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Biographical note: escort assists users in selecting optimal dataset-specific data processing choices in the context of single-cell trajectory inference. 

Abstract 
Single-cell RNA sequencing (scRNA-seq) experiments have become instrumental in developmental and differentiation studies, enabling 
the profiling of cells at a single or multiple time-points to uncover subtle variations in expression profiles reflecting underlying 
biological processes. Benchmarking studies have compared many of the computational methods used to reconstruct cellular dynamics; 
however, researchers still encounter challenges in their analysis due to uncertainty with respect to selecting the most appropriate 
methods and parameters. Even among universal data processing steps used by trajectory inference methods such as feature selection 
and dimension reduction, trajectory methods’ performances are highly dataset-specific. To address these challenges, we developed 
Escort, a novel framework for evaluating a dataset’s suitability for trajectory inference and quantifying trajectory properties influenced 
by analysis decisions. Escort evaluates the suitability of trajectory analysis and the combined effects of processing choices using 
trajectory-specific metrics. Escort navigates single-cell trajectory analysis through these data-driven assessments, reducing uncertainty 
and much of the decision burden inherent to trajectory inference analyses. Escort is implemented in an accessible R package and R/Shiny 
application, providing researchers with the necessary tools to make informed decisions during trajectory analysis and enabling new 
insights into dynamic biological processes at single-cell resolution. 
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INTRODUCTION 
Analyses to computationally order related cell types along an 
underlying dynamic are referred to as trajectory inference or 
pseudotime analysis [1]. These analytical methods provide users 
with the capacity to visualize and quantify complex developmen-
tal or maturation states using shared gene expression and/or 
phenotypic protein markers at single cell resolution [2, 3]. While 
there are numerous trajectory inference methods developed for 
single-cell RNA sequencing (scRNA-seq), obtaining an optimal 
trajectory remains challenging. A comprehensive review of 45 
commonly used trajectory methods, of which there are now more 
than 100 unique methods at the time of this writing, evaluated 

each approach’s accuracy of inferred topology, cell ordering, and 
differential feature expression [4]. No method universally out-
performed others, though some methods showed distinction in 
specific metrics. For instance, Monocle [5] and  PAGA  [6] best cap-
tured the underlying trajectory structure and Slingshot [7] most  
accurately ordered cells. Yet, while this benchmark evaluation 
helps narrow down the top methods for particular applications, 
each method requires additional data processing steps and has 
its own set of hyperparameters. 

Specifically, all trajectory methods require, or at least recom-
mend, feature selection and dimension reduction prior to trajec-
tory estimation. Feature selection involves subsetting the total
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number of genes to a smaller set of informative genes, typically 
the most highly variable genes. However, the decisions of how 
many highly variable genes and what metric should be used 
to score gene variability are left to the user. Dimension reduc-
tion approaches project the high-dimensional dataset into a low-
dimensional (typically two-dimensional) space, with most trajec-
tory methods using either principal component analysis (PCA) [1], 
t-distributed stochastic neighbor embedding (t-SNE) [8], uniform 
manifold approximation and projection (UMAP) [9], or diffusion 
maps [10]. Although a number of methods, including popular and 
well-performing ones such as Slingshot [7], allow users complete 
flexibility in choosing a dimension reduction technique. 

In addition to the decision-making responsibility users 
encounter during analysis, the concern arises from the possibility 
that these decisions may result in significant and unanticipated 
repercussions (Figure 1). Trajectories inferred using different 
dimension reduction techniques or numbers of highly variable 
genes may result in visually similar, biologically reasonable 
orderings of cell-types clusters along a trajectory (Figure 1A). 
However, even among visually similar trajectories, the distribution 
of cells along the trajectory can be highly inconsistent (Figure 1B). 
These discrepancies become most apparent in downstream 
analysis when identifying genes that are dynamic along pseu-
dotime, where one may obtain contradictory estimates of gene 
dynamics (Figure 1C). Towards this end, a recently published tool 
was designed to facilitate selection of an optimal tree-shaped 
trajectory by examining cell connectivity [11]. However, it was 
designed for a specific trajectory inference tool, topology type, 
and only considers one aspect of the trajectory. The Saelens et al. 
(2019) benchmarking study included an interactive guideline tool 
called dynguidelines to assist users in selecting optimal trajectory 
inference methods based on several factors, including the data’s 
expected topology, computational constraints (such as time 
and memory limits), characteristics of the dataset (e.g., known 
presence of start and end cells) and the usability of methods. 
However, this tool does not account for the impact of processing 
steps on the resulting trajectory. As shown in Figure 1, using a 
single recommended method, in this case, Slingshot, was not 
alone sufficient to guide users towards an optimal trajectory. 
Thus, while dynguidelines offers a general overview to aid in 
the identification of appropriate TI methods, it lacks further 
consideration of preprocessing and other analysis choices that 
affect trajectory analysis. 

Overall, there is little guidance on how various processing 
choices or hyperparameter settings might impact trajectory esti-
mation in general, as well as a lack of quantitative information 
on whether a particular trajectory adequately fits the dataset. 
As a result, researchers tend to rely on pre-existing knowledge 
and subjective visual assessment, potentially biasing the analysis 
and limiting discovery. Evaluation metrics can provide indepen-
dent assessments of performance when no ground truth exists. 
For example, the silhouette statistic and other stability mea-
sures have been utilized to evaluate clustering of cells in scRNA-
seq datasets [12–15]. These metrics assess dataset-specific per-
formance in terms of good or desirable properties, e.g. smaller 
within and larger between cluster distances. While these types 
of evaluation metrics allow for more-informed decision making 
when clustering scRNA-seq data, they are not applicable to the 
continuous nature of trajectory analysis. 

