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Abstract

Background: Some Lutzomyia species are the vectors of human leishmaniasis in the Americas. Visceral and cutaneous
leishmaniasis are both endemic in the Pacific region of Honduras, but the non-ulcerative form is the more frequent
clinical manifestation in this region, where Lutzomyia longipalpis is the most abundant and the only incriminated vector.
Taxonomic identification and distribution studies of sand flies are important to understand the epidemiology and to
control these neglected tropical diseases.

Results: Here, we identified more than 13,000 Lutzomyia specimens captured in Isla del Tigre, Honduras, through a
classical morphological approach. The two most common species were Lutzomyia evansi and Lu. longipalpis, and this is
the first report of three Lutzomyia species on this island. The blood meal source was successfully identified for five sand
fly species. A barcode analysis using the cox1 mitochondrial marker proved to be effective in discriminating between
species and seems to be a valuable tool for future epidemiological studies including a wider geographical area.

Conclusion: This study updates the diversity and blood meal sources of Lutzomyia species in an island endemic for
non-ulcerative cutaneous leishmaniasis in the Pacific region of Honduras, and determines the effectiveness of the
barcoding approach to discriminate species, as a complementary tool to classical morphology.
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Background
Leishmaniasis is a complex of human and zoonotic diseases
caused by parasites of the genus Leishmania. In the Ameri-
can continent Leishmania parasites are transmitted to their
hosts through the bite of hematophagous insects of the
genus Lutzomyia [1]. To date, leishmaniases are considered
as one of the main “neglected tropical diseases” in the world
and are a major obstacle for the development of countries
like Honduras because of its strong association with poverty
and healthy life years lost from disability [2–4].

According to the National Surveillance Laboratory
and the Panamerican Health Organization Office in
Honduras, the number of human infections caused by
Leishmania parasites in Honduras during 2015 was 2054,
mostly as cutaneous presentations [5] (Table 1).
In Honduras there are four known manifestations of hu-

man leishmaniasis, and they are classified according to
clinical signs, geographical distribution, parasite species,
and vector species in each area. Non-ulcerative cutaneous
leishmaniasis (NUCL, also called atypical cutaneous leish-
maniasis [6]), cutaneous (CL) and visceral leishmaniasis
(VL) are endemic in Southern Honduras (Pacific Region)
due to specific eco-epidemiological characteristics [7, 8].
The ulcerative disease contributed to 50.6% of total na-
tional cases in 2015, while the non-ulcerative cutaneous
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form represented 47.8% of the parasite infections. The
Pacific region of Honduras (including Choluteca and Valle
departments or provinces) reported 723 (73.6%) cases of
NUCL in 2015, and Isla del Tigre alone (belonging to
Valle department) contributed with 89 (9%) of the total
amount of cases. The parasite responsible for both clinical
manifestations (VL and NUCL) seems to be Leishmania
infantum (syn. L. chagasi) [6, 8].
In the Neotropics there are nearly 500 species of Lutzo-

myia identified according to morphological characters [9],
and at least 30 of which have been described as Leish-
mania vectors [10]. In Honduras, 31 Lutzomyia species
have been reported and 12 show anthropophilic behavior
[11]. Lutzomyia longipalpis is considered vector of only
Leishmania (L.) infantum and not of other parasite spe-
cies. Although Leishmania species causing cutaneous
leishmaniases have been identified by molecular methods
in Lu. longipalpis, those findings have no epidemiological
significance [12]. Lutzomyia longipalpis is also the best
described species in Honduras and is the only one from
which L. infantum strains have been isolated. For these
reasons Lu. longipalpis is considered as the main vector of
VL in southern Honduras [4, 5]. However, other sand fly
species have been highlighted as permissive vectors of the
parasite in the Americas such as Lu. evansi, Lu. fischeri
and Lu. migonei, among others [13, 14].
On the other hand, studies on the feeding habits of

