDSML similarity conservation terms. We analyzed the impact of using different

types of similarities on the classification performance of CDSML. Table 2 represents the

CDSML performance on GDSC dataset in three scenario, namely, double similarity, single

similarity, and no similarity.

We discuss about each of three scenarios in the following.

• Discussing about “No Similarity” scenario:

The results in the first row of Table 2 indicate that CDSML gained high performance even

using no similarities. CDSML performance using no similarity confirmed that the matrix

factorization used in CDSML is efficient itself without using other extra information. The

CDSML results using no similarity outperforms most of state-of-the-art methods mentioned

in the paper.

• Discussing about “Single Similarity” scenario:

Based on this table, one can conclude that using a single similarity matrix makes about 6%

improvements of all criteria compared to the case of no similarities. Moreover, the perfor-

mance of CDSML on various types of SC or various types of SD leads to almost equal perfor-

mance, i.e. the calculated criteria for all executions on a single similarity matrix are the same.

For example, using only the copy number variation similarity of cell lines leads to AUC of

0.9071 and AUPR of 0.9353, while using only the PPI similarity of drugs also leads to the

same values of AUC and AUPR. Therefore, the impact of all similarity matrix on the CDSML

performance is almost equal. Thus, CDSML yielded highly accurate and robust results.

• Discussing about “Double Similarity” scenario:

Moreover, by comparing the results in single and double similarity scenarios, it can be

inferred that the performance of CDSML using both SC and SD make subtle improvement

in comparison to the single similarity scenario.

The performance of CDSML on CCLE dataset using different scenarios including double

similarity, single similarity, and no similarity are provided in S2 File. Further evaluations on

CDSML were conducted using cell line similarity based on gene expression and chemical sub-

structure similarity of drugs.

3.3 Evaluation of predicted and imputed values for missing pairs

In order to show the rationality of imputed values in response matrix using Eq 1, one can com-

pare the predicted labels by CDSML for missing values (denoted by PredðCDSMLÞL Þ with imputed

labels using Eq 1 (denoted by ðImputeðEq:1ÞL Þ. x L shows that the vector consists of binary labels.

PredðCDSMLÞL is computed by executing CDSML on the binary response matrix with missing val-

ues (not applying imputation procedure), while considering all known pairs as training sam-

ples and all missing pairs as test samples. On other hand, PredðCDSMLÞL is computed by imputing

missing values using Eq 1 and then converting the imputed values ImputeðEq:1ÞC (index C
denotes that the vectors contain the continuous values) to the imputed labels ImputeðEq:1ÞL by

comparing imputed IC50 values with max concentration thresholds of drugs. Since both vec-

tors are binary, computing Accuracy, F1 − score, Precision, and Recall in addition to JI, cosine

similarity, and cross entropy are meaningful and can give us an extensive comparison of

these two vectors. Accuracy, F1 − score, Precision, and Recall are computed as defined in Sec-

tion 2.4. The JI, cosine similarity, and binary cross entropy of two vectors X, Y are defined in
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Eqs 25–27.

JIðX;YÞ ¼

X

i
XðiÞYðiÞ

P
iðXðiÞ þ YðiÞÞ �

P
iXðiÞYðiÞ

ð25Þ

Cosine SimilarityðX;YÞ ¼

X

i
XðiÞYðiÞ

jjXjj2jjYjj2
ð26Þ

Cross EntropyðX;YÞ ¼
� 1

n

X

i

X ið Þ log Y ið Þ þ 1 � X ið Þð Þ log 1 � Y ið Þð Þ½ � ð27Þ

Note that we need to compute true positive, true negative, false positive, and false negative

sample to compute the recision and Recall. Therefore, we must consider one of PredðCDSMLÞL or

ImputeðEq:1ÞL as the ground truth labels. Note that Precision value computed by considering

PredðCDSMLÞL as the ground truth equals to the Recall value computed by considering ImputeðEq:1ÞL

as the ground truth, and vice versa. All mentioned metrics lies in the range of [0, 1]. The higher

values of these metrics (except cross entropy) are more satisfactory, while the lower values of

cross entropy are more favorable.