To this end, we introduce Escort, a novel framework for evaluat-
ing the impact of choices in trajectory inference, aiming to assist 
users in navigating trajectory inference analysis in scRNA-seq 
data. The main contributions of Escort can be summarized as (i) 

evaluating a dataset’s overall suitability for trajectory inference, 
(ii) using trajectory-specific evaluation metrics that we developed 
to quantify desirable trajectory properties, (iii) classifying sets 
of processing choices as recommended or not-recommended for 
trajectory estimation and (iv) obtaining more accurate trajectories 
based on data-driven evaluations. To the best of our knowledge, 
Escort is the first approach for comprehensively evaluating pro-
cessing choices in the context of scRNA-seq trajectory inference. 
We expect Escort to reduce the decision-making burden in trajec-
tory inference analysis, resulting in less biased and more accurate 
single-cell trajectories. Escort is available as an R package and 
available for use as an integrated R/Shiny application, which 
can be downloaded via GitHub (https://github.com/xiaorudong/ 
Escort). 

RESULTS 
Trajectory estimation is susceptible to varied 
analysis choices 
In an effort to create a common framework for cell trajectory 
analysis, we first demonstrated that processing decisions such as 
choosing different numbers of highly variable genes and different 
dimension reduction techniques can affect an inferred trajectory. 
Although these processing steps are only a subset of specific 
decisions users face, they were chosen for their near universality 
within trajectory inference methods. We considered eight differ-
ent simulation scenarios consisting of differences in simulators 
for scRNA-seq data and trajectory topologies (Table 1) [4, 16]. We 
refer to each combination of analysis choices as an ‘embedding’, 
given that the vast majority of trajectory estimation methods 
construct the trajectory in two-dimensional representations. In 
general, an embedding encompasses all processing choices of 
interest—including the dimension reduction—and is the dataset 
upon which any particular method estimates the trajectory. In 
the simulation, the embeddings under evaluation differed in their 
proportion of highly variable features selected (20, 40 and 100%) 
and dimension reduction technique (t-SNE, UMAP, MDS). To avoid 
over-generalizing, we used both Slingshot [7] and Monocle3 [17] 
to infer trajectories for each embedding. Accuracy of the esti-
mated trajectories was assessed by two different metrics (Kendall 
rank correlation and mean squared error), each of which we 
standardized by ranking embedding performance within datasets 
independently. Overall, there was no clear advantage observed 
for any specific dimension reduction algorithm, percent of highly 
variable genes, or combination thereof in terms of performance 
across datasets (Figure 2). This demonstrates that it is not feasible 
to simply pre-select a best dimension reduction algorithm or 
percent of highly variable genes for every analysis or trajectory 
method. 

Framework to identify recommended 
embeddings for trajectory analysis 
Given the dataset-specific performance across trajectory anal-
ysis decisions, we developed Escort, a data-driven evaluation 
framework to guide users through trajectory analysis by pro-
viding evaluations of sets of analysis choices (Figure 3). In the 
first step, Escort assesses whether the data support the exis-
tence of a trajectory. Non-computational scientists often struggle 
with the first step of constructing a trajectory, which is decid-
ing whether fitting a trajectory is appropriate for their dataset. 
There are two scenarios where trajectory fitting is not well-
suited: when cells represent biologically distinct cell types or 
when the data has insufficient cellular heterogeneity (Figure 3A).

https://github.com/xiaorudong/Escort
https://github.com/xiaorudong/Escort
https://github.com/xiaorudong/Escort
https://github.com/xiaorudong/Escort
https://github.com/xiaorudong/Escort
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Figure 1. Analysis choices significantly impact trajectory estimation in scRNA-seq data. For three different choices of selected genes and dimension 
reduction methods, trajectory inference and pseudotime estimation were performed on an scRNA-seq dataset of hematopoietic stem cells [53]. (A) 
Dimension-reduced spaces and estimated trajectories with cells colored by cell type. The plot title in each column indicates the dimension reduction 
used (MDS or UMAP) and the number of highly variable genes selected (300 or 1000). (B) Pseudotime distributions for each set of analysis choices. (C) 
Normalized gene expression as a function of pseudotime for Cbx1. Cells are colored by pseudotime, i.e., their location along the trajectory. Abbreviations: 
MDS = multidimensional scaling, UMAP = uniform manifold approximation and projection, HVG = highly variable gene. 