Leishmania vectors is as important as the description of
the circulating species in a geographical area, because
that knowledge contributes to identifying potential reser-
voirs, to understanding their role in the maintenance of
insect populations in a locality, levels of anthropophilia,
as well as in defining the zoonotic or anthroponotic cy-
cles of the disease [15, 16].
Lutzomyia specimens are classically identified upon

morphological internal characters such as spermatheca
and genitalia, among other structures, although there
are several disadvantages with this approach. For ex-
ample, this method requires a vast experience and tech-
nical training and is laborious and time-consuming; also

it is not always possible to have good quality specimens
because of damages during capture, transport or mount-
ing [17]. In addition, some populations of sand flies
show some degree of phenotypic plasticity [18], or cryp-
tic species may be co-existing in the same location [19,
20]. The development of molecular tools based on DNA
sequences, allows to complement taxonomic identifica-
tion based solely on morphology. One of the most com-
monly used markers for the identification of sand flies is
the gene cytochrome c oxidase subunit 1 (cox1), because
of its high level of conservation [21, 22]. Therefore, the
aim of the present study was to identify the species of
Lutzomyia on a Mesoamerican Pacific island where
leishmaniasis is endemic, using morphological and mo-
lecular methods, as well as to determine the blood meal
source of these sand flies.

Methods
Area of study and collection of phlebotomine sand flies
The capture of phlebotomine sand flies was carried out
in 4 villages (Ceibita, Caracol, Islitas, and Las Pelonas)
of an island called Isla del Tigre, in the Pacific region of
Honduras. This island was selected for this study due to
the endemicity of human leishmaniasis, registering 214/
950 (22.5%) of national NUCL cases in 2014, and 89/982
(9.1%) in 2015 (Fig. 1 and Table 1). The island is located
in the Gulf of Fonseca (13.2°N and 87.6°W), and has a
maximum height of 783 m above sea level (masl) (Fig. 2).
Insects were captured using CDC light traps without
chemical attractant [23] in 13 collection points between
August 2012 and March 2013 during one week of each
month. Traps were installed in an extra-, intra- and
peri-domiciliary fashion.
The first collection points were houses with the pres-

ence of domestic animals. Two traps were installed
there (one intra-domiciliary and one peri-domiciliary).
Peri-domiciliary traps were placed at sites of rest from
domestic animals or next to the latrines. The traps were
placed at a minimum distance of 25 masl. Between them
in the mountain, located at the center of the island. Three

Table 1 Number (n) of Leishmania infections reported in: Honduras (HN), the Pacific region of the country comprising Choluteca
and Valle departments (PR), and in Isla del Tigre (IT), from 2009 to 2015. The four clinical forms are reported separately

CL NUCL MCL VL

IT n (%) PR n (%) HN IT n (%) PR n (%) HN IT n (%) PR n (%) HN IT n (%) PR n (%) HN

2009 0 23 (4.4) 525 43 (4.5) 771 (81.5) 946 0 0 4 0 2 (100) 2

2010 0 5 (0.6) 771 18 (3.6) 491 (98.6) 498 0 0 3 0 9 (100) 9

2011 0 0 1546 22 (5.9) 260 (70.0) 371 0 0 13 0 5 (83.3) 6

2012 12 (1.14) 18 (1.7) 1056 95 (10.8) 673 (76.7) 877 0 0 2 0 0 0

2013 0 1 1316 93 (12.2) 491 (64.6) 760 0 0 3 0 3 (100) 3

2014 3 (0.32) 3 (0.3) 935 214 (22.5) 778 (81.9) 950 0 0 14 1 (50.0) 2 (100) 2

2015 0 0 1039 89 (9.1) 723 (73.6) 982 0 0 27 0 5 (83.3) 6

Abbreviations: CL cutaneous, NUCL non-ulcerative, MCL muco-cutaneous, VL visceral
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traps were placed in extra-domiciliary environments, with
little or no anthropogenic intervention (crops, mountain
trails, etc.). The first trap was placed 100 m away from the
peri-domicile, and the second and third traps were placed
at 100 m away from each other.
Ceibita village (3 collection points) is located at the

northern end of the island, and was the village with the
largest number of houses. Its main economic activities
are subsistence agriculture and animal breeding. Two of
three points were houses, and the third point (with the
higher altitude) was placed in a semi-wooded environment
near a field of corn of moderate extension. Caracol village
(3 collection points) is located at the northwestern end of
the island. Its main activities are fishing, animal breeding,

and subsistence agriculture with small family gardens. Two
collection sites included one house each, and the third
point (extra-domiciliary) at a higher altitude was placed in a
pigsty that supplies pork products to the local population.
Islitas village (4 collection points) is located at the
southeastern end of the island. This village has fewer
houses, and most of them were located on the side of
the road that surrounds the island. Its population is dedi-
cated to animal breeding, hunting wild animals, and tim-
ber extraction. The first point evaluated at this location
was a house, and the remaining 3 points were extra-
domiciliary into the wild up in the mountain environment.
Las Pelonas village (3 collection points) is located at the
northeastern end of the island. Economic activities focus
on fishing, agriculture and breeding of pigs, poultry and
cattle on a small scale. Lands are flatter and closer to the
coast compared to the other 3 communities.
Collected insects were preserved in absolute ethanol

and transported to the laboratory in Tegucigalpa, the
capital city. Specimens of the genus Lutzomyia were sep-
arated from other insects. Females and males were clas-
sified through visualization of genital structures [11].