The computed metrics by considering PredðCDSMLÞL as the ground truth are shown in Table 3.

According to the significantly low value of cross-entropy as well as the high value of other met-

rics, one can conclude that ImputeðEq:1ÞL and PredðCDSMLÞL are considerably similar. Consequently,

the imputed values for missing pairs are reasonable.

Table 2. The performance of CDSML on GDSC dataset using different scenarios including double similarity, single similarity, and no similarity. The best value of

each criterion is shown in bold.

SC SD AUC AUPR Accuarcy F1-score Precision Recall

No sim - - 0.8542 0.8846 0.7812 0.8291 0.7706 0.8974

Single similarity SCE - 0.9147 0.9372 0.8359 0.8653 0.841 0.891

SCM - 0.9148 0.9373 0.8356 0.8652 0.8401 0.892

SCV - 0.9071 0.9353 0.8288 0.8636 0.8346 0.8948

- SDS 0.9071 0.9353 0.8288 0.8636 0.8346 0.8951

- SDN 0.9072 0.9354 0.83 0.8637 0.8392 0.8899

- SDP 0.9071 0.9353 0.8292 0.8638 0.8357 0.8943

Double similarity SCE SDS 0.9158 0.9373 0.8388 0.8714 0.8426 0.9026

SCE SDP 0.9157 0.9373 0.8354 0.8714 0.8423 0.903

SCE SDN 0.9157 0.9398 0.8388 0.8715 0.8422 0.9031

SCM SDS 0.9148 0.9373 0.8357 0.8652 0.8402 0.8918

SCM SDP 0.9147 0.9373 0.8354 0.8652 0.8392 0.8929

SCM SDN 0.9147 0.9373 0.8350 0.8652 0.8388 0.8949

SCV SDS 0.9157 0.9397 0.8388 0.8714 0.8426 0.9026

SCV SDN 0.9157 0.9398 0.8387 0.8714 0.8424 0.9028

SCV SDP 0.9147 0.9372 0.8355 0.8653 0.8390 0.8934

https://doi.org/10.1371/journal.pone.0250620.t002

Table 3. Comparison of ImputeðEq:1ÞL and PredðCDSMLÞ
L on GDSC dataset.

Accuracy F1-score Precision Recall JI Cosine similarity Cross entropy

0.718 0.764 0.9297 0.6484 0.6181 0.7764 0.0065

https://doi.org/10.1371/journal.pone.0250620.t003
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To further justify the rationality of imputed values, we compared the imputed IC50 values

using Eq 1 (ImputeðEq:1ÞC ) with the predicted IC50 values by an state-of-the-art method. The

method proposed by Zhang et al. predicts IC50 value uses a dual layer network which is similar

to the idea used in Eq 1 [25], while having some differences. Moreover, Zhang et al. have

shown that the method predicts reliable IC50 values for missing pairs by providing biological

evidence for the missing IC50 values of three MEK inhibitor drugs. Thus, it is interesting to

compare the IC50 values imputed using Eq 1 (ImputeðEq:1ÞC ) with the predicted IC50 values by

Zhang et al. method(PredðZhangÞC ). To compare these two continuous vectors, regression criteria

such as Root Mean Square Error (RMSE), Normalized Root Mean Square Error (NRMSE),

and Mean Absolute Error (MAE) can be computed. RMSE, NRMSE, and MAE for two vectors

X, Y are defined in Eqs 28–30.

RMSEðX;YÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðXðiÞ � YðiÞÞ

2

n

r

ð28Þ

NRMSEXðX;YÞ ¼
RMSE

maxi XðiÞ � mini XðiÞ
NRMSEYðX;YÞ ¼

RMSE
maxi YðiÞ � mini YðiÞ

ð29Þ

MAEðX;YÞ ¼

X

i
jXðiÞ � YðiÞ

n
j ð30Þ

It should be noted that RMSE, NRMSE, and MAE ranges from 0 to infinity. So, lower values of

them shows that the X, Y are closer to each other. The computed metrics for comparing these

two vectors are presented in Table 4 The computed metrics show that the imputed IC50 values

in this paper are very close to the Zhang et al. predicted IC50 values. Additionally, the compar-

ison of imputed values with Zhang et al. predictions in binary mode as well the comparison of

CDSML predictions with Zhang et al. predictions on missing pairs are provided in the S2 File.