Table 1: A summary of simulated scRNA-seq data datasets 

Simulation Method Trajectory type Number of cells (post-filtering) 

sim-1 Scaffold [16] Linear 500 
sim-2 dyntoy [54] Linear 263 
sim-3 Splatter [55] Linear 174 
sim-4 dyntoy [54] Bifurcation/tree 748 
sim-5 dyntoy [54] Multifurcation/tree 1617 
sim-6 dyntoy [54] None (disconnected) 251 
sim-7 dyntoy [54] None (disconnected) 674 
sim-8 Scaffold [16] None (homogenous) 500 

Biologically, datasets consisting of distinct cell types indicates 
that the underlying biological processes are separate or that the 
experiment did not capture sufficient intermediate-stage cells. 
Datasets lacking cell heterogeneity may indicate low sensitivity 
in the experimental assay or excessive technical variability in 
the dataset. In either case, Escort will flag the dataset in the 
first step and return a summary with suggestions to the user 

specifying how to proceed. If a trajectory signal is detected, in 
the next step, the analysis choices (embeddings) that could be 
used for trajectory estimation are evaluated. Users are able to 
select a number of default embeddings for consideration or input 
their own embeddings directly. In this step, Escort quantifies how 
effectively an embedding preserves relationships between cells in 
the high-dimensional data and assesses the distribution of points 
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Figure 2. Trajectory accuracy is impacted by different dimension reduction algorithms and inclusions of highly variable genes. (A) The performance of 
different embeddings across all eight simulated scenarios is shown. Embeddings were ranked within each dataset separately for the two metrics. The 
ranks were scaled so that a lower rank indicated better within-dataset performance. (B) Similar to A using Monocle3. 

in the two-dimensional cell graph. Based on these two evalua-
tions, an embedding may be classified as non-recommended or 
passed to the next step (Methods). For the third step, embeddings 
are evaluated in the context of a specific trajectory inference 
approach in order to allow for consideration of method-specific 
hyperparameters. Specifically, Escort evaluates the proportion of 
cells likely to have an ambiguous projection along a trajectory. An 
overall performance score is calculated based on metrics in the 
second and third steps, and then the embeddings are classified as 
recommended or non-recommended. Recommended embeddings 
are those which are likely to generate trajectories having a better 
fit to the data and more accurately reflect the underlying dynamic 
biological processes. Non-recommended embeddings are those 
that are unlikely to generate accurate trajectories based on the 
evaluations. 

Escort distinguishes embedding quality in 
simulations 
We demonstrate the effectiveness of Escort in evaluating 
various embeddings on the eight different simulation scenarios 
(Table 1). We used Slingshot to construct trajectories for each 
embedding, although the results were consistent with Monocle3 
(Supplementary Figure 1). Accuracy was assessed in terms of 
cell order and total order error by comparing the estimated 
trajectory to the ground truth via Kendall rank correlation and 
mean squared error. Overall, the recommended embeddings 
tended to produce more accurate trajectories. Specifically, the 
recommended embeddings had higher correlation and lower error 
than non-recommended embeddings (Figure 4A). The simulations 
with no true trajectory were all detected and flagged by Escort in 
the first step and their embeddings generated significantly less 
accurate trajectories than even those by the non-recommended 

embeddings. The Escort score also correlates well with the 
individual accuracy measures indicating that a higher Escort 
score reflects higher trajectory accuracy (Figure 4B). 

Escort guides decision-making for trajectory 
inference 
Additionally, we analyzed five scRNA-seq datasets obtained from 
publicly available sources and encompassed a range of biological 
contexts (Table 2). While the scRNA-seq datasets do not have a 
ground truth in the sense of a known trajectory, we chose datasets 
that had some degree of biologically relevant time-ordered sam-
ples allowing us to evaluate a trajectory’s fit to the data. Despite 
the increased noise and complex data structure, Escort is still able 
to distinguish embedding quality (Figure 5 and Supplementary 
Figure 2). The recommended embeddings have a significantly 
larger accuracy compared to the non-recommended embeddings. 
The accuracy measures are noisier for these datasets compared to 
the simulations due to the small number of true times available, 
however higher accuracy is still correlated with a higher Escort 
score (Figure 5B). 

We also found that the scRNA-seq datasets tended to have 
more non-recommended embeddings compared to the simulated 
datasets. Non-recommend embeddings are a result of having a 
negative Escort score, and, additionally, when the embedding fails 
to sufficiently preserve complex cell relationships, it is imme-
diately classified as non-recommended. For example, we found 
that UMAP frequently generated embeddings that exhibited dis-
connected clusters or grouped small clusters together in unex-
pected ways [18]. These more complex datasets also have more 
irregularly spaced sampling times, for example, the sc-3 dataset 
(Table 2) had single-cells measured at days 100, 130, 175 and 
then day 450. If too few cells are represented from intermediate

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae216#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae216#supplementary-data
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Figure 3. Overview of ESCORT. Schematic of the Escort workflow. (A) The first step detects the presence of a trajectory signal in the dataset before 
proceeding to evaluations of embeddings. (B) Various metrics are used to evaluate user-defined embeddings regardless of the ultimate trajectory 
inference method to be used. (C) In the final step, the preferred trajectory inference method of the user is used to fit a preliminary trajectory to 
evaluate method-specific hyperparameters. (D) Based on the overall score, embeddings are classified as either recommended or non-recommended. 

Table 2: A summary of public scRNA-seq datasets. Datasets sc-2 through sc-5 were downloaded from Saelens et al. [4] 

Dataset Organism Accession Number of cells after 
filtering 

Number of time points 

sc-1 Human E-MTAB-3929 [56] 1469 5 
sc-2 Mouse GSE59114 [53] 492 3 
sc-3 Mouse GSE99951 [57] 448 4 
sc-4 Mouse GSE87375 [58] 321 6 
sc-5 Human GSE86146 [59] 647 12 

sampling times or cell states, it is unlikely any embedding could 
overcome experimental design limitations and consistently gen-
erate robust connected trajectories. 