Taxonomic identification of Lutzomyia species
Ethanol-preserved specimens were hydrated in 1× PBS
for 30 min and then cleared with 10% KOH for 2 h and
1× PBS for 30 min. Subsequently, the cleared specimens
were mounted in permanent microscope slides with
Hoyer’s medium. Identification of specimens was based

Fig. 2 Location of sites where Lutzomyia specimens were collected in Isla del Tigre, Gulf of Fonseca, Honduras: a, Caracol; b, Ceibita; c, Las
Pelonas; d, Islitas

Fig. 1 Number of human leishmaniasis cases in Honduras (HN), the
Pacific Region of Honduras (PR), and Isla del Tigre (IT), from 2009 to 2015
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on taxonomic morphology of ascoids, wing venation,
thorax coloration, the spermathecae and cibarium of the
females, and the genitalia of males [11].

Identification of blood meal sources
DNA extraction was carried out from females of the
genus Lutzomyia engorged with blood (with or without
eggs). Specimens were dissected, identified, and pooled
with other 3 individuals of the same species from the
same capture site in vials with 25 μl of 5% Chelex® 100
(Bio-Rad Lab Inc., Hercules, California, USA).
Sand fly pools were macerated and vortexed for 20 s,

followed by a brief centrifugation and incubation at 97 °C
for 30 min. The pools were centrifuged at 13,000× rpm
for 10 min, and the supernatant was transferred to sterile
vials and stored at -20 °C [24].
In order to identify the source of the blood intake of

the sand flies, four specific PCR reactions were separately
performed for dog, chicken, pig, and human, as described
by Pizarro et al. [15]. Short interspersed nuclear elements
(SINEs) were the target for non-human species, while an
Alu element-based; a long interspersed element (LINE)
was amplified for detection of human DNA.

Imaging and tissue lysis for barcode analysis
Twenty-one specimens belonging to seven species of the
genus Lutzomyia were processed according to the DNA
barcoding workflow. This procedure includes imaging,
tissue sub-sampling, tissue lysis, DNA extraction, PCR
amplification and sequencing of the cox1 marker. Speci-
mens were imaged using the Leica Application Suite
(LAS). These 21 ethanol preserved insects were analyzed
for DNA barcoding in 2016 and were previously identi-
fied by conventional microscopic methods during 2013.
The images used for barcoding purposes were not intended
to identify the insects.
Due to the small size of the specimens, sub-sampling

was not performed; instead, the entire organism was
processed into plate-wells containing 30 μl of 95% ethanol.
Plates were centrifuged at 1000×g for 30 s and incubated
for 2 h at 56 °C in order to evaporate the ethanol. For each
well, 50 μl of lysis buffer (100 mM NaCl, 50 mM Tris-
HCl, pH 8.0, 10 mM EDTA, pH 8.0 and 0.5% SDS, and
Proteinase K) were added. The plates were incubated at
56 °C overnight.

DNA extraction
One hundred microliters of the previous binding mix
were added to each well. One hundred and eighty micro-
liters of lysate were transferred into the wells of a glass
fiber plate (Pall corp., NY, USA), placed on top of a clean
square-well block for binding and washing steps. The
plate assemble was centrifuged at 5000× g for 5 min in
order to bind DNA to the glass fiber membrane. Two

washing steps were performed, using 180 μl of protein
wash buffer (binding buffer and 96% ethanol), and
750 μl of wash buffer (96% ethanol, 50 mM NaCl,
10 mM Tris-HCl pH 7.4, 50 mM EDTA pH 8.0). The
plate was air-dried and stored at 56 °C for 30 min. Forty
microlitres of a warmed elution buffer (10 mM Tris-
HCL, pH 8.0) were dispensed directly into the mem-
brane in each well of the glass fiber plate and incubated
at room temperature for 1 min. The plate was assembled
with a DNA Eppendorf plate and centrifuged at 5000× g
for 5 min to collect the DNA. DNA was stored at 4 °C
until further use.