An interesting idea is to use Zhang et al. predicted IC50 values ðPredðZhangÞC Þ for filling miss-

ing values in response matrix. To this aim, we converted continuous values of ðPredðZhangÞC Þ into

ðPredðZhangÞL Þ with binary entries by comparing the max concentration with PredðZhangÞC . In other

words, we used Zhang et al. predicted labels ðPredðZhangÞL Þ instead of labels computed by Eq 1;

i.e. ImputeðEq:1ÞL for filling the missing values in the response matrix. We then performed

CDSML manifold learning on the obtained response matrix. Let us denote this version as

CDML-Zhang and compared its results with CDSML using a stratified 5-fold cross-validation.

Table 5 shows the comparison between CDSML and CDSML-Zhang. It can be seen that the

Table 4. Comparison of ImputeðEq:1ÞC and PredðZhangÞC on GDSC dataset.

RMSE NRMSE(Impute) NRMSE(Zhang) MAE

0.04369 0.0065 0.0081 1.45

https://doi.org/10.1371/journal.pone.0250620.t004

Table 5. Comparison of CDSML and CDSML-Zhang performance on GDSC dataset. The assessments were done by averaging 30 repetitions of stratified five-fold

cross-validation. The highest value of each criterion is shown in bold.

Method AUC AUPR Accuracy F1-score Precision Recall

CDSML 0.9157 0.9398 0.8388 0.8715 0.8422 0.9031

CDSML-Zhang 0.912 0.937 0.836 0.870 0.84 0.896

https://doi.org/10.1371/journal.pone.0250620.t005
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evaluation criteria computed for both versions are so close to each other. However, CDSML

leads to better results. These comparisons additionally validates using Eq 1 for imputing miss-

ing entries of response matrix.

To sum up all validation scenarios in this section and the related sections in S2 File, one can

conclude that the results of all validations confirm that the imputed values using Eq 1 are rea-

sonable and leads to the improvement in results.

3.4 Comparisons with classification methods

To compare the predictive performance of CDSML with other state-of-the-art classification

methods, we used available implementations for HNMPRD [3], RefDNN [4], and DSPLMF

[5]. In order to have a fair comparison, we evaluated these methods using 30 repetitions of

stratified five-fold cross-validation on cell line-drug pairsfor GDSC and CCLE. These methods

cover a variety of classification methodology and labeling thresholds. The methodology of

HNMPRD, RefDNN, and DSPLMF are based on information flow, deep neural network, and

matrix factorization, respectively. Moreover, the thresholds used in HNMPRD, RefDNN, and

DSPLMF to convert IC50 values to sensitive/resistance labels are mixed Gaussian distribution,

Cmax, and drug-wise median, respectively.

A comparison between CDSML and other state-of-the-art methods for category classifica-

tion is represented in Table 6. Considering GDSC dataset, HNMPRD obtained high Recall,
but low values in other criteria. RefDNN showed satisfying performance according to all and

DSPLMF obtained reasonable results according to Recall, but not high quality results with

respect to other criteria. CDSML outperforms other classification methods by achieving much

higher values of all criteria than other methods. It improves the results of RefDNN by almost

2% in AUC, 7% in AUPR, 2% in Accuracy, and 9% in F1 − score.
Considering CCLE dataset, HNMPRD again obtained high Recall, but low values in other

criteria. RefDNN and DSPLMF revealed acceptable performance. Consequently, the CDSML

performance is significantly higher than other state-of-the-art classification methods and

improves the best values of AUC, AUPR, Accuracy and F1 − score by more than 10%.