Computation time benchmark 
To assess the computational requirements of Escort, we simu-
lated datasets having varying numbers of cells using the same 
framework as the simulation study. The full results are shown in 
Supplemental Table 1. Briefly, with 1000 cells, Escort’s first step 
took an average of 5 min to run, although it increased to 18 min 
with 3000 cells. Escort’s embedding evaluation in Steps 2 and 3 

took between 0.4 and 1.5 min for datasets having 1000 or 3000 
cells for a single embedding, respectively. Overall, the computa-
tional time is reasonable given that trajectory inference involves 
analyzing a smaller subset of cell types from an experiment and 
the embedding evaluations are parallelizable. 

Escort guided trajectory analysis of hypertrophic 
chondrocyte transdifferentiation 
Hypertrophic chondrocytes were once thought to be the terminal 
state of chondrocyte fate prior to apoptosis, yet recent research 
suggests these cells undergo transdifferentiation towards an

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae216#supplementary-data
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Figure 4. Trajectory assessment performance of Escort on simulated datasets. (A) The accuracy of trajectories generated on nine different embedding 
options for each of the eight simulated datasets is shown for different metrics: Kendall rank correlation and mean squared error. Simulated scenarios 
differ in terms of true trajectory topology (denoted by color) and simulator methods. The y-axis displays the values for the accuracy metric. (B) Each 
embedding’s Escort score (x-axis) versus the value for each accuracy metric (y-axis) are shown and colored according to their classification by Escort. 

Figure 5. Trajectory assessment performance of Escort on public datasets. (A) The accuracy of trajectories generated on nine different embedding 
options is shown for five publicly available datasets assessed using different metrics: Kendall rank correlation and mean squared error. The colors 
distinguish each embedding classification by Escort, in addition to those embeddings that failed in the second step. The y-axis displays the values for 
accuracy metrics. The x-axis corresponds to recommendations generated by Escort. (B) Similar to (A) with the x-axis showing the Escort score. 

osteoblast-like state or other marrow associated cells [ 19]. To 
better understand the fates of hypertrophic chondrocytes, Long 
et al. [20] utilized lineage-tracing mouse-reporter models to isolate 
Col10a1-expressing cells and their descendants. The authors 

performed trajectory inference on their scRNA-seq data using 
default settings in Monocle3, resulting in a singular lineage linking 
hypertrophic chondrocytes to osteoblasts. Using the original 
paper’s publicly available dataset, we sought to examine whether
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Escort would recommend a more optimal embedding that might 
provide additional insight into this differentiation process. 

Prior to trajectory estimation, we found that one of the initial 
cell clusters (cluster 7) appeared to be low-quality cells with very 
low sequencing depth (Supplemental Figure 3). Removing these 
cells from the dataset resulted in a highly similar, single-lineage 
trajectory using the default settings in Monocle3 (Figure 6A). How-
ever, for our analysis, given the interest in the multi-fate hypoth-
esis of hypertrophic chondrocytes, we opted to use Slingshot to fit 
trajectories on both the original embedding and an Escort recom-
mended embedding (Figure 6B and C). Escort evaluated 13 various 
embedding options. The original embedding scored sub-optimally 
and was ranked in the bottom quartile among all embeddings 
(Supplementary Table 2). An Escort-based trajectory was fit using 
Slingshot with the highest-scoring embedding option. 

Topologically, the two trajectories were highly similar, although 
the original embedding generated three lineages while Escort’s 
embedding generated two (Figure 6B–C). Based on the clusters 
along each branch, we labeled the two shared lineages as Lineage 
A and Lineage B. Based on the original author’s annotations, Lin-
eage A follows hypertrophic chondrocytes to osteoblasts and Lin-
eage B links hypertrophic chondrocytes to terminal hypertrophic 
chondrocytes. The third lineage, only observed using the original 
embedding, was enriched for VEGFA signaling and protein trans-
port, which indicated heterogeneity within the dedifferentiating 
hypertrophic chondrocytes (Supplemental Data 1). For our analy-
sis, we focused on comparing how the two embedding options dif-
fered in downstream analysis when characterizing gene dynamics 
in Lineages A and B. For each lineage, we applied scLANE to 
identify differentially dynamic genes [21]. scLANE models each 
gene’s expression as a function of pseudotime using a modified 
multivariate adaptive regression spline approach. The scLANE 
model identifies locations of significant expression changes along 
pseudotime (referred to as knots) and estimates the expression 
slopes along each interval. 

For Lineage A, the osteoblastic fate, the two trajectories had 
similar overall topology and pseudotime distributions, however, 
the Escort-based trajectory resulted in 12% more genes identi-
fied as significantly dynamic compared to the original trajec-
tory (Figure 6D). The distribution of knots, indicating locations 
of major expression change along the lineage, was multi-modal 
for the Escort trajectory whereas the original trajectory had a 
unimodal distribution with a high concentration of knots when 
transitioning between clusters 6 and 8, indicating disconnect-
edness. Although the majority (> 85%) of shared differentially 
dynamic genes had similar trends, the Escort-based dynamics 
were less noisy and captured more subtle expression changes as 
seen in chondrogenic differentiation genes Snorc [22] and  Id2 [23] 
(Figure 6F). 