PCR amplification and sequencing
The PCR reaction mix included 10% trehalose, ddH2O,
10× PCR buffer for Platinum Taq DNA polymerase
(Invitrogen, Carlsbad, California, USA), 50 mM MgCl2,
10 μM of each primer: ZplankF1t1 (5′-TGT AAA ACG
ACG GCC AGT TCT ASW AAT CAT AAR GAT ATT
GG-3′), ZplankR1t1 (5′-CAG GAA ACA GCT ATG
ACT TCA GGR TGR CCR AAR AAT CA-3′), 10 mM
dNTPs, Platinum Taq polymerase (5 U/μl); 2.5 μl of
DNA was added for a total volume of 12.5 μl.
PCR conditions were as follows: an initial step at 94 °C

for 1 min followed by 5 cycles of 94 °C for 40 s, 45 °C
for 40 s and 72 °C for 1 min. Thereafter, 35 cycles of
94 °C and 51 °C for 40 s and 72 °C for 1 min and a final
extension of 72 °C for 5 min were run. Subsequently, an
E-gel 2% agarose (Invitrogen) was performed to confirm
the amplification. PCR products were diluted in 25 μl of
ddH2O for clean-up with magnetic beads. Cycle sequen-
cing was performed by adding 5 μl of 10% trehalose, 2 μl
of Big Dye®, 1.87 μl of 5× sequencing buffer (400 mM
Tris-HCl pH 9.0, 10 mM MgCl2, 0.87 μl of ddH2O, 1 μl
of 10 μM of each primer ZplankF1t1/ZplankR1t1 and
1.2 μl of PCR product. The sequencing program was:
1 cycle at 96 °C for 2 min, 30 cycles of 96 °C for 30 s,
55 °C for 15 s and 60 °C for 4 min. Subsequently the
plates were submitted for sequencing with M13F and
M13R primers to the Canadian Centre for DNA Barcod-
ing (CCDB).
Sequences were edited using the CodonCode software

(CodonCode Corp., Centerville, MA, USA) and com-
pared against the DNA barcode library (http://www.
boldsystems.org) to infer specimens’ identification. The
higher match, sequences overlap (nt), and match process
ID was recorded.
A neighbor-joining tree was built through the Gen-

eious® v.9.1.7 software based on 13 sequences of local
specimens and 137 sequences from the BOLD system
representing 74 Lutzomyia species. All individuals were
aligned using the Geneious alignment software including
a 529 bp fragment of the cox1 gene. Distances were
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computed using the Tamura-Nei model and Bootstrap
values from 10,000 replicates. The percentage of identi-
cal sites and the pairwise percentage identity was calcu-
lated within and between species.

Results
Identification of Lutzomyia species
A total of 13,248 specimens belonging to the genus
Lutzomyia were collected. Seventy-eight percent were
female. Ten species were identified through morphological
characters (Fig. 3). Sixty-four (4.83%) specimens could not
be identified due to deterioration during storage and trans-
port and were recorded as Lutzomyia spp. The most abun-
dant species was Lu. evansi followed by Lu. longipalpis
(Table 2). This is the first report of three Lutzomyia species
in Isla del Tigre (Lu. evansi, Lu. cayennensis and Lu. pana-
mensis). Lutzomyia cayennensis cayennensis is the only sub-
species reported in Honduras for the Lu. cayennensis

complex [11]; however we do not have enough evidence to
demonstrate that our specimens belong to this subspecies.
According to the location of the traps, the extra-

domiciliary ecotope showed a higher capture rate of
sand flies (79.66%), followed by the peri-domiciliary
(12.34%) and the intra-domiciliary ecotopes (8%). The
most frequent species in the extra-domiciliary ecotope
was Lu. evansi, while Lu. longipalpis was most frequent
in the peri-domicile setting (data not shown). Although
the analysis of species diversity reveals that Islitas, is
the location with greater specific richness, the four localities
are very similar to each other in terms of species compos-
ition, which defines them as relatively homogeneous com-
munities. In terms of the number of collected specimens,
Ceibita contributed nearly 75% of all individuals, and 86%
of Lu. evansi specimens. The extra-domiciliary ecotope
showed most of individuals of Lu. evansi [n = 8779
(89.8%)], while the intra-, and the peri-domicile re-
vealed 414 (4.2%) and 587 (6%), respectively.