To fully compare the CDSML performance with classification methods, we compared its

results with six off-the-shelf classification methods covering diverse methodologies: Gaussian

Naiive Bayes (GNB), logistic regression (LR), random forest (RF), multi-layer perception

(MLP), adaptive boosting (ADA), and K-nearest neighbor (KNN). The implementations of all

these methods were conducted using the Scikit-learn python package [43]. It should be noted

that the feature vector for each pair of cell line ci and drug dj was constructed by concatenating

the ith row of SC and jth column of SD. Moreover, the Cmax was used to label the cell line-drug

pairs. The best hyper-parameter values were specified using grid search. The set of evaluated

hyper-parameters and the best values of hyper-parameters for all methods are presented in

Table 7. The best values of hyper-parameters were tuned using grid search and considering

AUC criterion.

Table 8 provides the comparison between CDSML and off-the-shelf classification methods.

On both GDSC and CCLE, all methods showed good performance in classification of anti-can-

cer drug sensitivity; however, the least and highest values of criteria belongs to GNB and RF,

respectively. On top of them, CDSML achieved the most accurate results and outperforms

other methods according to all criteria, except Precision. Nevertheless, its Precision is not too

far from the best Precision.

It is noteworthy that the computed criteria for machine learning models are significantly

higher than the computed criteria for state-of-the-art classification and regression methods.

The tuned hyper-parameters for machine learning models turn them into efficient and potent
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models that outperform other state-of-the-art methods. These findings are in agreement with

the similar findings in RefDNN paper [4].

Figs 5 and 6 demonstrates the ROC curve and Precision − Recall curve for all of the classifi-

cation methods on GDSC dataset, respectively. As it is shown the AUC and AUPR values for

CDSML are 0.9221 and 0.943, respectively which are superior to the AUC and AUPR of other

methods.

3.5 Comparison with regression methods

The prediction power of CDSML was further compared to the power of four state-of-the-art

regression models: SRMF [6], CaDRReS [7], CDCN [8], and ADRML [9]. The implementation

of these methods were available. We applied Cmax threshold on the predicted IC50 values by

these methods and convert them to the classification models. The performance of these models

are provided in Table 9. On GDSC datset, CaDRReS achieved reasonable results. Moreover,

SRMF and CDCN showed weak performance. Meanwhile, CDSML performs better than these

methods with regard to all criteria. The interesting part of this evaluation is the comparison

Table 6. Comparison of CDSML’s performance with state-of-the-art classification methods’ performance on GDSC and CCLE. The assessments were done by averag-

ing 30 repetitions of stratified five-fold cross-validation. The highest value of each criterion is shown in bold.

Dataset Method AUC AUPR Accuracy F1-score Precision Recall

GDSC CDSML 0.9157 0.9398 0.8388 0.8715 0.8422 0.9031

GDSC HNMPRD 0.5728 0.6121 0.6088 0.7494 0.6032 0.9894

GDSC RefDNN 0.9013 0.8753 0.8219 0.7828 0.8114 0.7583

GDSC DSPLMF 0.7350 0.7218 0.6407 0.7096 0.5947 0.8797

CCLE CDSML 0.9514 0.977 0.8989 0.9201 0.9485 0.8934

CCLE HNMPRD 0.5817 0.7228 0.6527 0.7889 0.6528 0.9967

CCLE RefDNN 0.6951 0.8200 0.6796 0.7825 0.7109 0.8713

CCLE DSPLMF 0.8148 0.6944 0.7405 0.6667 0.5906 0.7668

https://doi.org/10.1371/journal.pone.0250620.t006

Table 7. The evaluated hyper-parameters and the best values of hyper-parameters for off-the-shelf classification methods.

Method Evaluated hyper-parameters Best hyper-parameters

GNB Variance smoothing:{10−12, 10−9, 10−6, 10−3, 10−1} Variance smoothing: 0.1

LR Regularization scale:{ 0.001, 0.1,1, 0.01, 10, 100} Regularization scale: 1

Stop tolerance:{10−6, 10−4, 10−2} Stop tolerance: 10−6

RF Criterion: {gini, entropy} Criterion: entropy

Number of trees:{10,50,100,500,1000} Number of trees: 100

SVM Kernel: {linear, poly, RBF, sigmoid, precomputed} Kernel: linear

Regularization parameter: {0.01,0.1,1,10,100} Regularization parameter: 0.1

MLP Hidden layer sizes: {(50,50,50), (50,100,50), (100,)} Hidden layer sizes: (50,50,50)