The lineage towards more terminal hypertrophic chondrob-
lasts, Lineage B, varied substantially between the two trajectories 
(Figure 6G). The original trajectory included cells from Cluster 6, 
thought to be a transitory stem and progenitor-like cell popula-
tion, which were predominantly limited to Lineage A in the Escort 
trajectory. The knot distribution for the original trajectory had a 
large proportion of knots appearing in the initial transition from 
clusters 1 to 3, likely due to a small gap in the pseudotime, and a 
large proportion of knots appeared at the transition between clus-
ters 5 and 6 (Figure 6H). These differences in pseudotime distribu-
tions lead to 35% of all shared significantly dynamic genes having 
opposing dynamic trends (upregulation versus downregulation). 
Genes upregulated in the original trajectory but downregulated 
in the Escort trajectory were enriched for cartilage and skeletal 

system development. Genes upregulated in the Escort trajectory 
and downregulated in the original trajectory were enriched for 
regulation of RNA splicing and the EGFR1 pathway, which stimu-
lates terminal differentiation and apoptosis in chondrocytes [24] 
(Supplemental Data 2). Lineage B in the Escort trajectory clearly 
represented cells heading towards the apoptotic fate, whereas the 
original trajectory contained blended, less distinct signals among 
its lineages. The Escort-guided analysis led to a trajectory that 
more accurately characterized the underlying transdifferentia-
tion of hypertrophic chondrocytes, with two clearly distinct lin-
eages towards osteoblastic fate and terminal apoptosis, whereas 
the embedding used in the original analysis was only able to 
characterize the osteoblastic linage. 

DISCUSSION 
While all-inclusive or automated analysis pipelines are desirable 
for ease of use, recent discussions have highlighted issues regard-
ing careful inference in single-cell data [25–27]. In this context, it 
is crucial to consider the unique characteristics of the data when 
selecting among trajectory inference methods and performing 
processing steps. To address this challenge, we developed Escort 
to evaluate the impact of choices in trajectory inference while 
guiding users through the estimation of trajectories in scRNA-
seq data analysis. Escort effectively selects optimal and more 
accurate trajectories based on trajectory-specific evaluation met-
rics as demonstrated by our simulation and case-study results. 
Escort also assists users in determining whether their dataset 
is appropriate for trajectory analysis by identifying disconnected 
cell clusters or homogenous cells lacking a trajectory signal. In 
either case, Escort will provide relevant data summaries, allowing 
users to reassess their hypothesis or further refine their dataset. 
Our framework is implemented in an R package that allows 
users to evaluate as many embedding options as desired, as well 
as through an R/Shiny application to guide users more directly 
through assessing data-specific properties to consider when per-
forming trajectory inference. 

Given that trajectory inference methods often differ in their use 
of dimension reduction techniques, our results observing highly 
dataset-specific performance are consistent with that observed in 
the benchmarking study by Saelens et al. [4]. In fact, the processing 
choices for dimension reduction and inclusion of highly variable 
genes impacted the trajectory accuracy more than the difference 
between Slingshot and Monocle3 for estimating the trajectory 
and pseudotime. In addition to standard processing steps, quality 
control steps may also significantly impact Escort’s embedding 
evaluations. For example, normalization is a key upstream pre-
processing step that adjusts for variations among cells due to 
sequencing depth. Inadequate normalization may compromise 
accurate trajectory signal detection [28, 29]. Batch effects also 
have the potential to introduce technical variability between sam-
ples [30]. Batch effects in scRNA-seq data can result in incorrect 
trajectory signal assessment and the emergence of batch-specific 
clusters or trajectories that do not accurately represent biolog-
ical characteristics [31–33]. Thus, we highly suggest that these 
decisions also be defined explicitly in the embedding to allow for 
evaluation within the Escort framework. 

Additionally, we and others have found that the performance 
of UMAP is heavily dependent on hyperparameters, specifically 
the minimum distance between points in the lower-dimensional 
space and the number of approximate nearest neighbors used 
for constructing the initial high-dimensional graph [34, 35]. The 
choice of these hyperparameters has a significant impact on

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae216#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae216#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae216#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae216#supplementary-data
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Figure 6. Analysis of transdifferentiation of hypertrophic chondroblasts using an Escort-guided trajectory. (A) UMAP of the original paper’s embedding 
and the Monocle3 based trajectory. (B) UMAP of the original paper’s embedding using Slingshot to fit a trajectory. (C) Escort recommended embedding 
using Slingshot to fit a trajectory. (D) Correlation of pseudotime between the two Lineage A trajectories. (E) Distribution of knots across all significantly 
dynamic genes for Lineage A. (F) Gene expression as a function of pseudotime for Snorc and Id2. (G–I) Similar to (D–F), but for Hapln1 and Pth1r in 
Lineage B. 

how UMAP behaves [ 36, 37]. Hyperparameters such as these can 
also be incorporated within the Escort evaluation framework. 
Alternatively, there are numerous dimension reduction methods 
available for scRNA-seq data, including those derived from RNA 
velocity estimations. Including these alternatives directly into the 
Escort framework is an area of future work, although users are 
free to implement them when generating embeddings. Presently, 
Escort only considers trajectory inference approaches that use 
two-dimensional representations. While this encompasses the 
vast majority of existing approaches, assessing methods outside 
of this restriction requires further evaluation. 