Fig. 3 Genital structures of Lutzomyia specimens from Isla del Tigre, Honduras. a Lu. chiapanensis (female). b Lu. cruciata (female). c Lu. gomezi
(female). d Lu. longipalpis (female). e Lu. evansi (female). f Lu. cruciata (female). g Lu. sanguinaria (male). h Lu. trapidoi (male). i Lu. cayennensis
(female). j Lu. zeledoni (female). k Lu. panamensis (male)
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Identification of blood meal sources
We found that six species harbored blood and it was
possible to identify the blood meal source for five species
(Lu. longipalpis, Lu. cruciata, Lu. evansi, Lu. gomezi and
Lu. chiapanensis) (Table 3). All exhibited a zoophilic
feeding behavior involving at least the use of one animal
as a food source. The most frequent food source was pig
(Sus scrofa), followed by dog (Canis familiaris), chicken
(Gallus gallus), and human (Homo sapiens). Lu. longipalpis
and Lu. cruciata were the only two species with anthropo-
philic behavior. It was not possible to determine the blood
meal source of Lu. zeledoni. The total of the tested speci-
mens were fed on a single animal source. No mixed blood
meals were detected.

Barcode analysis
A fragment of the mitochondrial cox1 gene was sequenced
from 21 specimens morphologically classified into 7
Lutzomyia species. Only a few specimens were selected
for molecular analysis because most of the insects were
permanently mounted in Hoyer’s medium.

The cox1 sequence length was 622 bp by direct sequen-
cing. Barcoding could not be performed to three of eleven
species (Lu. sanguinaria, Lu. trapidoi and Lu. panamensis)
because all the individuals from these species were perman-
ently mounted for taxonomic identification four years ago.
Only 13 out of 21 specimens were sequenced with enough
quality to allow subsequent analysis (Table 4). Each species
was analyzed using 1–3 specimens. Sequences from the 13
collected specimens showed an average A +T bias (66.7%)
relative to the C +G content. Sequences and trace files are
available in the BOLD project named: “Identification of
Lutzomyia sp. recovered at Amapala Honduras [HNLUZ]”.
The DNA barcode analysis enabled us to correctly

identify 3 Lutzomyia species (Lu. longipalpis, Lu. evansi
and Lu. gomezi) as determined from the morphological
identifications (Table 4). Sequences contained an average
of 66.7% of A + T pairs for all codons. The remaining 4
species (Lu. cruciata, Lu. zeledoni, Lu. chiapanensis, and
Lu. cayennensis) showed low percentage matches with
specimens of the family Psychodidae or with some un-
identified species of the genus Lutzomyia.

Table 2 Number of Lutzomyia spp. specimens captured in Isla del Tigre, Honduras, classified according to sex and location

Lutzomyia spp./Location Islitas Ceibita Caracol Las Pelonas Total (%)

M F M F M F M F

Lu. evansi 107 261 460 7933 194 636 50 139 9780 (73.82)

Lu. longipalpis 52 20 807 508 151 43 593 97 2271 (17.14)

Lu. gomezi 6 23 8 33 50 151 8 70 349 (2.63)

Lu. cruciata 26 37 40 41 55 117 11 25 350 (2.64)

Lu. chiapanensis 3 10 2 22 4 24 32 92 189 (1.42)

Lu. sanguinaria 2 0 22 0 32 0 116 0 172 (1.29)

Lu. zeledoni 2 15 1 16 2 24 0 8 68 (0.51)

Lu. cayennensis 0 1 0 0 0 0 0 2 3 (0.02)

Lu. trapidoi 0 0 1 0 0 0 0 0 1 (0.00)

Lu. panamensis 1 0 0 0 0 0 0 0 1 (0.0)

Lutzomyia sp. 4 1 16 23 4 6 7 3 64 (4.83)

Subtotal 203 368 1357 8576 492 1001 817 434

Total n (%) 571 (4.31) 9933 (74.97) 1493 (11.26) 1251 (9.44) 13,248 (100.00)

Abbreviations: F female, M male

Table 3 Blood meal of Lutzomyia species

Lutzomyia spp. Homo sapiens Canis familiaris Sus scrofa Gallus gallus Total n (%)

Lu. longipalpis 1 1 8 1 11 (14.47)