Activation function: {tanh, ReLU} Activation function: ReLU

Solver: {SGD, Adam} Solver: Adam

Learning rate: {Constant, Adaptive} Learning rate: Adaptive

Regularization term: {0.0001, 0.05} Regularization term: 0.05

ADA Number of estimators: {10,50,100,500,1000} Number of estimators: 50

Learning rate: {1,1.25,1.5,1.75,2} Learning rate: 1.25

KNN K: {3,5,7,9,11,13,15,17,19,21,23,25} K: 19

CDSML α, β 2 {0.125, 0.25, 0.5, 1, 1.5, 2, 2.5, � � �, 8} α = 3.5, β = 4.5

K = k0 � min(m, n), where k0 2 {0.1, 0.2, � � �, 0.9} k0 = 0.7

https://doi.org/10.1371/journal.pone.0250620.t007
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between CDSML and ADRML. According to Table 9 CDSML significantly outperforms

ADRML. Since CDSML uses binary response matrix, it can be inferred that using binary

response matrix as the initial input of manifold learning leads to more reliable classification of

cell line-drug pairs into sensitive/resistant categories.

Table 8. Comparison of CDSML’s performance with off-the-shelf methods’ performance on GDSC and CCLE. The assessments were done by averaging 30 repetitions

of stratified five-fold cross-validation. The highest value of each criterion is shown in bold.

Dataset Method AUC AUPR Accuracy F1-score Precision Recall

GDSC CDSML 0.9157 0.9398 0.8388 0.8715 0.8422 0.9031

GDSC GNB 0.8662 0.8974 0.7792 0.8033 0.8695 0.7465

GDSC LR 0.9037 0.934 0.8243 0.8524 0.865 0.8401

GDSC RF 0.9163 0.9435 0.8376 0.8653 0.8666 0.8641

GDSC SVM 0.9038 0.9343 0.8243 0.8522 0.8663 0.8387

GDSC MLP 0.9044 0.9351 0.8226 0.8533 0.8529 0.8562

GDSC Ada 0.9039 0.9346 0.8268 0.8553 0.8629 0.848

GDSC KNN 0.9091 0.9371 0.8341 0.8623 0.8646 0.86

CCLE CDSML 0.9514 0.977 0.8989 0.9201 0.9485 0.8934

CCLE GNB 0.9111 0.9523 0.842 0.8779 0.8914 0.8675

CCLE LR 0.9435 0.9651 0.8811 0.9189 0.948 0.8916

CCLE RF 0.9494 0.9632 0.8884 0.9193 0.9463 0.8939

CCLE SVM 0.9444 0.9694 0.8867 0.9192 0.9478 0.8924

CCLE MLP 0.9376 0.9671 0.8744 0.9146 0.9624 0.872

CCLE Ada 0.9475 0.9609 0.8878 0.9118 0.9332 0.8924

CCLE KNN 0.936 0.9653 0.8788 0.9116 0.907 0.8843

https://doi.org/10.1371/journal.pone.0250620.t008

Fig 5. The ROC curve of all classification methods on GDSC dataset.

https://doi.org/10.1371/journal.pone.0250620.g005
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3.6 Tissue-specific conditions

Until now, we evaluated the methods on the whole dataset, which contains 19 tissue types.

Nevertheless, most oncological treatments are designed based on tissue types [44], suggesting

that considering tissue type may have a large impact on drug response predictions [3, 45].

Hence, we conducted tissue-specific assessments on three major tissue types.

The number of cell lines in each tissue type is shown in Fig 7. The most major tissue types

are lung NSCLC, orogenital system, and leukemia with 67, 60, and 44 cell lines, respectively.

We considered these tissue types and developed the tissue-specific models. The used cell lines

in the train and test set for tissue-specific models belong to the same tissue type.