Finally, Escort is not guaranteed to identify a recommended 
embedding among the choices being evaluated. We recommend 
evaluating a wide variety of processing choices, however main-
taining connected relationships within an embedding in scRNA-
seq data is challenging, as previously reported by others [18, 38, 

39]. Insufficient experimental designs may also present situations 
with small discontinuities. Given that the Escort score was highly 
correlated with accuracy of the trajectory, if a reasonable number 
of embedding options have been explored, Escort’s score can be 
utilized in cases where it may be necessary to choose the best 
possible option, understanding that there is some unavoidable 
discontinuity present. In any case, Escort provides users with the 
ability to identify more optimal analysis choices in the context of 
trajectory inference. 

METHODS 
Our three-step framework aims to improve the accuracy of 
trajectory estimation while guiding users through the decisions 
involved in fitting a trajectory.
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Step 1: detecting trajectory existence 
The first step of trajectory analysis is deciding whether fitting 
a trajectory is appropriate for a given dataset. There are 
two scenarios where trajectory fitting is not appropriate: 
when cells represent diverse cell types or when cells appear 
homogeneous. 

To identify distinct cell types, we use two single-cell specific 
approaches to identify clusters: scLCA [40] and SC3 [41]. The 
scLCA approach estimates the optimal number of clusters 
and cell clusters in the dataset based on cosine-similarity and 
spectral clustering [14]. SC3 is a consensus cluster approach; a 
consensus matrix is constructed from clustering with multiple 
distance metrics and then split into a user-specified number 
of clusters. In scenarios where cell type information is lacking, 
Escort depends on the optimal number of clusters and their 
assignments determined by scLCA. Conversely, if prior informa-
tion regarding cell types is known, Escort utilizes SC3 to compute 
the cell clusters. Next, Escort computes distances between the 
cell clusters in the high-dimensional space to evaluate their 
connectivity. This assessment assumes that large distances 
between clusters indicates disconnectedness between the cell 
types. To evaluate connectivity between clusters, let N be the 
total number of cells in the dataset. Each cell is denoted by 
ci, for  i ∈ {1, 2, . . .  , N}. The Manhattan distance matrix DN×N is 
defined as 

DN×N = 

⎡ 

⎢⎢⎣ 

d1,1 · · ·  d1,N 
... 

. . . 
... 

dN,1 · · ·  dN,N 

⎤ 

⎥⎥⎦ , (1)  

where di,j represents the Manhattan distance between cell ci 

and cj. 
The m cell clusters are denoted as T1, T2, . . . ., Tm, such that 

the cluster Tk consists of a subset of nk cells. If ci ∈ Tk, 
then Dci 

within is the set of ‘within-cluster distances’ for ci such 
thatDci 

within =
{
di,k1 , di,k2 , . . . di,knk

}
and Dci 

betweenq 
represents a set 

of ‘between-cluster distances’ for ci between cells in Tq, given  
byDci 

betweenq 
=

{
di,q1 , di,q2 , . . . di,qnq

}
, where  q ∈ {1, 2, . . . , m} and 

q /∈ k. Jaccard index scores are then computed for ci based on 
the distributions of Dci 

withinand Dci 
betweenq 

. Cells with high Jaccard 
indices across multiple clusters indicate low cluster specificity 
and their potential presence at the boundaries of clusters. The 
Jaccard index is recalculated for the top 20% of cells with the 
highest Jaccard index score within each cluster. Two clusters are 
considered to be connected if, in pairwise comparisons, there 
are more than 10 cells meeting the 0.3 cutoff criteria for each 
cluster. The threshold of 0.3 and a minimum of 10 cells was deter-
mined based on simulations. Otherwise, clusters are considered 
disconnected. 

To assess the homogeneity of the cells in the dataset, Escort 
analyzes the correlation between the first principal component of 
the normalized expression data (PC1) and a random subset of the 
top 100 highly variable genes. This assumes that if a true trajec-
tory signal exists, then it would be encoded within multiple highly 
variable genes and also captured by the first principal component. 
A significant correlation between PC1 and more than 46% of the 
highly variable genes at a significance level of 0.05 was used as our 
criterion, determined through a simulation study, for identifying 
a trajectory signal. Significance is assessed via a permutation test 
with 20 000 iterations of the Spearman correlations accompanied 
by a false discovery rate correction. 

Step 2: evaluating the characteristics of 
embeddings 
Once Escort has determined the suitability of trajectory analysis, 
the second step is designed to evaluate embeddings for perform-
ing trajectory inference. Since all methods employ some form of 
dimension reduction, we refer to the collective set of choices as 
an ‘embedding’ of the dataset. However, in practice, an embedding 
may also consist of methods for normalization, selection of highly 
variable genes, or other method-specific hyperparameters. 

The first evaluation of an embedding is the retention of inter-
cellular relationships that are present in the high-dimensional 
data. While we do not expect a (typically) lower dimension embed-
ding to perfectly preserve high dimensional relationships, Escort 
penalizes severe distortions as the accuracy of trajectory predic-
tion is heavily dependent on the extent to which these relation-
ships are preserved [4]. The distance-based method introduced 
in Step 1 is utilized again to evaluate cell connectivity on the 
embedding. Since disconnected clusters were resolved in Step 
1, a reliable embedding should not exhibit newly disconnected 
clusters. Consequently, any embeddings found to be disconnected 
are classified immediately as not recommended for trajectory 
inference. 