Lu. gomezi – – 7 – 7 (9.21)

Lu. cruciata 1 1 – – 2 (2.63)

Lu. chiapanensis – – 1 – 1 (1.31)

Lu. evansi – 15 32 8 55 (72.36)

Lu. zeledoni – – – – –

Total (%) 2 (2.63) 17 (22.36) 48 (63.15) 9 (11.84) 76 (100)
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The mean interspecific nucleotide divergence was 28.4%
with a pairwise percentage identity of 88.1% for a 529 bp
sequence. The intraspecific nucleotide divergence ranged
from 0.2% (Lu. zeledoni) to 0.6% (Lu. gomezi), with a pair-
wise percentage identity of 99.6–99.9%.
When the sequences obtained in this study were ana-

lyzed along with 150 BINs available in the BOLD system
for the genus Lutzomyia, the NJ tree revealed that Lu.
evansi, Lu. longipalpis, and Lu. gomezi grouped with
specimens of these species (Fig. 4); Lu. cayennensis formed
a distinct but neighbour clade to other Lu. cayennensis
specimens. However, Lu. zeledoni and Lu. cruciata did not
group with any other specimens of these two species. Two
different species (Lu. chiapanensis and Lu. cayennensis)
grouped closely in a single branch due to a high interspe-
cific pairwise identity (99.2%). The dendrogram also shows
two clearly differentiated clades for Lu. longipalpis. The
first clade includes 6 specimens (BINs: GBPSY305-14–
GBPSY308-14, MEXSM002-12–MEXSM003-12) isolated
from Colombia and Mexico, together with the two speci-
mens of Honduras, while the second clade included four
other specimens from Colombia (BINs: GBMIN23018,
-23019, -23051, -23052).

Discussion
This study investigated the diversity of species of the
genus Lutzomyia, vector of leishmaniasis in the Americas,
on a highly endemic island for non-ulcerative cutaneous
leishmaniasis (NUCL). During the decade of the 1990s
some investigations were carried out in this geographical
region of Honduras which (i) incriminated Lu. longipalpis
as the vector of Leishmania infantum [7, 8]; (ii) demon-
strated the predominance of Lu. longipalpis in the island;
and (iii) described its behaviour [25]. Our findings were
intended to provide an update on the current distribution

of Leishmania vectors in the Pacific region of Honduras,
plus the detection of its blood meal sources, and the use
of a barcoding approach for species identification.
A large number of specimens of the genus Lutzomyia

were collected and classified into ten species. Lutzomyia
longipalpis has historically been considered the most
common and relevant species in Leishmania transmis-
sion in the Pacific region of Honduras [25], and is the
only species in which natural infections have been re-
ported [7, 8].
This finding is consistent with Raymond et al. [26]

who reported Lu. longipalpis and Lu. evansi as the two
most common species in the Pacific region of Nicaragua,
with similar ecological characteristics as those of the
Honduran Pacific. There are at least three reasons that
could justify the predominance of Lu. evansi in this study:
(i) natural changes in the population dynamics of the insect;
(ii) the longer capture time of this study (9 months) when
compared to captures made over a few days in previous re-
ports; and (iii) the procedure to collect sand flies also in the
extra-domicile instead of the peri-domicile (edge effect)
[25]. Although natural infections of the parasite in Lu.
evansi have not been demonstrated in Honduras, its poten-
tial role in the transmission of leishmaniasis cannot be
ruled out, as reported for other American countries [13].
As a consequence, it would be interesting to carry out fur-
ther studies to demonstrate the presence of the parasite in
this phlebotomine. Taking into consideration the extra-
domiciliary predominance shown by Lu. evansi, in contrast
to the peri-domiciliary behavior of Lu. longipalpis, distinct
transmission cycles of L. infantum for each species could
be proposed. For example, Leishmania infections occurring
in the agricultural working areas could be attributed to Lu.
evansi, while infections around the houses could be mostly
produced by Lu. longipalpis. However, these hypotheses will

Table 4 Comparison of the species-level identifications of collected Lutzomyia specimens with the identifications as determined by
DNA barcoding

Phenotypic identification BOLD Sample ID BOLD higher match % Highest match Overlap (nt) Match process ID