Figs 8–10 illustrates the predictive performance of classification methods on three major

tissues. The ranking of methods performance is similar to the methods learned on the whole

Fig 6. The Precision-Recall curve of all classification methods on GDSC dataset.

https://doi.org/10.1371/journal.pone.0250620.g006

Table 9. Comparison of CDSML’s performance with state-of-the-art regression methods’ performance on GDSC and CCLE. The assessments were done by averaging

30 repetitions of stratified five-fold cross-validation. The highest value of each criterion is shown in bold.

Datset Method AUC AUPR Accuracy F1-score Precision Recall

GDSC CDSML 0.9157 0.9398 0.8388 0.8715 0.8422 0.9031

GDSC SRMF 0.4452 0.5493 0.712 0.7922 0.6908 0.9285

GDSC CaDRReS 0.500 0.5922 0.6962 0.7738 0.6912 0.8788

GDSC CDCN 0.4276 0.5460 0.7632 0.8164 0.7538 0.8903

GDSC ADRML 0.4077 0.5096 0.7501 0.8177 0.7189 0.9481

CCLE CDSML 0.9514 0.977 0.8989 0.9201 0.9485 0.8934

CCLE SRMF 0.4539 0.6266 0.6966 0.8005 0.6998 0.9351

CCLE CaDRReS 0.4389 0.6732 0.7133 0.8138 0.7048 0.9625

CCLE CDCN 0.4262 0.6204 0.8608 0.8824 0.9796 0.8029

CCLE ADRML 0.4257 0.6229 0.5473 0.6703 0.6373 0.7071

https://doi.org/10.1371/journal.pone.0250620.t009
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Fig 7. The number of cell lines in each tissue type. The number shown on slices is the number of cell lines in the related tissue type. Three major tissue

types are the offset slices.

https://doi.org/10.1371/journal.pone.0250620.g007

Fig 8. The performance of methods in on NSCLC tissue.

https://doi.org/10.1371/journal.pone.0250620.g008
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dataset. All methods’ performance decline slightly due to the reduction in sample size, because

the reduction in sample size limits the predicted power of models [46]. Nevertheless, CDSML

outperforms other methods in three tissue-specific scenarios. The AUC of CDSML were

0.9096, 0.9186, and 0.9106 on leukemia, urogenital system, and NSCLC tissues, receptively.

3.7 Case studies

As it was mentioned, some cell line-drug pairs have missing IC50 values, which were imputed

in the pre-processing step. In order to conduct case studies, we considered the predictions for

missing pairs and investigated their predicted novel sensitive pairs. There B matrix had 7790

missing values which accounts for roughly 40% of all samples. The predicted sensitivity scores

for these pairs were obtained and sorted. The list of top 2000 most sensitive and top 2000 most

resistant cell line-drug pairs are provided in S7 and S8 Tables in S1 File, respectively.

The top 15 most sensitive pairs that had missing associations in the original dataset were

considered for further analysis. Table 10 represents the list of top 15 ranked samples assigned

as sensitive. Reliable literature and the latest version of GDSC database were probed to provide

evidence for the novel sensitive associations. As it is shown in Table 10, all top 15 novel associ-

ations were verified as sensitive pairs in the final version of GDSC. In addition, there are

numerous insights about these associations in the literature.

These associations mainly report sensitive cell lines for Ponatini, VX-7002, Temsirolimus,

Lenalidomide, Vinorelbine, Epothilone B, Docetaxel, among which, the insights about sensi-

tive associations of three drugs are described in the following.

Ponatinib is a tyrosine kinase inhibitor which hinders the activity of four FGFR [63]. A

recent study have shown that inhibits the cell growth in cell lines of various tissues types such

as colon cancer [47]. Researchers states that the multi kinase inhibitors such as Ponatinib have

showed efficient activity in targeting pancreatic cancer cells [49]. In addition, its effectiveness

Fig 9. The performance of methods in on orogenital system tissue.

https://doi.org/10.1371/journal.pone.0250620.g009
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in the treatment of cell lines with head and neck cancer have been evaluated in several studies

[47, 62].