For any remaining embeddings, the preservation of similarity 
relationships in the low-dimensional embedding is evaluated by 
employing what we define as the ‘same group level’ method. 
For each cell in the embedding, the three closest cells based on 
Euclidean distance in low-dimensional embeddings are identified. 
A cell has a high ‘same group level’ when at least two of its 
closest neighbors belong to its same cluster as defined in Step 
1. The clustering structure observed in the higher-dimensional 
space is considered to be well-preserved in a given embedding 
when a large number of cells exhibit a high ‘same group level’. 
For example, consider the detection of the three closest neighbors 
for a cell ci. The  set  NSi = {ci1, ci2, ci3} contains the three closest 
neighbors for ci. If  ci ∈ Tk and {ci1, ci2, ci3} /∈ Tk, then the ‘same group 
level’ is considered 0. If {ci, ci1} ∈ Tk and {ci2, ci3} /∈ Tk, the ‘same 
group level’ is considered 1. If the ‘same group level’ is equal to 
or greater than 2, we conclude that the cell exhibits a high level 
of similarity with its neighboring cells. The preservation score for 
similarity relationships is determined by the percentage of cells 
exhibiting a high level of similarity. 

The next embedding evaluation considers cell density. If cells 
are more uniformly distributed in the two-dimensional embed-
ding space, the trajectory inference method faces challenges in 
identifying a robust trajectory. Conversely, if cells are denser 
and exhibit a distinct topology, the trajectory inference method 
is more likely to generate a well-defined curve. Since methods 
frequently fit trajectories on two-dimensional representations, we 
quantify the cell density by calculating the ‘cell coverage area’ 
using the area of the α-convex hull [42]. The proportion of this area 
to a minimum circle enclosing all cells in the two-dimensional 
embedding space is then calculated. 

Step 3: quantifying trajectory fitting performance 
So far Escort has provided independent evaluations of embed-
dings for trajectory inference based on general properties, specific 
methods may impose additional specific graph structure. Thus, 
the final step for Escort accounts for any method-specific varia-
tions in the performance of embeddings. 

For each embedding, a rough trajectory is fit using an assumed 
method. We use Slingshot as the default, however, other methods 
are easily incorporated at this stage and described in the user
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vignette. With the embedding-specific trajectory, Escort estimates 
the proportion of cells positioned along the trajectory such that 
their projection is ambiguous. For example, trajectories in a U-
shape tend to be less accurate due to the presence of cells that 
map with similar probability to the beginning or end of the 
trajectory. Each cell’s pseudotime is computed by each trajectory 
inference method by projecting cells onto the trajectory. Escort 
calculates each cell’s pseudotime standard deviation based on 
the closest 10% of its nearest neighbor. Ambiguous cells are then 
defined as those with an extremely large standard deviation 
exceeding the upper fence identified by a skew-adjusted approach 
[43]. If multiple lineages are present, then this step is performed 
per lineage, followed by the calculation of the total number of 
uniquely ambiguous cells. 

Escort scoring 
A comprehensive score incorporating the assessments above is 
used to evaluate the overall performance of each embedding. The 
score consists of three components: proportion of cells having a 
high same-group level (Step 2), cell coverage area (Step 2) and the 
proportion of ambiguous cells (Step 3). Embeddings deemed non-
recommended based on the disconnectedness evaluation in the 
second step are not included in the score comparison. 

To establish a realistic and standardized benchmark scoring 
system, we conducted simulations using Scaffold based on a 
human pancreas single-cell RNA-seq dataset [16, 44]. We simu-
lated a total of 50 scRNA-seq datasets, each comprising 500 cells, 
15 894 genes and including 20% dynamic genes. For each of the 
simulated datasets, we produced nine different embeddings by 
employing MDS, UMAP and t-SNE based on a subset of 2000, 4000 
or 10 000 highly variable genes. Subsequently, we assessed all 
generated embeddings by computing both mean squared error 
(MSE) and Kendall rank correlation coefficients. We identified 
good embeddings as those with correlation coefficients exceeding 
0.85 and MSE less than 0.01. We then fit a beta distribution to 
the cell coverage area values generated by the good embeddings, 
as well as a gamma distribution to the proportion of ambiguous 
cells within these embeddings. We established suitable cutoffs as 
the 99th percentile of the standard fitted distributions. This led 
to a cutoff for cell coverage area of 0.53 and for the proportion of 
ambiguous cells as 0.029. In practice, these cutoffs have proven 
reasonable. 

To classify embeddings as recommended or not recommended 
based on the score, Escort scales the scores separately for the 
density and ambiguous components as follows: 

S = 
Vcutoff − x 

Vcutoff 
, (2)  

where x is the value of cell density or proportion of ambiguous 
cells. For cell density, we set the Vcutoff to 0.53, while for the 
proportion of ambiguous cells, the Vcutoff is 0.029. The percentage 
of cells with a high ‘same group level’ is included in the score as 
a weight. The total score for each embedding is calculated as 

Total score = (
Sdensity + Sambiguous

) × Wsame group level, (3)  

where Sdensity is the scaled score for the coverage area components, 
Sambiguous denotes the scaled score for ambiguous cells component 
and Wsame group level represents the percentage of cells with a high 
‘same group level.’ The score ranges from negative infinity to 
two, with higher scores indicating better performance. Escort 

reports embeddings with a score greater than zero as recom-
mended, while those with a score less than or equal to zero 
as non-recommended. Through this scoring system, users can 
readily identify more optimal embedding choices to construct a 
trajectory. 