Lu. longipalpis HNLUZ004-17 Lu. longipalpis 99.03 609 MEXSM003-12

Lu. longipalpis HNLUZ005-17 Lu. longipalpis 98.71 609 MEXSM003-12

Lu. evansi HNLUZ001-17 Lu. evansi 93.98 594 GBMIN23074-13

Lu. gomezi HNLUZ008-17 Lu. gomezi 99.03 558 GBPSY020-14

Lu. gomezi HNLUZ010-17 Lu. gomezi 99.19 561 GBPSY020-14

Lu. gomezi HNLUZ012-17 Lu. gomezi 99.03 558 GBPSY020-14

Lu. cruciata HNLUZ014-17 Lutzomyia sp. 88.83 571 None

Lu. zeledoni HNLUZ019-17 Psychodidae 98.29 609 None

Lu. zeledoni HNLUZ020-17 Psychodidae 98.29 609 None

Lu. zeledoni HNLUZ022-17 Psychodidae 98.10 609 None

Lu. chiapanensis HNLUZ015-17 Psychodidae 91.36 609 None

Lu. cayennensis HNLUZ024-17 Phytoliriomyza melampyga 91.10 609 None
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require further studies. A second hypothesis suggests that
Lu. evansi could be maintaining the sylvatic cycle of the
disease, and this could be also proven in the future
through the blood identification of sylvatic animals in
this sand fly species.
This is also the first report of one Lutzomyia species

in Isla del Tigre which has not been incriminated in the
transmission of the parasite (Lu. cayennensis). Two other
species observed here were Lu. gomezi and Lu. panamensis,
vectors of L. braziliensis and L. panamensis in the Americas
[27, 28], but this would have no epidemiological relevance
due to lack of transmission of these parasites species in the
Pacific region of Honduras, although they may transmit
other Leishmania species.
Despite the low dispersal abilities of Lutzomyia (e.g.

500 m for Lu. longipalpis) [29], the observed homogeneity
in the distribution of the sand fly species in the island
could be due to the small size of the territory (75.2 km2)
and to the absence of natural or climatic barriers that
could structure fragmented populations. Perhaps expand-
ing the area of study to continental soil could evidence
some level of population structure in Lutzomyia species.
Despite this relative species homogeneity, the 13 collec-
tion points showed some interesting differences in the
number of collected specimens.
Notoriously, Ceibita was the village with the highest

number of sand flies collected (75%) (Table 2). Perhaps
the more intensive human intervention of the soil and a
more abundant agricultural work are responsible for cre-
ating the conditions for the development of the life-cycle
of those insects (e.g. soil modification, irrigation of crops
with presence of moisture even in dry seasons, the pres-
ence of domestic and wild animals seeking food in crop
fields, the presence of organic matter, shading of back-
yards, debris and other factors). A remarkable fact is that
86% of the catches of Lu. evansi occurred at the extra
domiciliary point of collection at Ceibita. This large
population caught could be attributed to an edge effect
in this area, where humans are continuously penetrating
the forest.
Caracol was the second village with the highest numbers

of collected sand flies, and the extra-domicile was the
largest contributor of the 3 collection sites. The large
number of pigs in the area could be the main explanation
for this result. 63.15% (Table 3) of the engorged blood
belonged to pigs, which is consistent with this hypothesis
and suggests that this mammal may be a key element for
the maintenance of the insect populations in extra- and
peri-domiciliary ecotopes. Las Pelonas occupied the third

Fig. 4 Neighbor-joining tree inferred from the cox1 gene of
Lutzomyia spp. Bootstrap values from 10,000 replicates are shown.
The distances were computed using the Tamura-Nei model. Isolates
from this study are shown with color dots
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place regarding the number of specimens collected. The
highest number of insects was obtained in the peri-
domicile of a house located next to the beach, with flat
and sandy soils, and close to a small piggery and a chicken
coop. Likewise, the presence of domestic animals such as
pigs, chickens and dogs would allow the presence of the
insects in peri-domiciliary and intra-domiciliary environ-
ments. Traps located at Islitas revealed the lowest number
of specimens. Fewer animals around the houses could
have reduced the food sources available for the sand flies
in comparison with the other three villages, with a greater
presence of pets and wild animals.
This study also investigated the blood meal sources of

the sand flies from Isla del Tigre. Only Lu. longipalpis
and Lu. cruciata showed an anthropophilic behavior.
This finding is in agreement with previous reports of
authors from Brazil and Mexico [30–32] and reaffirms
the potential role of Lu. longipalpis in the transmission
of visceral leishmaniasis. Five out of six Lutzomyia species
revealed to be engorged with animal blood. The most fre-
quent source of blood meal was pig, followed by dog.
Due to cultural habits of animal breeding in this region,