VX-702—a P38 mitogen-activated protein kinase inhibitors—have been developed for the

treatment of the inflammation diseases [64]. P38βMAPK is highly expressed in lung tissues

and P38 MAPK pathways are highly activated in SCLC and breast cell lines, which leads to

tumorgenesis and metastasis [48, 50]. The oral treatment with VX-702 seems to be effective in

diminishing the fibrosis in SCLC and breast [50]. HuangFu et al. have shown that the

Fig 10. The performance of methods in on leukemia tissue.

https://doi.org/10.1371/journal.pone.0250620.g010

Table 10. Top 15 novel sensitive pairs and pieces of evidence for these pairs.

Rank Cell line name Drug name Cell line tissue Sensitivity Score Literature evidence GDSC verification

1 CW-2 Ponatinib large intestine 0.9253 [47] verified

2 ZR-75-30 VX-702 breast 0.9248 [48] verified

3 YAPC Ponatinib pancreas 0.9062 [49] verified

4 NCI-H1092 VX-702 SCLC 0.9017 [50, 54] verified

5 NCI-H1092 Temsirolimus SCLC 0.8993 [51] verified

6 CW-2 Vinorelbine SCLC 0.8929 [52] verified

7 NCI-H1563 VX-70 NSCLC2 0.8823 [53] verified

8 COR-L88 VX-702 SCLC 0.8818 [50, 54] verified

9 SHP-77 VX-702 SCLC 0.8783 [50, 54] verified

10 LB373-MEL-D Lenalidomide melanoma 0.8758 [55, 56, 57] verified

11 COR-L88 Temsirolimus SCLC 0.8753 [51] verified

12 CP66-MEL VX-702 melanoma 0.875 [58] verified

13 CW-2 Epothilone B large intestine 0.8738 [59] verified

14 NCI-H1092 Docetaxel SCLC 0.8648 [60, 61] verified

15 SCC-9 Ponatinib head and neck 0.8619 [47, 62] verified

https://doi.org/10.1371/journal.pone.0250620.t010
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administration of VX-702 along with INFβ treatments from melanoma, stabilization of the cell

response, and improvement in the treatment efficacy [58].

Lenalidomide which has tumoricidal and immunomodulatory roles, has been frequently

studied for the treatment of malignant melanoma and leads to high efficiency in combination

with Docarbazine [55–57].

The supportive pieces of evidence in literature and GDSC database verified that CDSML

could efficiently predict drug response label associations for the cell-line drug pairs.

4 Conclusion

In this study, we proposed CDSML, a classification method for predicting anti-cancer drug

sensitivity by applying manifold learning. It applies four steps of pre-processing, namely,

imputing missing values, converting IC50 values to binary labels using max concentration

thresholds, similarity calculations, standardization and normalization. We used an imputation

procedure to fill the missing values. The similarities of drugs were computed based on the

chemical substructure of drugs, STiTCH network, and PPI of drug targets. We considered

three types of cell line similarities based on gene expression, mutation, and copy number varia-

tion of cell lines.

We extended the CDSML application, so that it can be performed on missing values with-

out imputation. Moreover, CDSML can be performed in three similarity settings: using no

similarity information, using only one of the cell line or the drug similarities, and using both

cell line and drug similarities. CDSML shows high performance in all similarity settings. Even

when no similarity is used for training the model, CDSML succeeds in achieving favorable

results and outperform many of state-of-the-art methods. When CDSML uses only one of the

cell line or the drug similarities, it makes about 6% improvement compared to the case of not

using any similarities. However, making use of both cell line and drug similarities make subtle

improvement. Additionally, the performance of CDSML is robust on different types of similar-

ities. In other words, making use of various types of similarities by CDSML leads to accurate

and almost similar results.

We conducted several validations to assess the rationality of imputation procedure. To this

aim, we compared the imputed values with predictions of another state-of-the-art method. In

another validation, we replace the suggested implementation procedure with another method.

All of validations confirmed that the suggested implementation procedure fills the missing val-

ues with reasonable values and using this procedure leads to more reliable results.

For comparison of CDSML performance, we compared its results with three sets of meth-

ods: state-of-the-art classification methods, off-the-shelf classification machine learning

approaches, and state-of-the-art regression methods. The methods considered in comparisons

cover diverse methodologies. In order to compare the results of CDSML with regression meth-

ods, we applied max concentration threshold on the predicted IC50 for converting them to

sensitive/resistance labels. The methods were evaluated by averaging common classification

criteria over 30 repetitions of stratified five-fold cross-validation. The higher performance of

CDSML than other methods verifies its efficient predictive power.