Application of Escort to simulation and 
single-cell RNA-seq datasets 
We generated two simulated datasets using the Scaffold v0.2.0 R 
package [16], one consisting of homogenous cells and the other 
featuring a linear trajectory. The reference data for simulation was 
obtained from human pancreas single-cell RNA-seq [44]. The esti-
mateScaffoldParameters() function was utilized to configure all 
simulation parameters. In the dataset with homogenous cells, no 
dynamically expressed genes (i.e., genes influencing a trajectory), 
were specified. For the linear structure dataset, we specified that 
20% of the genes should be dynamic. The simulateScaffold() func-
tion was applied to run the simulations based on the parameters 
from the estimateScaffoldParameters() function. Additionally, we 
utilized six simulated datasets that are publicly available [45]. 

For each simulated dataset, we initially eliminated cells with 
duplicated ground truth time. Then, we preprocessed each dataset 
by removing low-quality cells based on extreme outliers (low or 
high) counts of unique genes, total molecule counts per cell, and 
a high percentage of mitochondrial genome reads using Seurat 
v5.0.1 [46]. Genes having less than three total counts (or less than 
10 for the sc-1 dataset) were also filtered out. The normalization 
method ‘LogNormalize’ was then applied using the Normalize-
Data() function in Seurat. Highly variable genes were identified 
using scran v1.28.2 [47]. The modelGeneVar() function identified 
genes demonstrating higher variability than expected given their 
mean expression. We selected features based on biological vari-
ability by utilizing the ‘bio’ argument in the getTopHVGs() func-
tion, picking the top 20, 40 and 100% proportion of genes. Next, 
t-SNE, UMAP and MDS were applied as dimension reduction tech-
niques to generate embeddings. t-SNE was performed by the Rtsne 
v0.16 package, involving an initial PCA on the normalized data 
with the default setting retaining the top 50 dimensions. UMAP 
was implemented using the R package UMAP v0.2.10.0 directly on 
normalized data with default settings. SCORPIUS v1.0.9 [48] was  
used to implement MDS with the Spearman distance metric. A 
trajectory was inferred for each embedding using both Slingshot 
v2.8.0 [7] and Monocle3 v1.3.4 [17]. The mclust package v6.0.1 [49] 
was used to generate clusters based on hierarchical clustering, 
and these clusters were subsequently employed as input for 
Slingshot. 

Computation time evaluation 
To assess the computational time required for Escort, we utilized 
datasets varying in cell count—specifically, 250, 500, 1000, 1500 
and 3000 cells, each containing 20 000 genes. This range was cho-
sen to represent a variety of dataset sizes encountered in analyses. 
The data was simulated using the Scaffold R package v0.2.0 [16] as  
described for the simulation study. Our tests were performed on a 
laptop equipped with an Apple M1 Pro chip and 16 GB of RAM. We 
structured our computational analysis to separately measure the 
runtime for Step 1 (testing the suitability of trajectory inference) 
which does not involve a specific embedding and Steps 2 and 3 
combined. For Steps 2 and 3, we report the time of evaluating 
a single embedding. We repeated each scenario five times and 
calculated both the mean runtime and the standard deviation 
in min.
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Analysis of hypertrophic chondrocytes 
The preprocessed scRNA-seq data from Long et al. (2022) was 
downloaded from GSE190616 [20]. Escort was applied to the nor-
malized expression matrix for 13 different embedding compar-
isons (Supplemental Table 1), the embedding option using PCA 
with 10% of the most highly variable genes performed best was 
selected for further trajectory analysis. Slingshot v2.8.0 [7] was  
used to fit the trajectory under the Escort embedding option, 
as well as the embedding used in the original paper’s analysis. 
The R package scLANE v0.7.8 [21] was used to test each gene’s 
expression for trajectory differential expression using the default 
settings. Genes were considered significantly dynamic if they have 
an overall false discovery rate adjusted p-value <0.01. Genes 
were further filtered for enrichment if they had a last segment 
slope > 5 or < −5. Enrichment was carried out using both Enrichr 
[50], specifically using the BioPlanet 2019 collection and GSEA 
Molecular Signatures Database for mouse [51, 52], specifically the 
GO biological processes collection. 

Key Points 
• The performance of trajectory inference methods for 

scRNA-seq data is dataset-specific and highly vulnerable 
to data processing choices made during the analysis. 

• Users are unaware of the effect that, say, choosing a 
different dimension reduction approach or number of 
features may have on the estimated trajectory, both of 
which are data processing steps for all trajectory infer-
ence methods. 

• We developed Escort (R package and R/Shiny app) to 
guide users through trajectory analysis by quantitatively 
evaluating sets of data processing choices based on met-
rics assessing desirable trajectory properties. 

• Escort also first evaluates whether a given dataset 
is appropriate for trajectory analysis. This occurs, for 
example, when datasets contain distinct cell popula-
tions, or when the cells are too homogenous. 

• Overall, Escort reduces the decision-burden on users 
during trajectory analysis, leading to more optimal 
trajectories and ultimately, a better understanding of 
dynamic biological processes. 

SUPPLEMENTARY DATA 
Supplementary data are available online at https://academic.oup. 
com/bib. 
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