pigs live very close to the humans and their houses. This
habit is relevant in the context of this study, since Lu.
evansi have been proven to feed on pigs [33]. For this rea-
son these animals could be considered as potential reser-
voirs of the parasite. The dog has been defined as the main
reservoir of L. infantum, both in Honduras and in the
Americas [7, 34–36], therefore our finding supports its
leading role in establishing the domiciliary cycle of leish-
maniasis on the island. Although chickens are refractory to
Leishmania infections, their presence in the peridomicile is
undoubtedly a risk factor that favors the presence and
maintenance of sand flies in the human habitat [37, 38].
With respect to the large population of Lu. evansi captured
in Ceibita, it would be interesting to conduct further studies
of other potential food sources among sylvatic animals,
such as Didelphis marsupalis and small rodents [39, 40].
The source of the blood meal of Lu. zeledoni was not iden-
tified, suggesting a different food source to the four ana-
lyzed in this study, such as armadillos [41], horses, rats, cats
[42], or cows [43], among others.
Thirteen specimens belonging to seven morphologically

identified Lutzomyia species were DNA barcoded in this
study. This approach proved to be useful for correctly
identifying three Lutzomyia species. However, four of
seven species could not be identified based only on genetic
divergences when their sequences were queried against
public databases of the BOLD system or NCBI. This could
be due to the lack of BINs or accession numbers for these
species in the BOLD system and the NCBI databases,
respectively. This result confirms that cox1 is a useful mo-
lecular marker to identify species when there are enough
records in the databases [17, 44, 45], but when there are

only a few sequences available, the use of other molecular
markers such as ribosomal ITS spacers or nad1 (nicotina-
mide adenine dinucleotide dehydrogenase 1), together
with conventional taxonomy remains fundamental to re-
port new species within a geographical region [19, 46, 47].
Sequences from the 13 collected specimens showed an

average A + T bias (66.7%) relative to the C + G content
similar to the expected range for sand flies [48, 49]. The
variability between species (12–18%) was similar to that
reported in other studies conducted with sand flies from
the Americas. Nzelu et al. [17] reported a range from
8.39 to 19.08% when 19 species from Peru were analyzed,
and Contreras et al. [48] found a mean variation of 19%
among 26 species collected from Colombia. However,
intraspecific variability was less than 1%, which can be
attributed to the low number of specimens sequenced
from each species in this study (max. 3). Nevertheless it
seems there is no overlap between inter- and intraspecific
divergences supporting the barcoding gap that allows to
assign taxonomic status to our specimens [50].
The neighbor-joining tree showed distinctively clustered

sequences from local specimens of Lu. longipalpis and Lu.
evansi together with specimens of the same species from
other regions of the continent (Fig. 4). However, Lu. longi-
palpis seemed to be grouped into two different clusters.
The first cluster included the specimens from Honduras,
four sequences from Colombia and two from Mexico, and
the second cluster comprised four specimens from
Colombia. This separation in two haplotypes will re-
quire further studies with more specimens collected
from more localities in the Mesoamerican region in
order to assess the existence of more than one genetic
population or even cryptic species within the Lu. longipal-
pis complex, as suggested by other authors from Brazil
[51–53]. The relationships visualized in the dendrogram
between sequences from this study of Lu. gomezi and ac-
cessions from Colombia and Panama indicate that these
species are identifiable by this molecular marker. However
this is not the case for Lu. cayennensis, which clustered
with sequences of unidentified species of the genus
Lutzomyia from Colombia, and are separated of other
sequences of Lu. cayennensis. This may be due to the di-
versity of the cayennensis complex including eight subspe-
cies [27]. The sequences of Lu. zeledoni, Lu. cruciata and
Lu. chiapanensis did not cluster with any accession due to
lack of previous records in the databases.

Conclusions
In conclusion, our findings updated the diversity of
Lutzomyia species in an island endemic for human
leishmaniasis in the Pacific region of Honduras, and
provided information on the blood meal sources of these
vectors. This study also showed the effectiveness of the
barcoding approach to discriminate species, as a
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complementary tool to morphology-based identification.
Further investigations with a larger number of specimens
collected from a wider geographical area would improve
the knowledge regarding the distribution of Leishmania
vectors in Mesoamerica.
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