We further compared CDSML performance in tissues-specific conditions, because tissue-

type may influence the drug response. To this aim, we considered three major tissue types

including NSCLC, urogenital system and leukemia. Then, we trained the models on each tissue

type. The predictive performance of methods decline subtly on tissue-specific data due to the

reduction in sample size. However, CDSML achieved better results in all tissue-specific scenar-

ios, which suggest its capability in retrieving drug sensitivity for each tissue type.
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Some of drug responses were unknown in the original dataset. The predicted sensitive asso-

ciations for the Unknown pairs were considered as case studies and investigated in the latest

version of GDSC along with reliable literature. All top 15 novel sensitive predicted pairs were

verified in the GDSC database and several pieces of evidence support the novel associations.

Therefore, the performance of CDSML in predicting anti-cancer drug sensitivity is efficient.

Some of contributions of this paper are listed below:

• The idea of CDSML was inspired from ADRML, which was a regression method and uses

IC50 values for training the model. We changed ADRML in such a way that it can be used in

the classification form with high efficiency. The results evidently showed that performing

ADRML and just applying a threshold on the predicted IC50 values does not lead to satisfac-

tory performance in classification area. Since suggesting efficient drugs for patients in preci-

sion medicine uses the sensitivity of patients to the anti-cancer drugs, it is more essential to

predict the sensitivity or resistance label instead of the response values. Therefore, the classi-

fication problem has a higher importance than regression problem in this area. In this paper,

we have shown that applying max concentration threshold on the inputs and predicting sen-

sitive/resistant labels using manifold learning leads to more reliable sensitivity prediction.

• Moreover, it is helpful to figure out the importance of each cell line or drug similarities on

the performance of the classification model. In this paper, we thoroughly investigate the

effect of using no similarity, using only the cell line similarity, using only the drug similarity,

and using both the drug and cell line similarities on the prediction performance.

• Numerous previous studies have proposed efficient methods for predicting drug responses

using regression or classification models. It is highly efficient to set up a framework for com-

paring all regression and classification methods in a common setting and using fair compari-

son. We provide a framework to convert the regression models into classification models

and compare all methods in classification mode. To this aim, we applied max concentration

threshold on the predicted IC50 values in order to convert the predicted values into pre-

dicted sensitivity/resistance label.

• The proposed method in this paper has the capability of handling missing values with or

without imputation strategy. Moreover, the implemented code is able to perform the pro-

posed method using no similarity, one type of similarity, or both cell line and drug similari-

ties. The implemented code has the capability to adopt the suitable loss function and

optimization procedure based on the options that the user determined for the usage of simi-

larity information.

• Several previous papers have used an imputation approach based on nearest neighbors to

impute the missing values in response matrix or the feature matrices. The reasonability of

using this procedure for imputing missing values were not fully validated in the previous

studies. Here, we confirmed the reliability of using this procedure for imputing missing val-

ues using four different scenarios.

• Since the algebraic and spectral characteristics of matrices used in manifold learning influ-

ence the convergence of the model, we proposed to use the combination of standardization

and normalization in this paper in order to handle the negative similarity values and trans-

forming the similarities to more informative matrices with desirable characteristics. Using

the combination of standardization and symmetric Laplacian normalization is novel.

• Furthermore, we computed two novel similarities for drugs based on the maximum match-

ing in target PPI network obtained from STRING database and the computed Jaccard index
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in STiTCH network. These two types of similarities for drugs are fully described in the

response of subsequent comments and in the revised manuscript. It should be noted that the

proposed idea for computing these drug similarities leads to the calculation of highly infor-

mative and comprehensive similarities for drugs using the combination of various types of

information. Since several drugs in GDSC are not FDA-approved the information about

these drugs are not rich. Therefore, introducing new similarities for these anti-cancer drugs

is productive. The newly introduced drug similarities may help future studies in this field

and other fields related to drug discovery.
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